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Abstract—Today’s mobile devices with advanced computing and
storage resources are encouraging a whole new class of ap-
plications geared towards context-aware intelligence. However,
for continuous processing of context-processing algorithms in
interactive human-computing interfaces and augmented-reality
experiences, these devices lack resource demands. Most of these
intelligent applications rely on cloud paradigm for on demand
computing, memory and storage resources. While combining
both computing paradigms, finding the best strategy to deploy
and configure intelligent applications, is not straightforward. In
this paper, we analyse the challenges and requirements for the
dynamic deployment of intelligent applications in such a feder-
ated setting. Additionally, a framework that leverages Dynamic
Decision Network (DDN) is presented for decision making. DDN-
based models deal with the presence of uncertainty and the
partial observability of the context information, as well as the
temporal effects of decisions to ascertain the Quality-of-Service
and Quality-of-Context requirements. Our initial experiments
with the framework demonstrate the feasibility of our approach
and potential benefits to automatically make the best decision in
the presence of a changing environment addressing the runtime
variability.

Keywords–dynamic deployment; probabilistic models; mobile
cloud computing;intelligent applications.

I. INTRODUCTION

With mobility and context-awareness [1], an ecosystem
that can better connect the virtual world with the physical
world is propagating. This propagation has multiplied the use
of mobile devices in smart homes and offices, smart health,
assisted living, smart cities and transportation. Research and
development of context-aware intelligence aim at the ways to
teach our devices about our environment narrowing the gap
between us, our devices and the environment. Moreover, a
relentless spurt of research activities in Mobile Cloud Com-
puting (MCC) [2] aim to overcome the limitations of state-
of-the-art mobile devices for intelligent applications. These
cutting-edge applications require continuous processing and
high-rate sensors’ data to capture the users’ context, such as
their whereabouts and ongoing activities as well as the runtime
execution context on the mobile devices. These devices use
cloud resources to cope with the ever-growing computing and
storage demands for its applications as a key enabler to run
more demanding or long running tasks and applications.

The most viable technique in MCC is to dynamically
adapt the mobile application by outsourcing the resource-
intensive tasks to the cloud servers. Cloud computing can
potentially save resources for mobile users [3][4]. Contrary
to mobile devices, cloud computing provides plentiful storage
and processing capabilities. This federated design could be

applied to almost any application and has been shown to
improve both the speed and energy consumption for non-trivial
computations [5].

Nonetheless, not all applications are energy efficient when
migrated to the cloud. Additionally, a lot of contextual infor-
mation is sensed and captured on mobile devices. To deploy
and initialize the desirable components automatically in this
federated environment, involves several trade-offs with respect
to the Quality-of-Service (QoS) [6] and the Quality-of-Context
(QoC) [7]. A modular design philosophy for intelligent appli-
cations enables a more optimal deployment and performance
when leveraging cloud technology. However, attaining the best
deployment and configuration strategy for intelligent applica-
tions is not straightforward. In the core of such a distributed
environment, adaptation decision of what to run where and
when is non-trivial. The requirements of semantic knowledge
and intelligence, the resource characteristics of the application
components and low-level monitoring of the platforms used for
deployment in terms of processing power, bandwidth, battery
life and connectivity makes this decision highly dynamic.
The main causes of this dynamism are runtime uncertainty
and erratic nature of the context information [8], significantly
impacting deployment decisions and performance. This context
uncertainty can lead to annoying or incorrect decisions and
can negatively impact the ability to reliably predict future
contexts for proactive decision making as well. Furthermore,
the system should be made aware of the impact of its decisions
over time to optimize the runtime deployment and learn from
its mistakes as humans do. The decision making needs to be
flexible enough to ascertain the quality of its own decisions.

