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Abstract—This paper presents novel research on complexity of
rule sets induced from incomplete data sets with two interpreta-
tions of missing attribute values: lost values and attribute-concept
values. Experiments were conducted on 176 data sets, using three
kinds of probabilistic approximations (lower, middle and upper)
and the Modified Learning from Examples Module, version 2
(MLEM2) rule induction system. In our experiments, the size
of the rule set was always smaller for attribute-concept values
than for lost values (5% significance level). The total number
of conditions was smaller for attribute-concept values than for
lost values for 17 combinations of the type of data set and
approximation, out of 24 combinations total. In remaining 7 cases,
the difference in performance was statistically insignificant. Thus,
we may claim that attribute-concept values are better than lost
values in terms of rule complexity.

Keywords–Data mining; rough set theory; probabilistic approx-
imations; MLEM2 rule induction algorithm; lost values; attribute-
concept values.

I. INTRODUCTION

Standard lower and upper approximations are fundamental
concepts of rough set theory. A probabilistic approximation,
associated with a probability α, is a generalization of the stan-
dard approximation. For α = 1, the probability approximation
is reduced to the lower approximation; for very small α, it is
reduced to the upper approximation. Research on theoretical
properties of probabilistic approximations started from [1] and
then was continued in many papers, see, e.g., [1]–[6].

Incomplete data sets may be analyzed using global approx-
imations such as singleton, subset and concept [7][8]. Proba-
bilistic approximations, for incomplete data sets and based on
an arbitrary binary relation, were introduced in [9], while first
experimental results using probabilistic approximations were
published in [10].

In this paper, incomplete data sets are characterized by
missing attribute values. We will use two interpretations of
a missing attribute value: lost values and attribute-concept
values.

For our experiments we used 176 incomplete data sets, with
two types of missing attribute values: lost values and attribute-
concept values. Additionally, in our experiments we used three
types of approximations: lower, upper, and additionally the
most typical probabilistic approximation, for α = 0.5, called a
middle approximation.

From our previous research it follows that the correctness
of the rule sets, evaluated by ten-fold cross validated error
rate, do not differ significantly with different combinations of
missing attribute and approximation type.

In our experiments, the size of rule set was always smaller
for attribute-concept values than for lost values. The total
number of conditions in rule sets was smaller for attribute-
concept values for 17 combinations of the type of data set and
approximation (out of 24 combinations total). In remaining
seven combinations, the total number of conditions in rule sets
did not differ significantly. Thus, we may claim that attribute-
concept values are better than lost values in terms of rule
complexity.

Our secondary objective was to check which approximation
(lower, middle or upper) is the best from the point of view of
rule complexity.

The smallest size of rule sets was accomplished, in five
(out of 24 combinations) for lower approximations and in two
combinations for upper approximations. The total number of
conditions in rule sets was achieved, again, for lower approxi-
mations in five combinations and for upper approximations in
other two combinations. For remaining 17 combinations the
difference between all three approximations was insignificant.

This paper starts with a discussion on incomplete data
in Section II where we define approximations, attribute-value
blocks and characteristic sets. In Section III, we present
probabilistic approximations for incomplete data. Section IV
contains the details of our experiments. Finally, conclusions
are presented in Section V.

II. INCOMPLETE DATA

We assume that the input data sets are presented in the
form of a decision table. An example of a decision table is
shown in Table I. Rows of the decision table represent cases,
while columns are labeled by variables. The set of all cases
will be denoted by U . In Table I, U = {1, 2, 3, 4, 5, 6, 7,
8}. Independent variables are called attributes and a dependent
variable is called a decision and is denoted by d. The set of all
attributes will be denoted by A. In Table I, A = {Education,
Skills, Experience}. The value for a case x and an attribute a
will be denoted by a(x).
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TABLE I. A DECISION TABLE

Attributes Decision

Case Education Skills Experience Productivity

1 higher high − high
2 ? high low high
3 secondary − high high
4 higher ? high high
5 elementary high low low
6 secondary − high low
7 − low high low
8 elementary ? − low

In this paper, we distinguish between two interpretations
of missing attribute values: lost values and attribute-concept
values. Lost values, denoted by “?”, mean that the original
attribute value is no longer accessible and that during rule
induction we will only use existing attribute values [11][12].
Attribute-concept values, denoted by “−”, mean that the origi-
nal attribute value is unknown; however, because we know the
concept to which a case belongs, we know all possible attribute
values. Table I presents an incomplete data set affected by both
lost values and attribute-concept values.

