
A Method of Applying Component-Based Software Technologies

 to Model Driven Development

Keinosuke Matsumoto, Tomoki Mizuno, and Naoki Mori
Dept. of Computer Science and Intelligent Systems

Graduate School of Engineering, Osaka Prefecture University
Sakai, Osaka, Japan

matsu@cs.osakafu-u.ac.jp

Abstract—Improving the efficiency of automatic software
generation is a problem of model driven development method.
In order to solve this problem, we apply component-based
software technologies that have been mainly developed on
software implementing level to modeling level. In the proposed
method, functionally relevant model elements are packed as a
model component, and modeling software is carried out by
associating it with each model component. The role of model
components becomes clear by introducing the concept of a
component, and the reuse of model components rises by
externalizing the dependency between components. In addition,
flexible model transformation rules linked to the role of model
components can be designed. As a result, it is possible to
automatically generate more source code. The validity of the
proposed method has been proved by application experiments.

Keywords-model; component-based development; object
oriented design; UML; MDA

I. INTRODUCTION

Model driven development (MDD) method which is
based on model driven architecture (MDA) [1] draws
attention as a technique that can flexibly deal with changes
of business logics or implementing technologies in the field
of system development. Its core data are models that serve as
design diagrams of software. It includes a transformation to
various kinds of models and an automatic source code
generation from the models. These models themselves are
expected to be reused [2]. By reusing models, you can also
reuse the knowledge that does not depend on platforms. It
can improve software development efficiency. For that
purpose, it is necessary to pack the highly relevant model
elements into a function and to clarify a reuse unit [3].

On the programming level, there is a development
technique called component-based software method [4] that
especially aims at reusing the source code. A component is a
set of highly relevant and reusable program parts. The
component-based method develops software by combining
components. It has been mainly improved in the
programming field, and various development frameworks are
now put into practice. In recent years, component-based
modeling [5] which applies the concept of components
developed on programming to software models has been
advocated. The software models treated by this component-

based modeling and the models treated by MDD are the
same.

You can develop the component-based modeling further
and apply it to MDD. According to this idea, this paper
proposes a method that makes model elements loose
coupling by introducing a component of the component-
based technologies to MDD. It also describes a technique to
design automatic generation rules that is one of the features
of MDD. Finally, this study aims at increasing the efficiency
of MDD by the proposed software development method.

The structure of this paper is shown below: Section II
describes component-based software technologies, and
Section III explains the proposed method of this research. In
Section IV, we show the results of application experiments
in order to confirm the validity of the proposed method.
Finally, Section V describes conclusions and future subjects.

II. COMPONENT-BASED SOFTWARE TECHNOLOGIES

Fundamentally, a component is not used alone, but it is
used in order to build software by combining it with other
components or programs. This study uses software patterns
called Inversion of Control (IoC) and Dependency Injection
(DI).

A. Inversion of Control

IoC is a kind of software architecture, which frameworks
or containers actively call components [6]. On the contrary,
components do not call other cooperative components, but
they only have references to their interface instead.
Components do not need to know other cooperative
components at the time of software implementation. This
promotes interface programming and stimulates loose
couplings of software.

B. Dependency Injection

By realizing IoC through interfaces, you need a
mechanism to get the required components at the time of
execution. DI [7] is a technique to realize the mechanism.
Dependency is injected outside components. The
dependency is injected outside the components and described
apart from the source code expressing business logics. A
container managing the life cycle of components analyzes
the dependency at the time of execution and specifies the
components to cooperate with according to the dependency.
It is not necessary to describe the process of acquiring

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

Figure 3. Dependency of model elements.

external components in the source code which realizes
business logics. Therefore, IoC is realized.

III. PROPOSED METHOD

Dependency between components is externalized by
introducing IoC into a model level, and loose coupling
between components can be also promoted. The proposed
method adopts this approach in MDD. It aims at improving
the efficiency of MDD by increasing the efficiency of
modeling, reusing models, and defining an externalized
dependency between components. This section explains the
modeling process suggested in the proposed method by using
Unified Modeling Language (UML) diagrams. The position
of the proposed method is shown in Fig. 1. Fig. 2 shows a
flow of development cycle in the proposed method.

