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Abstract—This work presents an unsupervised learning approach
for training a virtual assistant recommender system, building

upon prior work on deep learning neural networks, image
processing, mixed-initiative systems, and recommender systems.
Intelligent agents can understand the world in intuitive ways
with neural networks, and make action recommendations to
computer users. The system discussed in this work interprets a
computer screen image in order to learn new keywords from the
user’s screen and associate them to new contexts in a completely
unsupervised way, then produce action recommendations to assist
the user. It can assist in automating various tasks such as genetics
research, computer programming, engaging with social media,
and legal research. The action recommendations are personalized
to the user, and are produced without integration of the assistant
into each individual application executing on the computer.
Recommendations can be accepted with a single mouse click by
the computer user.

Keywords–Recommender systems; Unsupervised learning; Deep
learning.

I. INTRODUCTION

This work uses a virtual assistant called Automated Virtual
Recommendation Agent (AVRA). AVRA follows a Mixed-
Initiative (MI) approach to human-computer interaction, where
a human and virtual agent work together to achieve common
goals. The approach is to offload to AVRA some of the
cognitive pressure of understanding onscreen problems and
goals visible on the computer screen, and recommending
actions to the user as solutions.

AVRA can look into the browser history and screen content
history to decipher a simple sequence of events of interest to
the user. If the user saw text on the screen in some context
and subsequently searched for that text within some small time
frame, then AVRA records the event so that it can offer to
perform the search when that context and text appear onscreen
in the future. In order to decipher which context to train new
information into, the AVRA computes with a word embedding
model the fit between the new keyword and the keywords
already encoded into each context. AVRA also calculates the
fit between the screenshot images of the keyword appearing in
the user history, and each context already trained into an image
processing Convolutional Neural Network (CNN). The image
fit is calculated using perceptual hashing [1]. If, for all existing
contexts in AVRA, the keyword fit or image fit is too low (as
specified by learning hyperparameters), then a new context is
created. Training this new context requires obtaining additional
training images from the screenshot history, validated using
context-specific perceptual hashing. The unsupervised learning
algorithm is still in development, and has thus far achieved a
47% accuracy rate in identifying which historical screenshot

images are good examples from which to learn the new
context.

AVRA learns through the inference of operational knowl-
edge from observations of the computer over time. AVRA
monitors the computer screen with regular screen capture
images, and analyzes the content of each image to understand
what type of visual information is present (the context) and
which keywords are on the screen. Each context is associated
with a list of keywords, and at any given time there may be
multiple onscreen contexts and multiple onscreen keywords.
Each keyword in each context is associated with one action.
For example, if the Eclipse IDE is present (context=eclipse)
and a compiler error is detected in the onscreen text (key-
word=NullPointerException), then AVRA can recommend to
the user to open a web page containing advice on escaping this
error with a try/catch block. In order to offer the most relevant
action recommendations, AVRA produces recognition scores
for context detection and keyword detection, and combines
these scores with a history of user actions to produce an overall
score for every possible recommendation.

Several definitions are required in order to discuss unsu-
pervised learning in a compact format. A candidate keyword
k is one text snippet within the onscreen text O. The notation
k ∈ O means that the keyword k is in the set O, in this case
because it is a substring of O. An action can be referred to as
g ∈ G, where g is a particular action and G is the set of all
actions known to AVRA. Similarly, a particular context c is
one element in a set of contexts learned into AVRA, denoted
as c ∈ C. The set of all keywords learned by AVRA is K ,
and after discovering k ∈ O, AVRA can integrate k to become
k ∈ K .

The challenge discussed in this work is to learn new
contexts, keywords, and actions without human intervention.
How can AVRA autonomously learn new visual contexts into
C beyond “eclipse”, and new context-specific keywords such
as NullPointerException into K? Even if learning new
contexts and keywords was accomplished, how can AVRA
learn which actions G are associated with contexts and key-
words? More formally, this unsupervised learning challenge is
to:

(TASK 1) Identify keyword k within onscreen text O leading
to action g in context c.

(TASK 2) Recognize context c if it appears again.
(TASK 3) Recognize keyword k if it appears again in on-

screen text O when context c is recognized.
(TASK 4) Enable AVRA to recommend action g when context

c and keyword k are recognized onscreen at the
same time.

This work describes a novel approach to unsupervised
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learning for a computer assistant. Once AVRA can watch users
and draw causal relationships from user actions, it can learn
new information unforeseen by its developers. The first step
on the path to a working solution was to relax the constraints
on the problem and solve easier problems of unsupervised
action learning without context learning (Sections III) and
supervised context learning (Section IV). The solutions to
these simplified problems are then combined and expanded
upon in Section V to answer the larger question of how to
learn new actions, contexts and keywords. Next, performance
experiments are detailed in Section VI. The contribution of
this work is to describe how unsupervised learning can be
used in a recommender system. Unsupervised action learning
without context is discussed in Section III. The methods of
unsupervised action learning with supervised context learning
are described in Section IV. Section V describes how AVRA
can use both unsupervised action learning and unsupervised
context learning. Section VI contains a summary of this work
and a discussion of future research directions.