One of the most important ideas of rough set theory [13] is
an indiscernibility relation, defined for complete data sets. Let
B be a nonempty subset of A. The indiscernibility relation
R(B) is a relation on U defined for x, y ∈ U as defined in
equation 1.

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)) (1)

The indiscernibility relation R(B) is an equivalence relation.
Equivalence classes of R(B) are called elementary sets of B
and are denoted by [x]B . A subset of U is called B-definable
if it is a union of elementary sets of B.

The set X of all cases defined by the same value of
the decision d is called a concept. For example, a concept
associated with the value low of the decision Productivity is
the set {1, 2, 3, 4}. The largest B-definable set contained
in X is called the B-lower approximation of X , denoted by
appr

B
(X), and defined in equation 2.

∪{[x]B | [x]B ⊆ X} (2)

The smallest B-definable set containing X , denoted by
apprB(X) is called the B-upper approximation of X , and is
defined in equation 3.

∪{[x]B | [x]B ∩X 6= ∅} (3)

For a variable a and its value v, (a, v) is called a variable-
value pair. A block of (a, v), denoted by [(a, v)], is the set
{x ∈ U | a(x) = v} [14]. For incomplete decision tables the
definition of a block of an attribute-value pair is modified in
the following way.

• If for an attribute a there exists a case x such that
a(x) = ?, i.e., the corresponding value is lost, then the
case x should not be included in any blocks [(a, v)]
for all values v of attribute a,

• If for an attribute a there exists a case x such that the
corresponding value is an attribute-concept value, i.e.,

a(x) = −, then the corresponding case x should be
included in blocks [(a, v)] for all specified values v ∈
V (x, a) of attribute a, and is defined by equation 4.

V (x, a) =

{a(y) | a(y) is specified , y ∈ U, d(y) = d(x)} (4)

For the data set from Table I, the attribute-concept
values are defined as: V (1, Experience) = {low, high},
V (3, Skills) = {high}, V (6, Skills) = {low, high},
V (7, Education) = {elementary, secondary} and
V (8, Experience) = {low, high}.

For the data set from Table I the blocks of attribute-value
pairs are: [(Education, elementary)] = {5, 7, 8}, [(Education,
secondary)] = {3, 6, 7}, [(Education, higher)] = {1, 4}, [(Skills,
low)] = {6, 7}, [(Skills, high)] = {1, 2, 3, 5, 6}, [(Experience,
low)] = {1, 2, 5, 8}, and [(Experience, high)] = {1, 3, 4, 6, 7,
8}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x)
is defined as the intersection of the sets K(x, a), for all a ∈ B,
where the set K(x, a) is defined in the following way:

• If a(x) is specified, then K(x, a) is the block
[(a, a(x))] of attribute a and its value a(x),

• If a(x) =? then the set K(x, a) = U , where U is the
set of all cases,

• If a(x) = −, then the corresponding set K(x, a) is
equal to the union of all blocks of attribute-value pairs
(a, v), where v ∈ V (x, a) if V (x, a) is nonempty. If
V (x, a) is empty, K(x, a) = U .

For Table I and B = A, KA(1) = {1}, KA(2) = {1, 2, 5},
KA(3) = {3, 6}, KA(4) = {1, 4}, KA(5) = {5}, KA(6) =
{3, 6, 7}, KA(7) = {6, 7}, and KA(8) = {5, 7, 8}.

Note that for incomplete data there are a few possible
ways to define approximations [7], we used concept approx-
imations [9] since our previous experiments indicated that
such approximations are most efficient [9]. A B-concept lower
approximation of the concept X is defined in equation 5.

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X} (5)

The B-concept upper approximation of the concept X is
defined by the equation 6.