We present a framework designed to support the modular
development and deployment of intelligent applications within
the setting of MCC. We have adopted a probabilistic model
based on DDNs for optimal decision making under evolving
context of the runtime environment of a mobile device. DDN
is an emerging research topic, and researchers are investigating
its use in the area of self-adaptation for autonomous systems
in several domains. Our major contribution in this paper is an
approach of context-driven decision making using DDNs for
dynamic deployment of intelligent applications, dealing with
the dynamism and the partial observability of the context, as
well as the temporal effects of the decision. Our model is able
to learn deployment trade-offs of intelligent applications and
capable of learning from earlier deployment or configuration
mistakes to better adapt to the setting at hand. We have worked
out our approach to an augmented-reality based use case
where a DDN model decides and learns for the deployment of
application components. Our experiments demonstrate the fea-
sibility of the approach and potential benefits to automatically
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make the best decision in the presence of changing situations
or circumstances.

This paper is structured in six sections. In Section II, we
give an overview of related work in MCC and discuss the
gaps in state-of-the-art for federated deployments. Section III
highlights the requirements and objectives of our use case
scenario. Section IV provides a brief account of our proposed
federated framework and the details about our approach of
learning the trade-offs for dynamic deployments using a prob-
abilistic decision model, mitigating the influence of runtime
uncertainty. Finally, after evaluating our approach applied on
our use case scenario in Section V, the paper concludes and
offers a discussion of topics of interest for future work.

II. BACKGROUND AND RELATED WORK

Although outsourcing the computation to the cloud can be
beneficial in terms of QoS [6]. This distribution is never clear-
cut in the scenario of intelligent systems considering trade-
offs with respect to QoS and QoC [9]. The question is, where
do you draw the line? What should be run on the cloud and
what work should be done by the mobile device? The easiest
option is to have everything stay local and not use the cloud
or Internet at all, but as mentioned earlier, this could lead to
bad performance of the application. Since the cloud consists
of so many computers and has so much processing power,
it is tempting to just decide to do almost all the work online.
However, we can not forget that communication with the cloud
has a price as well, economically and in terms of time and
energy. In this case, multiple conflicting objectives affect the
decisions.

Fortunately, researchers have developed a selection of
systems that allow the application to make the partitioning
decision while it is running, to provide the user with the best
experience possible. CloneCloud [5] clones the entire set of
data and applications from the smart phones to the cloud and
selectively execute operations on the clone. However, for the
continuous nature of context data, the CloneCloud [5] approach
fails in a way that the dataset is not predetermined and needs to
be processed in real-time for context-aware intelligence. Even
more impressive, some of these platforms can let applications
enjoy the best of computation offloading by only making minor
changes, even when they have already been built without cloud
computing capabilities [10]. Cloudlets [11] is another approach
to achieve QoS but it does not provide an answer for the
distribution of processing, storage, and networking capacity for
each cloudlet. How to manage policies for cloudlet providers
to maximize user experience while minimizing cost, security
and trust are also open issues in order to adopt it for practical
systems. Weblet [12] dynamically decides whether a weblet; a
specialized form of HTTP-based web service interface, runs on
the mobile device or the cloud with the help of Naive Bayesian
learning techniques to find the optimal weblet configuration at
runtime. Research is being done to investigate the usefulness
of clouds accessing other clouds to reduce time and energy
spent messaging back and forth between the mobile device
and different cloud services [13].

Restating the obvious, intelligent applications have to take
into account the runtime uncertainty in context data as context
sources are dynamic in nature. They can disappear and re-
appear at any time and context models change to include new