II. PRIOR ART

Deep learning includes three methods for learning: su-
pervised, reinforcement, and unsupervised learning [2]. Su-
pervised Learning (SL) is the best understood and involves
training the classifier using many labelled examples. For exam-
ple, images of cars accompanied by the label “car”, alongside
images of dogs accompanied by the label “dog” can be used
to train a classifier to discriminate between images of cars
and dogs. In supervised learning the classifier adjusts weights
during each training iteration of processing the dataset in order
to minimize the classification error. Unlike supervised learning,
reinforcement learning involves training without an immediate
reward signal [3][4]. Reinforcement learning is useful in use
cases such as autonomous driving cars and strategy games,
where the feedback to the learning system only arrives after
some end state is reached, or after a significant delay. And
finally, Unsupervised Learning (UL) is the process of learning
without labelled examples organized into a dataset [5]. This
form of learning gets no feedback, and therefore requires that
the learner figure out a pattern from raw data and also figure
out a metric for evaluating the accuracy of what was learned. In
terms of information content, as described in [6], reinforcement
learning predicts only a few bits per input sample (e.g., position
of steering wheel to control car), supervised learning predicts
a few thousand bits (e.g., class labels to add to an image),
and finally unsupervised learning predicts anything to do with
the input (e.g., given a video, predict images of the next few
frames [7]).

Transfer learning is an approach in ML where the training
data is augmented by some other already trained model [8,
page 243]. The advantage of using transfer learning is that
it enables a model to start from some already trained set of
learned features and extend this initial set of knowledge by
training on additional data, rather than randomly initializing
the weights and training from that random starting point.
Transfer learning was accomplished in this work using an
Inception v3 tensorflow CNN model that was trained on Im-
ageNet images [9]–[11]. The model was extended by training
a new last neural network layer on top of the existing fixed
network that can recognize new classes of images after train-
ing. This final layer of the CNN received a 2048-dimensional

input vector for each image, after which a softmax layer is
added. As explained in [12], for N labels this CNN learns only
N + 2048*N model parameters corresponding to the learned
biases and weights. This is a vast decrease in the number of
parameters to learn over training all layers of the model.

The training effectiveness of supervised learning can be
enhanced by injecting random noise into the inputs to each
layer of the neural network during the training process [13]
[14], and by randomly dropping out inputs in each layer of
the neural network (dropout) [15]. Dropout and random noise
injection each help to prevent the model from overfitting the
data during training.

Feature engineering is the process of applying domain
knowledge and human data analysis to strengthen predictive
models such as neural networks [16][17]. The idea of feature
engineering is to reorganize existing data into new formats
that the learning system can learn more easily. For example,
humans perceive the direction “walk straight” more effectively
than “walk in the ventral direction orthogonal to the plane
formed by the corners of your torso that faces out from your
eyes”. These two statements contain the same information, but
presenting this data in an easy to process format makes all the
difference. In feature engineering that can mean re-encoding
the data between acquisition and training.

Supervised learning can be thought of as a clustering
problem, where a classifier must learn a linear boundary
function between two sets of labeled points on a 2 dimensional
graph. In reality, this graph could be of higher dimension,
the classifier function could be nonlinear, and the graph could
contain more than 2 classes, but the idea serves to illustrate the
point of what a SL classifier is doing. It learns a classification
function based upon labeled data in order to be able to classify
novel data. Unsupervised learning can be thought of as a
similar clustering problem, with all of the points having no
labels. The main difference here is that in the unsupervised
learning case, it is not known to the algorithm which points
belong on which side of the line. Worse yet, it is not known
ahead of time how many clusters the data should break into.

A good example of an unsupervised learning algorithm is
Google News story clustering [18]. The system collects similar
stories based on their content, and presents them to the user in
an organized way. These stories are organized by their content,
rather than by an editor. On a related note, this work uses
this same dataset, a 300-dimensional set of approximately 3
million vectors extracted/trained from the Google News dataset
of approximately 100 billion words [19].

In this work, unsupervised learning is considered in the
domain of Recommender Systems (RS). This means learning
new recommendations from unlabeled recordings of computer
state and user action data. Unlike reinforcement learning and
supervised learning, unlabeled data means that there is no error
or reward feedback signal available to create a cost function
based upon which the quality of new recommendations can
be evaluated. The “right” answer is simply not known to the
system. The UL algorithm must make its own decisions about
creating image classes and text classes (creating keywords and
contexts), and deciding the association between them (what
keyword belongs in what context).

Deep neural networks and convolutional neural networks
do not contain state information. A given input determinis-
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tically results in a given output. Other types of neural nets
such as Long Short Term Memory (LSTM) or Recurrent
Neural Nets (RNN) contain state information and in addition to
containing memory units, the output of the neural network can
feed back into the input [20]. RNN do not make the Markov
assumption, and even so it is difficult for RNN to encapsulate
long-term relationships [21]. In this work, LSTM and RNN
were not used, as there was a conscious effort to keep the
Markovian assumption in an effort to ease the feasibility of
developing an unsupervised learning capability.