BX = ∪{KB(x) | x ∈ X,KB(x) ∩X 6= ∅}
= ∪{KB(x) | x ∈ X}

(6)

For Table I, A-concept lower and A-concept upper approx-
imations of the concept {1, 2, 3, 4} are A{1, 2, 3, 4} = {1, 4}
and A{1, 2, 3, 4} = {1, 2, 3, 4, 5, 6}, respectively.

III. PROBABILISTIC APPROXIMATIONS

For completely specified data sets a probabilistic approx-
imation is defined by equation 7, where α is a parameter,
0 < α ≤ 1, see [1][4][9][15]–[17]. Additionally, for simplicity,
the elementary sets [x]A are denoted by [x]. For discussion on
how this definition is related to the value precision asymmetric
rough sets see [9][10].
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Figure 1. Size of the rule set for the Bankruptcy data set
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Figure 2. Size of the rule set for the Breast cancer data set
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Figure 3. Size of the rule set for the Echocardiogram data set

apprα(X) = ∪{[x] | x ∈ U,P (X | [x]) ≥ α} (7)

Note that if α = 1, the probabilistic approximation be-
comes the standard lower approximation and if α is small,
close to 0, in our experiments it was 0.001, the same definition
describes the standard upper approximation.
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Figure 4. Size of the rule set for the Hepatitis data set

0 

20 

40 

60 

80 

100 

120 

140 

160 

0 10 20 30 40 50 60 70 

R
ul

e 
co

un
t 

Missing attributes (%) 

Lower, ? 
Middle, ? 
Upper, ? 
Lower, - 
Middle, - 
Upper, - 

Figure 5. Size of the rule set for the Image segmentation data set
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Figure 6. Size of the rule set for the Iris data set

For incomplete data sets, a B-concept probabilistic approx-
imation is defined by equation 8 [9].

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α} (8)

For simplicity, we will denote KA(x) by K(x) and the
A-concept probabilistic approximation will be called a proba-
bilistic approximation.
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Figure 7. Size of the rule set for the Lymphography data set
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Figure 8. Size of the rule set for the Wine recognition data set

The special probabilistic approximations with the parame-
ter α = 0.5 will be called a middle approximation.

IV. EXPERIMENTS

Our experiments are based on eight data sets that are
available on the University of California at Irvine Machine
Learning Repository.

For every data set a set of templates was created. Templates
were formed by replacing incrementally (with 5% increment)
existing specified attribute values by lost values. Thus, we
started each series of experiments with no lost values, then
we added 5% of lost values, then we added additional 5%
of lost values, etc., until at least one entire row of the data
sets was full of lost values. Then three attempts were made to
change configuration of new lost values and either a new data
set with extra 5% of lost values was created or the process
was terminated. Additionally, the same formed templates were
edited for further experiments by replacing question marks,
representing lost values by“−”s representing attribute-concept
values.

For any data set there was some maximum for the per-
centage of missing attribute values. For example, for the
bankruptcy data set, it was 35%. Hence, for the bankruptcy
data set, we created seven data sets with lost values and

seven data sets with attribute-concept values, for the total of
15 data sets (the additional data set was complete, with no
missing attribute values). By the same token, for the breast
cancer, echocardiogram, hepatitis, image segmentation, iris,
lymphography and wine recognition data sets we created 19,
17, 25, 29, 15, 29, and 27 data sets. The total number of the
data sets was 176.

Results of our experiments are presented in Figures 1–16.

We compared two interpretations of missing attribute val-
ues, lost values and attribute-concept values, assuming the
same type of approximations. More explicitly, we compared
the complexity of rule sets, first the size of rule sets, then the
total number of conditions in the rule set, separately for lower
approximations, then for middle approximations, and finally,
for upper approximations, using the Wilcoxon matched-pairs
signed rank test, with the 5% level of significance for two-
tailed test.

