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Abstract—The world’s concern about nuclear reactor safety
has increased considerably since the Fukushima accident. In
case of most severe accidents, the nuclear reactor vessel water
level cannot be measured. But, if the cascaded fuzzy neural
network (CFNN) is used, under the event of severe accidents it
might be possible to estimate the nuclear reactor vessel water
level. The cascaded fuzzy neural network model can be used to
estimate the nuclear reactor vessel water level value through
the process of adding fuzzy neural networks (FNNs) repeatedly.
The developed cascaded fuzzy neural network model is
sufficiently accurate to be used to estimate the nuclear reactor
vessel water level. Therefore, the developed cascaded fuzzy
neural network model will be helpful for providing effective
information for operators in severe accident situations.

Keywords-Cascaded fuzzy neural network (CFNN); Fuzzy
neural network (FNN); Nuclear reactor vessel water level.

I. INTRODUCTION

Recently, the world’s concern about nuclear reactor
safety has increased considerably since the Fukushima
accident. The cause of these concerns and interest is because
the operators do not quickly check the status of the plant in
appropriate response to each situation.

The reactor vessel water level is essential information for
confirming the cooling capability of the nuclear reactor core,
to prevent the reactor core from melting down and to manage
severe accidents effectively. In particular, decay heat is
continuously generated in the reactor core after reactor
shutdown. Therefore, it is important to estimate the reactor
vessel water level to make provisions against severe
accidents.

Many artificial intelligence techniques have been applied
successfully to nuclear engineering areas, such as signal
validation [1]–[3], plant diagnostics [4][5], event
identification [6]–[9], etc. In this paper, a cascaded fuzzy
neural network (CFNN) model is proposed to estimate the
reactor vessel water level, which has a direct impact on the
important times (time approaching the core exit temperature
exceeding 1200°F, core uncovery time, reactor vessel failure
time, etc.). The CFNN can be used to estimate the nuclear
reactor vessel water level through the process of adding
fuzzy neural networks (FNNs) repeatedly. To estimate the
water level and the loss of coolant accident (LOCA) break
size, other measured signals were used. The LOCA break

size is not a measured variable. Instead, it is an estimated
variable using the trend data for a short time early in the
event preceding a severe accident. The LOCA classification
algorithm for determining the LOCA position and LOCA
break size estimation algorithm were explained in previous
papers [10]-[12]. Because the LOCA break size could be
estimated accurately, the LOCA break size was used as an
input variable for estimating the reactor vessel water level.
The obtained numerical simulation data was obtained and
verified by simulating severe accident scenarios for the
Optimized Power Reactor 1000 (OPR1000) using MAAP4
code [13].

Section II explains the methodology of CFNN including
fuzzy inference system (FIS) and its training. Section III
describes its application to estimating the water level in the
reactor vessel.

II. CASCADED FUZZY NEURAL NETWORKS

A. Fuzzy inference system

The FIS uses the conditional rules that are comprised of
an if-then rules of a pair of antecedent and consequent [14].
This study uses the Takagi-Sugeno-type FIS [15], which
does not need the defuzzifier in the output terminal because
its output is a real value. The Takagi-Sugeno-type FIS
consists of three basic components without the defuzzifier
block, differently from the Mamdani-type FIS shown in
Figure 1.

Figure 1. Fuzzy inference system (Mamdani-type FIS)

In the FIS, an arbitrary thi fuzzy rule can be expressed as
follows (first-order Takagi-Sugeno-type):
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Because the function ( ( ))if x k is expressed as the first-

order polynomial of input variables, FIS is called the first-
order Takagi-Sugeno-type FIS in (2). The number of N

input and output training data ( ) ( ( ), ( ))T Tk k y k=z x

(where ( )T k =x 1 2( ( ), ( ), ,x k x k L ( )), 1, 2, , )mx k k N= L are

assumed to be available, and the input and output variables
are normalized. In general, there is no special restriction on
the shape of the membership functions. In this study, the
symmetric Gaussian membership function is used to reduce
the number of parameters to be optimized.
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The vector q is called a consequent parameter vector that

has ( 1)m n+ dimensions, and the vector ( )kw consists of

input data and membership function values. The estimated
output for a total of N input and output data pairs induced
from (4) can be expressed as follows:

 ˆ =y Wq  (7) 
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The matrix W has ( 1)N m n× + dimensions. Figure 2

describes the calculation structure of the FNN model [16].
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Figure 2. Fuzzy neural network (FNN)

B. FIS training

In this study, the FIS is optimized using the two
combined methods of a genetic algorithm and a least
squares method. The training data were used to develop the
FNN model. The test data were used to verify the developed
FNN model, and they are different from the training data set.
The following fitness function for the genetic algorithm is
proposed to minimize the maximum error and root mean
square (RMS) error.