Unsupervised learning is often applied to facilitate the
success of supervised learning [20, page 14]. Often the un-
supervised learning is applied to encode raw data into a form
that an SL algorithm can succeed with, where the supervised
learning algorithm would not succeed on the raw data. For
example, pre-training autoencoder weights prior to applying
SL with backpropagation [22], and pre-training RNN [23, page
17].

AVRA’s unsupervised learning algorithm finds the similar-
ity of keywords to topics, and the similarity of screen images
to learned image features. To learn the relationship between
keywords unsupervised, a corpus of online text is extracted
and analyzed similar to the approaches of [24][25]–[34] and
others. To model the semantic relationships between words
in the corpus, word embedding is a common approach [24]
[30][33]–[36]. Approaches to unsupervised learning applied to
semantic word similarity for a corpus obtained from the web
include [24] (keyword extraction from spoken documents),
[27] (named-entity extraction), [28] (synonym identification),
[30] (identifying relationships in a medical corpus), [31] (set
expansion), [34] (relation extraction), and [33]. AVRA follows
the approach of [33] to iteratively grow topics one keyword at a
time based upon the detected context. AVRA also uses the con-
cept of a “Class Vector” introduced in [33] to represent each
topic, and the cosine similarity was used in both approaches
to measure the distance between vectors. Furthermore, [33]
included a crawling mechanism and removed stop words.
Named Entity Recognition (NER) was the goal of [33] and
the context surrounding the named entity was textual, forming
a Bag-of-Context-Words. AVRA instead focuses on keyword
recognition (not NER), where the context is visual: what the
computer screen looks like when the keyword is detected.
Another difference is that [33] focused on different levels
of query complexity (Focused, Very Focused, Unfocused)
whereas AVRA makes no such distinction between keywords.

III. UNSUPERVISED ACTION LEARNING WITHOUT

CONTEXT

Consider a relaxed version of (TASK 1), where there is
only one context. The objective is therefore to identify what
onscreen text k in the onscreen text O leads to action g. In this
relaxed case, (TASK 2) is not necessary, (TASK 3) simplifies
to recognizing when text k appears within the onscreen text
O, and (TASK 4) simplifies to recommending action g when
text k appears onscreen.

Let the input to the unsupervised learning algorithm be the
stream of tokenized timestamped Optical Character Recogni-
tion (OCR) text O(t1) produced when processing each com-
puter screen image. Each image is associated with a timestamp
t1. Next, let the actions g ∈ G be the detected user interest
text (e.g., browser search, clipboard history, keystrokes). Each

element g in G is an action performed by the user which could
conceivably be replayed by AVRA on behalf of the user. Each
observed user action is associated with a timestamp t2, yielding
a stream of timestamped actions G(t2) and corresponding
keyword K(t2). A dictionary F can store the relationship
between keywords and actions as F < k, g > allowing AVRA
to identify the desired action g when it detects keyword k.

The learning algorithm can iterate through the OCR text
O(t1) and actions K(t2), and store into F wherever K(t2)
came soon after the OCR text O(t1) appeared onscreen,
and the user interest text K(t2) was a substring of the
onscreen text O(t1). These constraints are expressed as [t2 >
t1] and [K(t2) in O(t1)] and [t2 − t1 < windowSize]. Fol-
lowing this approach, the algorithm can learn from scenarios
where the user copies onscreen text (a substring of O(t1)) and
pastes into a search engine producing the action text K(t2)
for action G(t2). After learning this pattern in F , AVRA
can recommend the relevant action when a keyword appears
onscreen, without the user copying and pasting and searching.
The algorithm of Figure 1 implements these concepts. It
provides a method for determining what onscreen text O leads
to action G in this single context problem. The approach is to
search for an onscreen keyword that the user searched for in
the past (verbatim) after seeing it on the screen.

Input: OCR text of computer screen at time t1: O(t1);
Detected user interest text (e.g., browser search,
clipboard history, keystrokes) at time t2: G(t2)

Output: Database of problem / solution pairs
F < O,G >

1 for each O(t1) in history do
2 for each K(t1) in O(t1) do
3 for each G(t2) in history do
4 if t2 > t1 and G(t2) in K(t1) and

t2− t1 < windowSize then
5 F.store(K(t1), G(t2))
6 end
7 end
8 end
9 end

Figure 1. Learning Algorithm: What onscreen text O leads to
action G

Consider the example where at time t = 0, while AVRA is
running in the background, the user and AVRA see an image
of a dog and the onscreen word dog. Next, at time t = 1,
some other information is seen on the screen, and finally at
time t = 2, the user searches for the word “dog” and AVRA
stores into F the fact that the recently observed onscreen word
“dog” led to the user performing a search action for that word.