A. Modeling

Modeling is an approach for introducing IoC in class
relations, and messages passing through components and
container interfaces. This approach is close to the Catalysis
approach [3], which decides on component interfaces in
advance and models the inside of the components
independently. However, the proposed method is not
necessary to know external components because it adopts the
IoC, and it differs from the Catalysis approach in this point.
The proposed method condenses software modules that are
functionally connected as a model component. It is required
to decide component granularity by introducing the concept
of components into upstream processes from the
implementing level. Components are classified by the
granularity of practical software examples as follows:

1) Business Component: It corresponds to one of
business processes like an order receipt, estimate. It is
realized by compounding business functional components.

2) Business Functional Component: It is a business
element unit like accepting order receipt, replying
estimation request. A service in Service Oriented
Architecture (SOA) is located here.

3) System Functional Component: It is a system part
like registration, updating and reference of information. A
business functional component is created using the system
functional components.

The proposed method targets at the system functional
components among various granularities.

B. Externalizing Dependency of Model Elements

The proposed method also designs a model for defining
dependency between model components. This is referred to
as an external cooperation model. A component diagram of
UML is used for modeling of external cooperation models.
The component diagram, which shows a static structure of
software, can be divided into demand interfaces and supply
interfaces. It can describe an interface and the dependency,
including its directivity [8]. The proposed method calls an
internal structure model that shows the inside of the model
component structure. To design the internal structure model,
we use a class diagram of UML. However, the class diagram
makes use of internal classes, interfaces, libraries, and

demand/supply interfaces that belong to the component. It
does not directly use external elements to keep IoC. The
external cooperative models are defined outside of the

CodeDependency

Modeling

Reuse

Feedback

Generation
Defining

Dependency

Template

Figure 2. Cycle of software development.

Component

Repository

Figure 1. Position of the proposed method.

UML

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

components. The concept of IoC is introduced into a model
level, and externalizing dependency between components is
achieved. Fig. 3 shows these concepts.

C. Selective Design of Model Transformation Rules

In order to transform models to texts like source code,
you need to design a template describing transformation
rules from the model to the texts. The proposed method
makes the role of components clear by introducing the
concept of a component and it enables to design a template
dedicated to a component. For example, prominent software
patterns like analysis patterns [2] and design patterns [9] [10]
[11] can be used and employed as model components or
transformation rules. The proposed method does not limit the
type of the system for development. It is advantageous that a
developer can give role information freely to model
components or transformation rules.

It is very difficult to design a general-purpose template in
a platform. If a template is designed for a specific project
[12], it will become hard to divert it to other projects. The
proposed method designs a template for each component
because it is separated according to a function of the
component. For this reason, the template design becomes
more flexible than ever. It makes use of the externalizing
dependency and no need to write special code for DI in
source code.

IV. APPLICATION EXPERIMENTS

The proposed method is applied to a sample system to
confirm the effectiveness of the proposed method.

A. Experimental Overview

The sample system is a typical three layer client server
type of Web application. The main roles, implementing
methods, and applied design patterns are shown in the
following:

1) Business Logic Layer: It corresponds to functional
requirements of the Web application. It receives inputs from
a controller and sends processing results to a presentation
layer. In addition to service components, a naming service
by Java Naming and Directory Interface (JNDI) is realized
in order to make possible Remote Method Invocation (RMI)
of procedure. Service Locator, Business Delegate, Singleton,
and Proxy are used as design patterns.

2) Data Access Layer: It abstracts a persistent data
system, such as a database or a file system. It is a uniform
window to deal with the data system. Data Access Object,
Factory Method, Abstract Factory, and Facade are used as
design patterns.

3) Entity: It is a class group expressing the data that
serve as persistent objects among the object classes in a
problem domain. Data Transfer Object (Value Object),
Composite Value Object, and Value Object Assembler are
used. In addition, platform specifications are shown in the
following:

 Programming Language: Java Development Kit 5.0.

 Application Server: Glassfish Open Source Edition v3.