 1 1 2 2exp( )F E Eλ λ= − −
 (8) 
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The variable ( )y k is the actual output value, and ˆ( )y k is

its value estimated using the FNN model. If the antecedent
parameters are determined using a genetic algorithm
through selection, crossover, and mutation, the resulting
parameters appear similar to (7) as a first-order combination.
Therefore, the consequent parameter q can be calculated

easily using the least squares method. That is, the
consequent parameter q is calculated to minimize an

objective function. The objective function consists of the

square error between the actual value ( )y k and its

estimated value ˆ( )y k , and it is expressed as follows:
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A solution for minimizing the above objective function
can be obtained using the following equation:

 t t=y W q  (10) 

where

[ (1) (2) ( )]Tt tN=W w w wL

The matrix tW has ( 1)tN m n× + dimensions in (10).

The parameter vector q can be solved easily from the

pseudo-inverse as follows:

 1( )T T
t t t t

−=q W W W y  (11) 

The parameter vector q can be calculated from a series

of input and output data pairs and their membership function

values because the matrix tW consists of input data and

membership function values.

C. Cascaded fuzzy neural networks

The foregoing FNN is composed of the fuzzy logic and
neural network theory. Most of the existing FNN models
have been proposed to implement different types of single-
stage fuzzy reasoning mechanisms. However, single-stage
fuzzy reasoning is only the most simple among a human
being’s various types of reasoning mechanisms. Syllogistic
fuzzy reasoning, where the consequence of a rule in one
reasoning stage is passed to the next stage as a fact, is
essential to effectively build up a large scale system with
high level intelligence [17]. Therefore, it is described by
applying these techniques in this paper.

The CFNN model contains two or more inference stages
where each stage corresponds to a single-stage FNN module.
The architecture of the CFNN is shown in Figure 3.
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Figure 3. Cascaded fuzzy neural network (CFNN)

The CFNN can be used to estimate the target value
through the process of adding FNN repeatedly. In CFNN
method, the first stage FNN is the same as the FNN of
Figure 2. The second stage FNN uses the initial input
variables and the output variable of the first stage FNN as
input variable. Therefore, this process is repeated L times
to find the optimum value if over-fitting phenomena do not
appear.

Similarly to (1), an arbitrary thi rule of the CFNN can be
expressed as (12):
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where L is the stage number of CFNN. The CFNN model is
trained sequentially at each FNN module in the same way as
explained in subsections II. B and II. C.
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III. APPLICATION TO ESTIMATING THE NUCLEAR

REACTOR VESSEL WATER LEVEL

The proposed CFNN model was applied to estimating the
water level in the reactor vessel. The training and test data
of the proposed model was acquired by simulating the
severe accident scenarios using the MAAP4 code
concerning the OPR1000 nuclear power plant.

The simulation data is divided into the break position and
break size of LOCA. The break position was divided into
hot-leg LOCA, cold-leg LOCA and SGTR, and the break
size was divided into a total of 200 steps.

The LOCA position was identified completely and the
LOCA break size was estimated accurately in previous
studies [10]-[12], with an approximately 1% error level.
Therefore, the LOCA break size signal, which is an input
signal to the FNN model, is assumed to be estimated from
the algorithms of previous studies. Through the simulations,
a total of 600 cases of severe accident scenarios are obtained.
This data is composed of 200 pieces of hot-leg LOCA, 200
pieces of cold-leg LOCA and 200 pieces of SGTR.

The test data were different from the data that were used
to develop the CFNN model, and consisted of the time that
elapsed after reactor shutdown, the estimated LOCA break
size, and the containment pressure. At this study, 300 data
points in each of the LOCA break positions, namely, hot-leg
and cold-leg LOCA, and SGTR, were selected as test data
points.

The parameter values that are concerned with the genetic
algorithm and the FIS are as follow: the crossover 100%, the
mutation probability is 5%, and the population size is 20.

Table I shows the performance results that were obtained
with the CFNN model for the break positions of hot-leg,
cold-leg and SGTR, respectively.

TABLE I. PERFORMANCE OF THE CFNN MODEL

RMS
error(m)

All break sizes

Hot-leg LOCA Cold-leg LOCA SGTR

2 fuzzy
rules

0.1721 0.2130 0.3399

3 fuzzy
rules

0.2280 0.1895 0.3351

5 fuzzy
rules

0.2255 0.7045 0.3233

7 fuzzy
rules

0.1380 13.6493 0.3261

For the test data of the hot-leg LOCA, the RMS errors
were approximately 0.17m, 0.23m, 0.23m, and 0.14m for
the CFNN model with 2, 3, 5, and 7 fuzzy rules,
respectively. And the RMS errors were approximately
0.21m, 0.19m, 0.70m, and 13.65m for the test data of the
cold-leg LOCA and 0.34m, 0.34m, 0.32m, and 0.33m for
the test data of the SGTR for the CFNN model with 2, 3, 5,
and 7 fuzzy rules, respectively. Therefore, the CFNN model
with 7 fuzzy rules proved to be the most accurate for
estimating the nuclear reactor vessel water level in hot-leg

LOCA and the CFNN model for cold-leg LOCA is 3 fuzzy
rules, while the CFNN model with 5 fuzzy rules was shown
to be the most accurate for estimating the nuclear reactor
vessel water level in SGTR.