IV. SUPERVISED CONTEXT LEARNING

The challenge in training the CNN with supervised learning
is acquiring many images that look like a particular context,
in order to carry out the supervised context learning. At least
30 images representing the context should be used to train the
CNN in order to avoid total failure of the training. However,
300 to 800 training images is a “good” image dataset size
for each context. Only when a sufficient number of images
have been collected can the images be used to train the new
context into the CNN, or reinforce an existing context with new
information. Several image collection approaches are possible:
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(METHOD 1) Capture an image representative of the context
each time AVRA learns a new keyword into F .

(METHOD 2) Collect images from image search engines
based upon context-specific keywords.

(METHOD 3) Given one or more images representing a con-
text, collect additional images using reverse
image search.

(METHOD 4) Leverage collaborative filtering to collect
context-specific images identified by other
AVRA users.

For (METHOD 1), collecting the context training images
locally with AVRA was accomplished by simply retaining
the screen captures stored by AVRA during routine operation.
Working backward from the time when K stored a new key-
word, the image captured at time t1 when k appeared onscreen,
the image captured at t1 should be a picture containing the
context of interest Ci. The downside of this approach is that
it requires many observations to collect sufficient data to train
the CNN. This approach was further improved by sampling
the images just before and after t1 and including them in the
training data if they were similar to the image taken at t1.
Similarity was established with a perceptual hash comparing
the image taken when the keyword was onscreen, and the
images taken at nearby timestamps. For example, if the image
taken at time t1 is a picture of the Eclipse IDE showing a
stacktrace containing NullPointerException, then the
next image taken is likely also a picture of the Eclipse IDE.
If these images are in fact similar, then the difference in
perceptual hash values between the image taken at time t1 and
the image taken at time image t1+1 would be small. Similarly
the image taken at time t1−1 may be a useful training example
if the perceptual hash difference from the image taken at t1 is
small. Image similarity can be controlled by tuning an image
similarity hyperparameter.

(METHOD 2), scraping representative images from the
Internet to form training datasets, was implemented in nodejs.
The program cycled through a hand-crafted list of keywords
based upon K relating to the desired context (e.g., “eclipse IDE
java programming”) and submitted these keywords to image
search engine APIs. The search engine submissions returned
lists of URLs for images and additional information about
these images such as image type and size. The image search
was narrowed to include only large images with specific image
formats. The next step involved manual data validation where
non-representative images were deleted by a human operator.
A further step of duplicate image deletion was accomplished
with an automated tool.

Whereas (METHOD 2) relied on keyword-based search
engines, (METHOD 3) involved querying perceptual hash
search engines (e.g., TinEye [37] and Yandex [38]). To find
novel images related to the already collected image(s), the
perceptual hash of the known image can be used to identify
similar images. The downside of this approach was that there
may be no such images available, or the identified images may
be copies of the submitted image with tiny modifications (e.g.,
added or modified text).

For (METHOD 4), the collaborative filtering of user actions
in a distributed framework with many clients, requiring several
instances of an action to be observed before learning a pattern
is a reasonable expectation. It is the basis of the collaborative

filtering concept that data for one user can be applied to another
user.

To learn new contexts in an unsupervised fashion, one
or more of these approaches must be automated, removing
all human intervention. For example, with (METHOD 2)
image search keywords are produced manually, and images are
validated manually. With (METHOD 1) the user must perform
the same action many times, and the image similarity metric
must be flexible enough to allow differences between images
but strict enough to reject irrelevant images from polluting the
training data.

V. UNSUPERVISED CONTEXT LEARNING

Having outlined solutions to unsupervised action learning
and supervised context learning, enough of the solution is
revealed that one can begin to consider the full scope of
the unsupervised learning problem. Consider AVRA’s design
shown in Figure 2. How can AVRA autonomously identify
keywords K within onscreen text O leading to action G in
context C?

Figure 2. AVRA System Overview.

Consider that AVRA has just detected that a keyword
k captured at timestamp t1 and recognized in image I(t1)
was followed by user action g(t2). AVRA must decide if
this keyword belongs to an existing context or a new one.
New challenges emerge when attacking this broader problem
definition. First, the fit between a new image I(t1) and existing
trained CNN context C is required to understand how well
the new image fits into the set of features that define each
context. Second, the relative fit between keyword k and every
existing context in C must be quantified in order to decide into
which context new information should be stored. Third, AVRA
requires an autonomous method for extrapolating novel images
from the set of acquired images, as described previously in
Section IV.

To obtain the image ‘fit’, the CNN can tell the unsupervised
learning algorithm how much a new image ‘looks like’ the con-
texts it was already trained to recognize simply by processing
the image in the same way as AVRA interprets screenshots.
This capability is exposed by simply processing the image
I(t1) through the CNN and observing the classification confi-
dence score for each context. The output of the CNN indicates
how much the image looks like each context.