For all eight types of data sets and all three types of
approximations, the rule set size was always smaller for
attribute-concept values than for lost values. For the total
number of conditions in the rule sets results were more
complicated. The total number of conditions in the rule sets
was smaller for attribute-concept values than for lost values
for 17 combinations of the type of data set and approximation,
out of 24 possible combinations. For echocardiogram and iris
data sets, for all three types of approximations and for the
lymphography data set and lower approximations, the total
number of conditions in rule sets for both interpretations of
missing attribute values, did not differ significantly.

We compared all three types of approximations as well,
assuming the same interpretation of missing attribute values, in
terms of the size of rule sets and the total number of conditions
in rule sets, using the Friedman Rank Sums test, again, with
5% of significance level.

The size of the rule set was smaller for lower approxi-
mations than for upper approximations for three combinations
of the type of data set and type of missing attribute values
(for the hepatitis data set and attribute-concept values and
for the image segmentation data set and both lost values and
attribute-concept values). The size of the rule set was smaller
for lower approximations than for middle approximations
in two combinations of the type of data set and type of
missing attribute value (for the image segmentation data set
and both lost values and attribute-concept values). Thus, for
five combinations (out of 24) lower approximations were better
than other approximations. On the other hand, the size of the
rule set was smaller for upper approximations than for lower
approximations for one combination (for the lymphography
data set and attribute-concept values). Additionally, the size
of the rule set was smaller for upper approximations than for
middle approximations also for one combination (for the breast
cancer data set and the attribute-concept values). Thus, for two
combinations (out of 24) upper approximations were better
than other approximations. For remaining 17 combinations the
difference between all three approximations was insignificant.

The total number of conditions in rule sets was smaller
for lower approximations than for upper approximations in
four combinations of the type of data set and type of missing
attribute value (for the hepatitis data set and attribute-concept
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Figure 9. Number of conditions for the Bankruptcy data set
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Figure 10. Number of conditions for the Breast cancer data set

values and for the image segmentation data set and both lost
values and attribute-concept values and for the iris data set
and lost values). The total number of conditions in rule sets
was smaller for lower approximations than for middle approx-
imations in one combination (for the image segmentation data
set and lost values). Thus, for five combinations (out of 24)
lower approximations were better than other approximations.
The total number of conditions in rule sets was smaller for
middle approximations than for lower approximations for one
combination (for the lymphography data set and the attribute-
concept values). Additionally, the total number of conditions
in rules sets was smaller for upper approximations than for
lower approximations also for one combination (for the lym-
phography data set and the attribute-concept values). Thus, for
two combinations (out of 24) other approximations were better
than lower approximations. For remaining 17 combinations the
difference between all three approximations was insignificant.

In our experiments, we used the MLEM2 rule induction
algorithm of the Learning from Examples using Rough Sets
(LERS) data mining system [10][18][19].

V. CONCLUSIONS

As follows from our experiments, the size of rule set was
always smaller for attribute-concept values than for lost values.
The total number of conditions in rule sets was smaller for
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Figure 11. Number of conditions for the Echocardiogram data set
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Figure 12. Number of conditions for the Hepatitis data set
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Figure 13. Number of conditions for the Image segmentation data set

attribute-concept values for 17 combinations of the type of
data set and approximation (out of 24 combinations total). In
remaining seven combinations, the total number of conditions
in rule sets did not differ significantly. Thus, we may claim
attribute-concept values are better than lost values in terms of
rule complexity.

The smallest size of rule sets was accomplished, in five
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Figure 14. Number of conditions for the Iris data set
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Figure 15. Number of conditions for the Lymphography data set
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Figure 16. Number of conditions for the Wine recognition data set

(out of 24 combinations for lower approximations and in
two combinations for upper approximations. The total number
of conditions in rule sets was achieved, again, for lower
approximations in five combinations and for upper or middle
approximations in other two combinations. For remaining 17
combinations the difference between all three approximations

was insignificant.

REFERENCES

[1] Z. Pawlak, S. K. M. Wong, and W. Ziarko, “Rough sets: probabilistic
versus deterministic approach,” International Journal of Man-Machine
Studies, vol. 29, 1988, pp. 81–95.

[2] Z. Pawlak and A. Skowron, “Rough sets: Some extensions,” Information
Sciences, vol. 177, 2007, pp. 28–40.
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