The CFNN models have been shown to be capable of
accurately estimating the nuclear reactor vessel water level
in case of a severe accident.

IV. CONCLUSION

In this study, a CFNN model was developed to estimate
the nuclear reactor vessel water level in severe accident. The
developed CFNN model is verified based on the simulation
data of OPR1000 using MAAP4 code. The simulation
results show that the performance of the developed CFNN
model is quite accurate with about approximately 2% error.
The developed CFNN model will be helpful for providing
effective information for operators in severe accident
situations.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2012M2B2B1055611).

REFERENCES

[1] J. W. Hines, D. J. Wrest, and R. E. Uhrig, “Signal validation using an
adaptive neural fuzzy inference system,” Nucl. Technol., vol. 119, no.
2, pp. 181-193, Aug. 1997.

[2] M. G. Na, “A neuro-fuzzy inference system for sensor failure
detection using wavelet denoising, PCA and SPRT,” J. Korean Nucl.
Soc., vol. 33, no. 5, pp. 483-497, Oct. 2001.

[3] J. Garvey, D. Garvey, R. Seibert, and J. W. Hines, “Validation of on-
line monitoring techniques to nuclear plant data,” Nucl. Eng. Tech.,
vol. 39, no. 2, pp. 149-158, Apr. 2007.

[4] E. B. Bartlett and R. E. Uhrig, “Nuclear power plant diagnostics
using an artificial neural network,” Nucl. Technol., vol. 97, pp. 272-
281, March 1992.

[5] M. Marseguerra and E. Zio, “Fault diagnosis via neural networks:
The Boltzmann machine,” Nucl. Sci. Eng., vol. 117, no. 3, pp. 194-
200, July 1994.

[6] Y. Gyu No, J. H. Kim, M. G. Na, D. H. Lim, and K.-I. Ahn,
“Monitoring Severe Accidents Using AI Techniques,” Nucl. Eng.
Technol., vol. 44, no. 4, pp. 393-404, May 2012.

[7] M. G. Na, et al., “Prediction of major transient scenarios for severe
accidents of nuclear power plants,” IEEE Trans. Nucl. Sci., vol. 51,
no. 2, pp. 313-321, April 2004.

[8] S. W. Cheon and S. H. Chang, “Application of neural networks to a
connectionist expert system for transient identification in nuclear
power plants,” Nucl. Technol., vol. 102, no. 2, pp. 177-191, May
1993.

[9] Y. Bartal, J. Lin, and R. E. Uhrig, “Nuclear power plant transient
diagnostics using artificial neural networks that allow “don’t-know”
classifications,” Nucl. Technol., vol. 110, no. 3, pp. 436-449, June
1995.

[10] S. H. Lee, Y. G. No, M. G. Na, K.-I. Ahn, and S.-Y. Park,
“Diagnostics of Loss of Coolant Accidents Using SVC and GMDH
Models,” IEEE Trans. Nucl. Sci., vol. 58, no. 1, pp. 267-276, Feb.
2011.

116Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications



[11] M. G. Na, W. S. Park, and D. H. Lim, “Detection and Diagnostics of
Loss of Coolant Accidents Using Support Vector Machines,” IEEE
Trans. Nucl. Sci., vol. 55, no. 1, pp. 628-636, Feb. 2008.

[12] M. G. Na, S. H. Shin, D. W. Jung, S. P. Kim, J. H. Jeong, and B. C.
Lee, “Estimation of Break Location and Size for Loss of Coolant
Accidents Using Neural Networks,” Nucl. Eng. Des., vol. 232, no. 3,
pp. 289-300, Aug. 2004.

[13] R. E. Henry, et al., MAAP4 – Modular Accident Analysis Program
for LWR Power Plants, User’s Manual, Fauske and Associates, Inc.,
vol. 1, 2, 3, and 4, 1990.

[14] E. H. Mamdani and S. Assilian, “An experiment in linguistic
synthesis with a fuzzy logic controller,” Int. J. Man-Machine Studies,
vol. 7, pp. 1-13, 1975

[15] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Trans. Systems, Man,
Cybern., vol. SMC-1, no. 1, pp. 116-132, Jan./Feb. 1985.

[16] D. Y. Kim, K. H. Yoo, J. H. Kim, M. G. Na, S. Hur, and C-H. Kim,
“Prediction of Leak Flow Rate Using Fuzzy Neural Networks in
Severe Post-LOCA Circumstances,” IEEE Trans. Nucl. Sci., Vol. 61,
No. 6, pp. 3644-3652, Dec. 2014.

[17] J. C. Duan and F .L. Chung, “Cascaded Fuzzy Neural Network Model
Based on Syllogistic Fuzzy Reasoning,” IEEE Trans. Fuzzy Systems,
vol. 9, no. 2, pp.293-306, Apr. 2001.

117Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-437-4

INTELLI 2015 : he Fourth International Conference on Intelligent Systems and Applications