A trained word embedding model should contain a rep-
resentation that encodes the semantic understanding of words.
The vectors for words can be manipulated to compare ideas, as
previously described in the famous king −man+woman =
queen example [39]. To find the fit of a new keyword k with
an existing context Ci, one or more trained word embedding
models are interrogated to find out if k and many keywords
of interest K are represented in the model. If so, the cosine
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similarity between the keywords K already in the context
Ci and the new keyword k is computed. More specifically,
AVRA’s unsupervised learning algorithm relies on the Google
News word embedding model to obtain the conceptual distance
between words [19]. If a word is not found in the word
embedding model, then the distance is set to 0. The average
similarity between k and the keywords in context Ci represents
the relative fit of keyword k into Ci. If each context contains
n keywords, and there are m contexts trained into AVRA, then
keyword k must be compared to m ∗ n elements.

At this point the ‘fit’ between a new keyword and each
context is computed as the similarity between a keyword and
each keyword in each context. Each of the m ∗ n calculations
peers into the Google News word2vec model, requiring several
hours to execute. To accelerate the comparison to several
seconds, an average vector for all the keywords in each context
is computed, and then compared with the candidate keyword.
Several approaches are well known for computing a vector
to represent a set of words in a word embedding model,
including the average vector approach implemented in AVRA
[40], and k-means clustering [8, page 5]. One major advantage
of this new approach with average vectors is that computing the
average vectors is accomplished outside the word2vec model,
and so it executes very quickly. Further complicating matters,
some keywords AVRA learned during supervised learning are
not available (not trained into) in the word2vec model, and
so the vector for those keywords in the model does not exist.
Therefore, the fit between the candidate keyword and those
missing vectors were not taken into account in creating the
average vector. To fix this, the fit between the average vector
and the vector for the new keyword k is multiplied by a ratio
of A (the number of vectors used to make the average vector)
and B (the total number of keywords in the context of interest).
And so if all the context keywords are in the model, the ratio
is 1.0, if none are, then the ratio is 0.0, and if half are in
the model, then the ratio is 0.5. The calculation of the mean
similarity is computed as the similarity between k and the
average vector, multiplied by the ratio.

Another acceleration technique used was memoization.
Any intermediate results (e.g., distance(‘paris’,‘france’)) is not
re-calculated when the result is needed later on.

As discussed previously, approaches to getting more im-
ages representative of a new CNN context requires fully
automating one or more of (METHOD 1) (making multiple
observations of k + Ci → g before learning a new context,
and obtaining similar images nearby in time using perceptual
hashing), (METHOD 2) (keyword-based image search en-
gines), (METHOD 3) (perceptual-hash reverse image search),
and (METHOD 4) (collaborative filtering). (METHOD 1) was
already fully automated, and provides a small number of useful
images as a starting point for the CNN training dataset. To
automate (METHOD 2), images obtained from (METHOD
1) were fed to an image labeling API (Google Vision API
[41]) in order to come up with a set of keywords, and these
keywords were submitted to image search engines to obtain
new image examples. The resulting images were a poor fit
for the contexts tested (e.g., console, Eclipse IDE) as a result
of the small number of labels that the image annotation API
was able to extract from the available images. Obtaining
keywords from images was possible, and scraping images
based on these keywords was also possible, but the quality

of the generated keywords was too low to be useful for an
autonomous use case. For example, the labels added to an
image of a console window were: Text, Font, Brand, Screen-
shot, Design, Presentation, Line, and Document. Searching for
images using these labels does not return additional images of
console windows. (METHOD 2) automation was therefore not
successful. Surprisingly, full automation of (METHOD 3) was
similarly disappointing. Reverse image search did sometimes
return novel examples of the submitted context (e.g., image
of a console window returned additional examples of console
windows). However, reverse image search tended to return
either no results (e.g., a fullscreen image of the Eclipse IDE)
identical copies of the submitted image (e.g., an image of
a celebrity) or results focusing on the “wrong” features of
the submitted image (e.g., for a screenshot of a desktop, the
perceptual hash caused the results to be the image shown
as the desktop background with the desktop icons removed,
focusing on the irrelevant background image at the expense
of the real goad of finding images of desktop backgrounds).
Full automation of (METHOD 3) was therefore not successful.
Collaborative filtering (METHOD 4) was not implemented.

Having described how the text fit and image fit are com-
puted, and how a dataset to train the CNN can be obtained
for new contexts, the unsupervised learning process can now
be discussed in additional detail. For each new keyword k
under consideration, if AVRA has seen enough examples of the
keyword (and related images for context training) triggering
an action, then AVRA will begin assessing which context the
keyword belongs in. This may be a new context or an existing
context. This keyword may already exist in one context and
now also belongs in another. Let Iexamples be a list of the
images related to one keyword k. AVRA begins by assessing
the keyword in relation to the keywords already learned for
each context Ci. The average fit between the new keyword k
and the existing keywords in Ci is computed using the ratio
with average vector comparison approach described above.
Next, the average fit between the images Iexamples and the
context is computed by processing them through the CNN
and averaging the classification confidence for class Ci. If
Iexamples does indeed contain similar features to the already
trained CNN class, then a high average fit is expected. To
associate the keyword to an existing class, the average image
fit must exceed hyperparameter h1 and the keyword fit must
exceed hyperparameter h2, and the average image fit multiplied
by the keyword fit must exceed any previously encountered
“best context fit”. In other words, the class with the strongest
keyword and image similarity is assigned the keyword unless
either the keyword or images are too dissimilar from any
existing context. In that case a new context is learned.