context entities and types. The properties of context sources
and context types can change randomly and the uncertainty can
vary too. Fenton and Neil [14] have used Bayesian networks
for predictions of the satisfaction of non-functional aspects
of a system. Esfahani et al. [15] employ fuzzy mathematical
models to tackle the inherent uncertainty in their GuideArch
framework while making decisions on software architectures.
Dynamic configuration of service oriented systems was in-
vestigated by Filieri et al. [16]. In contrast to our model,
they used Markov models to investigate the decision making
under uncertainty and quality requirements. Many works use
utility functions to qualify and quantify the desirability of
different adaptation alternatives. Bencomo and Belggoun [17]
used DDNs to deal with the runtime uncertainty in self-
adaptive systems. But these works are QoS-based, applied in
different domains for resource allocation [18] and typically
in component-based mobile and pervasive systems such as
Odyssey [11] and QuA [19]. Markovian decision models
still lack the tractability [20] for complex decisions under
uncertainty.Moreover, the current state of the system has to be
known, in order to use Markovian decision models. Several in-
telligent applications are pretty lightweight, but others require
a lot of computational effort (e.g., for prediction) or require
analysis of large amounts of data (e.g., for pattern analysis).

Our approach addresses the concern by identifying the
deployment and performance trade-offs for outsourcing data
and computation by continuously learning and adapting under
multiple conflicting QoS and QoC objectives. If the decision
is affirmative, required functionality is executed as a com-
position of loosely-coupled services on the cloud. Otherwise,
lightweight component-based equivalents of these services are
executed on the mobile.

III. USE CASE SCENARIO

The use case considered in this paper is an AR mobile
application called Smart Lens. Mobile Phones have been the
most common platform for Augmented Reality (AR), ever
since they were equipped with cameras. A mixture of AR and
context-aware intelligence is often found in applications that
aim to help the user explore certain places, be it cities, expos,
museums or malls. In many cases, it makes the phone act as
a camera but adds extra information next or onto objects that
appear on screen. In short, mobile AR allows the devices to
recognise objects as the user would, by seeing them.

A. Working procedure and requirements

By pointing to an electrical appliance, Smart Lens enables
the users to be effortlessly aware of the power consumption
of that appliance on top of that image. In addition to the
near-real-time power consumption of the appliances, the Smart
Lens application allows the user to get a detailed overview
of the impact of any particular device compared to others
in their electricity bill. Also, by storing the historic data it
allows the user to monitor the performance of a device over
time and determine whether it is time to replace a device
with a more energy-efficient alternative. The modular design
have been adopted for data and control processing on mobile
and cloud ends to achieve a flexible distributed deployment.
It simplifies redeployments and reconfigurations significantly.
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Figure 1. Deployment view with modular design philosophy for the components of Smart Lens application.

Figure 1, provides an overview of the composition of the
components for our use case.

The major functional and non-functional system require-
ments for the use case are:

1) The system should be able to identify the elec-
tronic appliance, preferably with a markerless [21]
approach.

2) The system should be able to capture the real-time
context of the user and his environment.

3) The system must be adaptive at runtime to optimize
the resource consumption of the application by out-
sourcing few components to the cloud.

4) The system should detect the runtime context of the
mobile device i.e., CPU usage, memory consumption
and battery usage. It should take into account the
runtime evidence to mitigate contextual uncertainty
and take the most rational decision.

5) The system should select the deployment strategy
with respect to QoS & QoC requirements from the
application’s perspective, such as Lmin for Minimum
Latency and Rmax for Maximum Reliability in terms
of performance.

B. Objectives

Many opportunities for optimization exist as there are sev-
eral distributed deployments of the application components and
different configurations per component possible. The challenge
is to find and analyse different optimization trade-offs in a
federated environment of MCC, each characterized by varying
sensing, communication, computation and storage capabilities.
Moreover, mitigate the influence of runtime uncertainty in
context and its quality.

A smart phone camera consumes its energy at a higher
rate. The application might be able to identify an appliance but
there are a lot of other appliances in a household, and user can
point on them from any direction, so a conclusion based only
on a single view of an appliance from one particular angle, is
many times more likely to be incorrect. The Semantic Spatial
Reasoner helps to maintain the reliability of the application.
On top of that, Feature Extraction and Object Recognition
techniques require a relatively large amount of processing time,
which would not only drain battery further but causes the
application and the phone as a whole to slow down as well.