 Database Management System: MySQL 5.1

Many MDA tools generate skeleton code from class
diagrams of UML. For comparison, these tools are regarded
as conventional methods. A standard sample of Acceleo [13]
is used in this experiment. The Acceleo sample has an
automatic generation function of Java source code from class
diagrams designed by UML modeling tool UML2 of Eclipse.
We compare three kinds of experimental data: the source
code automatically generated by the proposal method, the
source code generated by the conventional method, and the
final source code. The last one is composed of the source
code resulting from the proposed method and hand coded
additional source code. These experimental data are
respectively called "proposed method", "conventional
method", and "finished goods".

B. Template Design

Fig. 4 is an example of the dedicated template that
generates the code of a class method, implemented by
Java+Spring Framework, for Web page controller models.
This model component has a Web page controller profile, as
confirmed by the lines 1-2. An appropriate function is given
to a class method by detecting the applied stereotype as
shown in the lines 3-9. This template is stored in the model
component of the Web page controller. The proposed
method enables to design a specialized template in a UML
profile. The template is also united with a role, but it is not
based on a field. In addition, the automatic generation rate of
code also becomes higher.

The templates are prepared by roles, such as a template
corresponding to design patterns, controllers in a client
server type, and database access. A template reads
information on a model and is a medium that generates
source code. The automatic generation is carried out by each
model component. The source code is merged with
information on the internal structure model, the external
cooperation model, and the UML profile.

C. Evaluation by Abstract Syntax Tree

This experiment measures the number of Abstract Syntax
Tree (AST) nodes in order to evaluate the quantity of the
source code generated automatically according to procedure
of the MDD. The AST syntactically analyzes the source code
and expresses it in a directed tree. There are two advantages
of investigating AST nodes: The first one is that it may be
easier to reflect the actual processing of a program than with
conventional indexes, such as Line of Code (LOC): number
of source code lines. The second one is that it can investigate
a type of nodes that constitutes the AST. This information is
useful when knowing the structure of a program. On the
contrary, LOC is a simple numerical value and cannot know
the structure of the program.

This experiment uses Eclipse Java Development Tools
(JDT) as an API that builds AST from Java source code. In
addition, language specification is AST-Java Language
Specification3 (JLS3). JLS3 is equivalent to Java
Development Kit 5.0. When LOC is calculated, you may

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

disregard lines that are unrelated to the program execution
such as comment lines. The value measured on the condition
is called a logical LOC. Like this, this experiment eliminates
LINE COMMENT, BLOCK COMMENT, and JAVADOC
that express comments when you add up AST nodes.

Fig 5 indicates each AST node’s category of the
proposed method and the number of nodes belonging to the

category. All graphical models that serve as inputs of the
automatic generation tools are the same. The total numbers
of AST nodes for the finished goods, the proposed method,
and the conventional method are 7307, 6859, 2200,
respectively. The execution time of the conventional method
is really shorter than the one of the proposed method.
However it could generate the third of AST nodes of the

Figure 5. Breakdown of AST nodes generated by the proposed method.

Figure 4. Example of role-specific template for Acceleo.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

proposed method, and includes many errors in the generated
source code.

D. Discussion

 The number of AST nodes is remarkably increased by
the proposed method in comparison with the conventional
method. It turns out that class methods occupy a large
proportion in the source code of a system. The proposed
method is effective in MDD from this point. In addition,
generated AST nodes of the proposed method are
investigated in detail as compared with the conventional
method. SIMPLE NAME nodes are ranked number one.
They express class names, field names, class method names,
variable names, and so on, as it appears everywhere in the
source code. They are located in terminal nodes in AST.
Therefore, there are more SIMPLE NAME nodes than other
nodes in both the proposed method and the conventional
method. From this point of view, it cannot show advantages
of the proposed method. The other AST nodes that appear in

class methods are investigated except the SIMPLE NAME
nodes. The total of the increasing amount of these AST
nodes, except for SIMPLE NAME nodes, is 1508 and it
occupies about 32.4% of the whole increasing amount 4659.
It becomes about 56.7% if the SIMPLE NAME nodes are
eliminated. Fig. 6 is a bar graph in which incremental values
of automatic generated code of the proposed method are
ranked in descending order in comparison with the
conventional method by the category of AST nodes.
However, this graph omits the SIMPLE NAME nodes and
the nodes which incremental amount are zero.