If the keyword is learned into an existing context Ci,
then the CNN can be retrained with images Iexamples, and
the keyword identification system for Ci is also updated
to recognize the new keyword. If, however, the keyword is
learned into a new context, then AVRA finds additional distinct
images according to (METHOD 1), in an attempt to increase
the number of images available for training. This larger image
set is used to retrain the CNN to identify the new context. The
keyword identification system is also updated to recognize the
new keyword.

AVRA’s unsupervised learning algorithm described in this
Section is presented in the algorithm of Figure 3. Similar to
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Figure 1, it can learn causal relationships between onscreen
keywords and user actions. However, the added advantage in
Figure 3 is that it can also learn features from what the screen
looks like when the keyword is present (image contexts). On
the first line of Figure 3, the observations made by AVRA
are processed to identify a set of keywords (new keywords)
that appeared onscreen prior to the user performing a related
search. This part of the algorithm work as described in Figure
1. For each keyword k in new keywords, a list of images
Iexamples[k] is also collected. Next, for each keyword and
corresponding action ([k, g]), if there were enough causation
examples observed, the algorithm checks each context to see
which has the highest context fit (lines 6 to 14). If a best
context is found, then the keyword k and action g are added
to AVRA’s database.

This method for unsupervised learning can be viewed as
partitioning the space of all images and words into sub-regions
by context and keyword. Keyword clustering is one part of the
partitioning, and image clustering is the other. The unsuper-
vised learning approach in AVRA incrementally clusters sets
of keywords and stereotypes of images. Figure 4 shows the
block diagram for AVRA’s unsupervised learning approach.
A sufficient number of new keyword identifications (TASK 1)
causes a decision engine to assesses a keyword k(t) recognized
in image I(t). Next, to accomplish context recognition (TASK
2), the fit between the existing CNN contexts and the new
image is computed (Context Similarity in Figure 4). Further
to (TASK 2), the images provided to characterize the potential
new context are extended by testing the images taken just
before and after time t with a perceptual hash, and keeping
images with a difference less than h3 from I(t). The resulting
set of images is called Iexamples. The context similarity task
returns the list of contexts sufficiently similar to the potentially
new context (with a similarity threshold of h1). DNN training
to recognize a new keyword within a context (TASK 3) is only
initiated once a keyword has been assigned a context. To assign
a keyword to a context (new or existing), the keyword fit is
first computed (Keyword Clustering in Figure 4), and a list
of contexts with sufficiently similar keywords is returned. The
text similarity threshold is hyperparameter h2. If no context has
a sufficiently high keyword fit and context fit, n new context is
present, and the CNN is retrained to recognize the new context.
However, if there are contexts with sufficiently high keyword
fit and context fit, the context with the highest combination
of context and keyword fit (computed by multiplying them
together) is assigned the new keyword k. When the keyword
is assigned a context, in addition to the DNN training being
initiated, action g is associated to the new keyword k in
AVRA’s database (TASK 4). To extract user actions from the
computer, a browser history program was developed to read
out keyword search terms and links from the browser along
with visit timestamps and page titles. This information was fed
into AVRA’s database to form the user action history (G).

The key overlap between AVRA’s shallow image process-
ing integration and prior work on fullscreen image processing
with a CNN to take decisions (e.g., [4]) is the use of a CNN to
process the image of the screen, and then using fully connected
layers of a Deep Neural Network (DNN) to make a decision.
In the case of AVRA, the DNN output is a recommendation
to be ranked based upon supervised or unsupervised learning,
whereas in [4] the outputs represent joystick positions learned

Input: Minimum observations of keyword and
subsequent action h0 : 1; Minimum image fit
h1 : 0.1; Minimum keyword fit h2 : 0.1;
Minimum CNN recognition confidence to add
new image to training data h3 : 0.1; Maximum
perceptual hash difference to add new image to
training data h4 : 35; Detected user search text,
URL, and timestamp recorded at time t2 : G(t2);
Snippets of onscreen text observed at time
t : ocr(t); Maximum time from observation of
keyword to action by user windowSize : 10 s;
List of CNN contexts contexts

Output: Keyword added to new context or existing
context, or nothing learned.

1 [Iexamples, new keywords] =
detectNewKeywords(G, ocr, windowSize)

2 for each [k, g] in new keywords do
3 if length(Iexamples[k]) ≥ h0 then
4 best context fit = 0
5 best context = None
6 for each context in contexts do
7 keyword fit =

modelT extF it(k, context.keywords())
8 img fit =

average(CNN classify(Iexamples[k],
9 context))

10 if img fit > h1 and keyword fit >
h2 and img fit ∗ keyword fit >
best context fit then

11 best context = context
12 best context fit =

img fit ∗ keyword fit
13 end
14 end
15 if best context then
16 train DNN(best context, k, g)
17 train CNN(best context, Iexamples[k])
18 end
19 else
20 c = newContextID()
21 Iexamples[k] =

moreImages(Iexamples[k], k,
22 CNN contexts, h3, h4)
23 train new DNN(c, k, g)
24 train CNN(c, Iexamples[k])
25 end
26 end
27 end

Figure 3. AVRA’s unsupervised learning algorithm.

through reinforcement learning.