The easiest option is to deploy every component locally on
the mobile device and not use the cloud at all, but this could

lead to bad performance of the application. Since the cloud
consists of so many computers and has so much processing
power, it is tempting to just decide to do almost all the work
online. However, we can not forget that communication with
the cloud has a price as well, economically and in terms of
time and energy.

Based on the above mentioned requirements and short-
comings, we contrive the methodology for the well-informed
decision making for dynamic deployment as follows:

1) A traditional QoS & QoC requirements gathering to
identify and model the required quality attributes at
design time. It is domain specific and involves the
type of context being utilized.

2) Runtime support to detect a change in QoC in a
particular context type and to measure its impact on
other context types before making any decision.

3) Runtime support to detect a change in QoS before
making any decision.

4) Enforcement of QoS & QoC policies or ways to
ensure these requirements while making a decision.

In the next section, we will explain our context-driven
dynamic deployment framework and its learning mechanism
using probabilistic models to achieve well-informed decision
making with the above described features.

IV. CONTEXT-DRIVEN DYNAMIC DEPLOYMENT
APPROACH

Our framework consists of a loosely-coupled context-
processing system, where each component has a dual imple-
mentation: an implementation for the mobile and a full-fledged
scalable service equivalent running in the cloud. As shown in
Figure 2, mobile hosts a Dynamic Adaptation Module, i.e.,
a client-side component of decision module to adapt the de-
ployment configuration of the application. However, the cloud
environment hosts a Service Adaptation Module which aims to
optimize the runtime deployment of the required components
and acts as an entry point for the adaptation module on mobile
client. This module receives raw or pre-processed context data
(including the type of the content and the identity of the
source) and forwards it to a publish/subscribe subsystem so
that interested parties (i.e., the subscribers) receive context
updates.
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Figure 2. A blueprint of federated MCC framework and its dynamic deployment modules.

A. Deployment and reconfiguration decision making

Deployment Adaptation Module takes the decision of how
to split responsibilities between mobile devices, applications
and the framework itself. It should be able to decide for which
use cases the cloud is better and for which ones a cloud based
deployment does not bring any added value. Our decision
making approach for redeployment and reconfiguration is
explained in steps mentioned below:

Information discovery and selection − The framework
discovers and explores application’s runtime environment in
order to get the context information to work with. Figure 3
shows a taxonomy of the runtime environment of a mobile
device. Its resources can affect the QoS requirements and
eventually, the decision of dynamic deployment.

platform service

user

Virtual Machine

Rendering Engine

Operating System

Middleware

software 
application

Mobile 
deviceResource

Network

CPU
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Storage

Power
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Figure 3. Taxonomy of the runtime environment of a mobile.

Our framework discovers the sensors and context types
required for the smart application. Built-in sensors in mobile
devices are important to fetch the context data, but the
size of the acquired context data varies, depending on the
application’s objectives. The framework filters acquired
context according to specific needs of the application. This
selection process can be fairly complex as it may require
complex filtering techniques to decide which sensor or device
is offering relevant information. QoS and QoC requirements
are gathered at this step to bootstrap the decision making.
Runtime Resource Profiler component deployed on the mobile
side, gathers these requirements.

Analysis and decision making − The framework uses
discovered and selected information to make the deployment
decision or change the configuration or behaviour of the
application. For instance, user points his mobile device on an
appliance. The image/video frame from the mobile device is
captured. The feature points for the image in the frame are

Figure 4. Enactment of dynamic decision making where system learns with it mistakes.

extracted. With these feature points , planar objects are then
identified by matching the extracted feature points to those of
known planar objects in a database. There is little memory
because of his running video player. In this situation, a thin
client configuration is chosen for Smart Lens, delegating
Spatial Reasoning and Object Recognition components to
cloud infrastructure. Furthermore, when the user shuts down
video player, a context change is raised: free memory on the
hand-held becomes high.