Regarding applied design patterns, it is easy to design
templates for Service Locator, Business Delegate, and Data
AccessObject. These patterns are more commonly used to
describe the bodies of class methods. The proposed method
is superior in dealing with design patterns. The readability of
the generated source code is expected to be high. The
readability is one of the elements that is not described in
models but appears in source code. It is easy to describe it as

Figure 6. Difference of the amount of AST nodes.

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

coding conventions in templates. Although it is necessary to
design templates for every role of the model components by
the proposed method, they are independent from fields and
they are reusable for other projects.

AndroMDA [14], Software Factories [15], and UML
Components [16] do not give class methods. They are almost
the same as with the conventional method. BridgePoint [17]
that gives class methods by an action description language
makes a little difference with the proposed method about
automatic generation rates of source code. But it does not
develop certain patterns using the concept of IoC and DI. It
is hard to design templates and to build them individually.
Some corrections are needed to reuse the component models
and templates for other examples, and it has a low chance of
reuse either.

V. CONCLUSIONS

This paper has proposed a software development method
that applies component-based technologies to MDD. The
proposed method was compared with the conventional
method using a sample Web system. This method is able to
automatically generate more than three times the amount of
AST nodes compared with the conventional method. The
proposed method can describe information concerning class
methods in the templates. Especially, describing functions of
source code or main parts of methods in templates improves
the rate of automatic code generation. This fact shows the
advantages of the proposed method concerning the
generation efficiency of class methods, by designing
templates linked to the role of model components.

On the other hand, insufficient parts of the proposed
method as compared with the finished goods are mainly
business logics. They are class methods that belong to
business components. It is difficult to build templates for
these parts because they are easily affected by requirement
specifications. As a result, the automatic generation rate is
low. As a future subject, the proposed method should deal
with a different granularity, like business components. In
addition, a further extension could be to take into account
dynamic behavior diagrams.

ACKNOWLEDGMENT

This work was supported in part by JSPS KAKENHI
Grant Number 24560501.

REFERENCES
[1] S.J. Mellor, K. Scott, A. Uhl, and D. Wiese, MDA Distilled,

Addison Wesley Longman Publishing Co., Inc. Redwood City,
CA, 2004.

[2] M. Fowler, Analysis Patterns: Reusable Object Models,
Addison-Wesley, 1997.

[3] D.F. D'souza and A.C. Wills, Objects, Components, and
Frameworks with UML: The Catalysis Approach, lavoisier.fr,
1998.

[4] I. Crnkovic, “Component-based software engineering - new
challenges in software development,” Software Focus, Vol.2,
Dec. 2001, pp. 127-133, doi:10.1002/swf.45.

[5] G. Gossler and J. Sifakis, “Composition for component-based
modeling,” Science of Computer Programming, Vol.55, Mar.
2005, pp. 161-183.

[6] D. Rosenburg and M. Stephens, Use Case Driven Object
Modeling with UML: Theory and Practice, Apress, New York,
2007.

[7] Spring framework, http://www.springsource.org/, [retrieved:
April, 2014].

[8] Object Management Group, OMG unified modeling language
superstructure specification, V2.1.2, 2007.

[9] E. Gamma, R. Helm, R. Jhonson, and J. Vlissides, Design
Patterns: Eelements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System of
Patterns. Wiley, 1996.

[11] D. Alur, D. Malks, and J. Crupi, Core J2EE Patterns: Best
Practices and Design Strategies, Prentice Hall, 2001.

[12] K. Matsumoto, T. Maruo, M. Murakami, and N. Mori, “A
graphical development method for multiagent simulators,” in
Modeling, Simulation and Optimization: Focus on
Applications, S. Cakaj, Ed. Vukovar: In-Tech, 2010, pp. 147-
157.

[13] Acceleo, http://www.eclipse.org/acceleo/, [retrieved: April,
2014].

[14] AndroMDA, http://www.andromda.org/, [retrieved: April,
2014].

[15] J. Greenfield and K. Short, “Software factories: assembling
applications with patterns, models, frameworks and tools,”
Proc. Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications, Oct. 2003 pp. 16-27.

[16] J Cheesman and J Daniels, UML Components. Addison-
Wesley, 2001.

[17] BridgePoint, http://www.bridgepoint.eu/, [retrieved: April,
2014].

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-352-0

INTELLI 2014 : The Third International Conference on Intelligent Systems and Applications