Having described above the unsupervised learning algo-
rithm in AVRA, consider the example of how an existing
context can be extended with a new keyword. First, AVRA
sees an image of a dog and the text dog. The image at
timestamp for t = 0 is 0.jpg. At that time, AVRA has already
learned through supervised learning two contexts Animals
and Colors. Each context contains two keywords. The
Animals context contains keywords cat and mule, while
the Colors context contains the keywords red and green.
At timestamp t = 1, AVRA detects user action g, where the
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Figure 4. Block diagram for AVRA’s unsupervised learning algorithm.

word dog is searched for in a browser. The image recorded
at timestamp t = 1 is 1.jpg. At time t = 3, the unsupervised
learning algorithm makes the connection that the text dog led
to the action Search(dog). The algorithm then loads the
hyperparaemters h1 and h2 as 0.65. Next, the fit of the text
dog is computed in comparison to the average vector for the
context Animals, with a result of 0.8. The fit of dog with the
average vector for the keywords in context Colors computes
to 0.1. 0.jpg is then compared with 1.jpg using a perceptual
hash to detect if the images are close enough together for
1.jpg to be representative of the potential new context. The
image difference is too great, and so only 0.jpg is used in
the next step. The image fit is calculated by passing 0.jpg
to the CNN for classification. It outputs that 0.jpg strongly
activates the context Animals (0.9 - perhaps detecting the
eyes and other body features common to all animals), and
also activates the context Colors (0.7 - perhaps picking up
on the fact that the image of the dog is mostly one solid white
color). The ratio for both the Animals and Colors contexts
was 1.0, and so the ratio did not modify the decision at the
output in this case. The overall fit of keyword dog into context
Animals was 0.72, exceeding the threshold of 0.65. At 0.07,
the overall fit of keyword dog into context Colors did not
exceed the threshold of 0.65, and so it was discarded. With
only one context vying to accept the new keyword dog, it
was added to the context Animals.

Consider the second example of AVRA learning a new
context. AVRA sees an image of a dog and the text dog.
The image at timestamp for t = 0 is 0.jpg. At that time
AVRA has already learned through supervised learning two
contexts Shapes and Colors. Each context contains two
keywords. The Shapes context contains keywords round

and line, while the Colors context contains the keywords
red and green. At timestamp t = 1, AVRA detects user
action g, where the word dog is searched for in a browser.
The image recorded at timestamp t = 1 is 1.jpg. At time t = 3
the unsupervised learning algorithm makes the connection that
the text dog led to the action Search(dog). The algorithm
then loads the hyperparaemters h1 and h2 as 0.65. Next, the
fit of the text dog is computed in comparison to the average
vector for the context Shapes, with a result of 0.0. The fit
of dog with the average vector for the keywords in context

Colors computes to 0.1. 0.jpg is then compared with 1.jpg
using a perceptual hash to detect if the images are close
enough together for 1.jpg to be representative of the potential
new context. The image difference is too great, and so only
0.jpg is used in the next step. The image fit is calculated by
passing 0.jpg to the CNN for classification. It outputs that
0.jpg activates the context Shapes (0.6), and also activates
the context Colors (0.7). The ratio for both the Shapes

and Colors contexts was 1.0 because all of the keywords
in each context was used to compose their average vector.
The overall fit of keyword dog into context Shapes was 0.0,
below the threshold of 0.65. At 0.07, the overall fit of keyword
dog into context Colors also did not exceed the threshold
of 0.65. With no remaining context into which the keyword
dog can be trained, a new context newContext was created
and the keyword dog was added to it. The arbitrary name
newContext reflects the fact that AVRA does not know what
the overall context is going to store in the future.

A problem surfaced when assessing AVRA’s ability to learn
new keywords into existing contexts created through super-
vised learning. The word embedding component of the unsu-
pervised learning algorithm was mostly unsuccessful adding
to the supervised learning data. It emerged that the problem
was the ratio. The ratio is small when many of the keywords
from supervised learning (e.g., nullpointerexception) are not
contained in the word embedding model generated from the
Google News dataset [19], or other general word embedding
models. The model in question contains 3 million words, but
this was not sufficient. One approach to force the unsupervised
learning model to work was to ignore the ratio, setting it to
1.0 instead of calculating the correct value. Setting ratio to
1.0 is of course a sub-optimal solution, but with this approach
AVRA was able to learn new keywords into existing contexts
created through supervised learning.