Enactment of the decisions − With a thin client configuration
in previous step, the framework has to observe the real-time
impact of the configuration to maintain QoS requirement of
Minimum Latency. In order to increase application response
time Smart Lens is reconfigured with a thick client and
caching of data to save power and to become less vulnerable
to network instability. As depicted in Figure 4, decision
making is a continuous process, where the framework
optimizes the application behaviour to reach certain objectives
on the basis of the required attributes. When the availability
of required resources varies significantly, framework has
to decide whether to trigger an adaptation in the form of
reconfiguration of the components. It learns from its previous
decisions and the available context in order to ascertain the
quality of the decision and learn from its own mistakes to
achieve better results in future.

B. Learning the deployment trade-offs using DDNs

Conditional probability distributions derived by analysing
historical attribute values helped solve stochastic problems in
past. Runtime setting for every component is hard to determine
in advance due to the dynamic interaction of these components
with the environment and the user. Our Deployment Adaptation
Module takes an advantage of probability theory and statistics
to describe uncertain attributes. Probabilistic reasoning allows
the system to reach rational decisions even when complete
information is not available. Knowledge about runtime uncer-
tainty can be captured by a data structure for probabilistic
inference called a Bayesian network (BN). A BN is a Directed
Acyclic Graph (DAG) represented by a triplet (N, E, P), where
N is the set of chance nodes, E is the set of arcs to represent
causal influence of the chance nodes and P is the conditional
probability distribution for each chance node.
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Figure 5. Structure of a DDN with dynamic chance nodes affecting utility nodes with
decision nodes and evidences [22].

A Decision Network is a BN that also includes a set of
decision and utility nodes. Utility nodes express the pref-
erences among possible states of the world in terms of a
subset of chance nodes and decision nodes. A probability-
weighted expected utility is calculated for each decision given
the evidence. To represent variables that change over time, it
is possible to use a time-sliced network such that each time-
slice corresponds to a time point. A DDN [17] is used for the
enactment of the decisions that change over time influenced
by dynamic states and preferences. To model the effectiveness
of reconfiguration over time, decisions are modeled using a
DDN where each time slice contains an action taken by the
system. Figure 5 shows the structure of a general DDN.

DDNs are fed with runtime context of the user and the
execution environment, such as CPU or memory usage, re-
maining battery and network connectivity. Chance nodes can
represent runtime context, QoS or QoC requirements for each
component of the intelligent application. Evidence nodes are
different runtime situations based on the context of the user
and parameters of the system. Decision nodes are the actual
reconfiguration decision for each component. Utility nodes
are influenced by chance nodes and decision nodes to infer
the utility of dynamic deployment decision for a component.
Utility functions can be used to assign priorities to different
QoS and QoC requirements. The utility of redeployment
decision is inferred using the QoS and QoC requirements of
the application. System will choose the decision with highest
expected utility, known as the Maximum Expected Utility
(MEU) principle [22].

Our model expresses QoSi, QoCi and the context of the
mobile device by chance nodes. These chance nodes make a
BN with conditional probabilities corresponding to the effects
of different actions Dj over QoSi or QoCi. Evidence nodes,
defined as ”Obs” in Figure 5, express the uncertainty factors
connected to the chance nodes to take a favorable decision.
For each dynamic chance node, utility node expresses the
utility function that takes conditional probabilities of QoS
or QoC requirements and their priorities into account. The
expected utility for each decision is computed with respect to
the P(QoSi|QoCi,Dj), P(QoCi|Dj) and a weight for the decision
as expressed in Equation (1).

EU(Dj | QoC i) = iΣP (QoSi | QoC i, Dj)U(QoSi | Dj) (1)

V. EXPERIMENTAL EVALUATION

In order to implement our framework, discussed in Sec-
tion IV-A, we are using an HTC One X with a 1.5 GHz Quad

Core ARM Cortex processor (at about 2.5 MIPS per MHz per
core) to run the Android-based Smart Lens, augmented reality
application, which embeds the Vuforia library to recognize
everyday devices of the users in the environment. Our in-
frastructure runs VMware’s open source Platform-as-a-Service
(PaaS) offering known as Cloud Foundry on a server with 8
GB of memory and an Intel i5-2400 3.1 GHz running a 64-bit
edition of Ubuntu Linux 12.04. A Java-based implementation
has been used for Runtime Resource Profiler that captures
the runtime context of mobile device. We have modeled a
DDN-based probabilistic model for the components of our
Smart Lens use case using JSmile Android API in Genie and
Smile environment from Decision Systems Laboratory [23].
Our DDN model is evaluated using Equation (1) for every
decision Dj computing the probability-weighted average utility
for that decision.

The initial experiments are conducted for the redeployment
of Object Identification component. Our model has been de-
signed and expanded for 5 time slices as shown in Figure 6.
CPU and memory usage are modeled as static chance nodes
representing execution context. QoS requirement Minimum
Latency is modeled as a dynamic chance node influencing
the redeployment decision and QoC requirement Maximum
Reliability is observed in terms of performance. The QoS and
QoC requirements both affect utility node. Decision node is
the actual reconfiguration decision for each component.

Figure 6. Expected utility for redeployment decision of Object Identification component
with changing runtime situations.

QoS requirement of latency is kept minimum with re-
spect to a threshold value of 3 seconds. Initial conditional
probabilities are defined with respect to QoC requirements
where the CPU usage is kept less than 40% and memory
usage less than 45 MB. Figure 6 shows that our model
learns and adapts according to a change in the context of
the runtime environment at each time slice, where each time
slice is realized by a ticker initiated from Runtime Resource
Profiler, whenever the runtime environment changes. At time
slice 4, latency is observed and model adapts itself to deploy
this component on the mobile device rather than the cloud,
according to the required QoS.

VI. CONCLUSION AND FUTURE WORK

The optimal strategy to deploy and configure intelligent
applications with dynamic and heterogeneous resource avail-
ability is not forthright. This deployment of software compo-
nents has to take into account the resource characteristics of
application components and the platforms used for deployment
in terms of processing power, bandwidth, battery life and
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connectivity. Our modular design philosophy for developing
intelligent applications helps to dynamically configure, com-
pose and deploy these components. The overall aim of our
work is to intelligently automate the distributed deployment
and configuration of the components across the mobile and
cloud infrastructures.

In this paper, we have presented a novel approach for
dynamic deployment decision making in federated environ-
ment of MCC by leveraging DDN to automate decisions in
a continuously evolving runtime environment context. DDNs
build upon Dynamic Bayesian Networks. However, the latter is
only able to learn conditional probabilities based on a dataset,
whereas DDNs can quantify the impact of the evidence and
the effect of the decisions. Furthermore, by exploiting the
utility of deployment decisions, our framework can learn how
to automatically improve its decisions in the next iteration or
time slice. Our first contribution was a feasibility analysis of
incorporating DDNs for decision making, and our experiments
have clearly demonstrated the ability of adapting its decision
in the presence of evolving situations and an uncertain context
of the environment. By incorporating QoS & QoC in our
DDNs, we are able to assess the quality of our context-
driven decisions, ascertain their quality and update future
decisions and corresponding actions according to the outcome
and impact. Our preliminary experiments have shown that
an intelligent application can achieve optimal deployment for
its components, whenever the context is updated. However,
the sensitivity analysis in federated environment has to be
conducted.

Further work is required towards more systematic tech-
niques for the runtime synchronization of multiple DDN
models and to empirically study the scalability of these models.
The value of the probabilities that change over time and their
impact on alternative decisions can also be of interest. Finally,
developing tools to specify the QoC requirements and design a
DDN would be certainly very helpful as current tool’s support
for modelling and using DDNs is fairly limited.
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