A better approach to learn new keywords into existing
contexts created through supervised learning was to re-purpose
(METHOD 2) to collect website contents instead of images.
The idea was to scrape text from search engine results (web
pages), where the search query is built using the keywords
AVRA knows about, and the new keyword AVRA wants to
classify into a new or existing context. Using the text from
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these web pages as a corpus, one can train a new word
embedding model that can relate a high ratio of the keywords
to each other. The drawback of this approach is that scraping
the pages and training the word embedding model is very slow.
It can take days. Luckily the unsupervised learning process can
be trained as an offline server-side process without slowing
down the user experience at all. To build the corpus, the
first 30 results for each search term were downloaded. Search
terms were composed of distinct sets of 3 or 4 keywords (e.g.,
horse baseexception chicken). Stopwords were removed us-
ing the NLTK Stopwords corpus by Porter [42] [43, page 47].
Stemming was applied using the PorterStemmer module
of the gensim library [44]. Some web pages from the results
were skipped because the server refused the connection, the
file on the server was not a web page (e.g., PowerPoint file),
or the page contained no text. Each valid link returned by the
search engine was processed into a text string, and all of the
results were concatenated into a single corpus tokenized by
spaces. Next, a word embedding model was trained on the
corpus, exposing the similarity between words by computing
the cosine similarity in the word embedding model between
vectors for words.

At this point in the work, it has been described to the
reader how AVRA has the ability to make sense of new
words by building its own word embedding models completely
unsupervised. Crucially, supervised and unsupervised learning
can be combined in AVRA, to accomplish transfer learning.
AVRA can learn new things autonomously as long as the
related keywords are trained into one of the word embedding
models that informs the textual context relationships between
them, or the information relating these concepts is obtainable
by building a word embedding using documents obtained by
searching on the web. Multiple word embedding models could
be used by AVRA as a general knowledge reference.

VI. PERFORMANCE EVALUATION FOR UNSUPERVISED

LEARNING

Learning in AVRA is data driven. In this Section, the
operation of AVRA’s unsupervised learning algorithm with real
data is explored. A high-level view of a word embedding model
for several contexts is presented to clarify the ability of AVRA
to classify new keywords into existing contexts. Visualization
for AVRA’s image recognition system similarly reveals that
AVRA can successfully discriminate between different sets of
images. To collect data quickly, a test automation program was
used to model a user using the computer (a ‘bot’). This bot
was used to carry out use cases such as extending an existing
context with new information, and creating a new context in
AVRA’s model. Examples of extending an existing context and
creating a new context are provided as validation of the AVRA
prototype’s ability to apply unsupervised learning.

1) Unsupervised Learning Extending Existing AVRA Con-
text: Table I presents a real example to show how AVRA
extends the Eclipse IDE context created using supervised learn-
ing. For this example, 5 existing contexts were included in the
computations, to give the reader a sense for the computations
AVRA performs without overwhelming the reader with many
contexts and keywords. Setting the stage for this example, and
with AVRA running in the background, a program generated
an error, then opened a browser window to search for keywords
related to this error message. When AVRA observed the causal

TABLE I. EXTENDING AN EXISTING CONTEXT AFTER OBSERVING
THE USER.

Event Context Word AVRA Correct?

Similarity Clustering Decision

New
keyword
thread

console 0.02 console 0.28

Train thread

into eclipse
YES

eclipse 0.94 eclipse 0.15

desktop 0.01 desktop 0.30

facebook 0.02 facebook 0.00
gene 0.00 gene 0.25

New
keyword
exception

console 0.02 console 0.16

Train
exception

into eclipse

YES
eclipse 0.94 eclipse 0.51

desktop 0.01 desktop 0.01
facebook 0.02 facebook 0.00

gene 0.00 gene 0.01

New
keyword
throwing

console 0.02 console 0.14 Image
clustering.
Train new
context for
throwing

NO
eclipse 0.94 eclipse 0.09

desktop 0.01 desktop 0.01
facebook 0.02 facebook 0.00

gene 0.00 gene 0.01

relationship between the onscreen error in the IDE, and the
search action in the browser, it stored the data in the AVRA
database. When sufficient copies of the action were observed,
the unsupervised learning algorithm was triggered to try and
learn the new keywords into AVRA’s RS.

Examining Table I, AVRA found that images when thread
was onscreen strongly activated the eclipse context (0.95) and
that word thread was semantically similar to the keywords
in console (0.28), eclipse (0.15), desktop (0.30), and gene
(0.25). Because only one context demonstrated sufficient image
and word similarity, the new keyword thread was trained into
AVRA for the eclipse context. Continuing with the second
row of Table I, AVRA found that images when exception was
onscreen strongly activated the eclipse context (0.94) and that
word exception was semantically similar to the keywords in
console (0.16), and eclipse (0.51). Because, once again, only
one context demonstrated sufficient image and word similarity,
the new keyword exception was trained into AVRA for the
eclipse context. The unsupervised learning algorithm in AVRA
does make mistakes. For example, in the third row of Table
I, AVRA recognized the images of the Eclipse IDE but just
missed the hyperparameter cutoff of 0.10 to consider the
keyword throwing semantically similar to the eclipse context.
Instead of learning throwing into eclipse, AVRA incorrectly
learned the keyword into a new context.

2) Unsupervised Learning Creating New AVRA Context:
Table II presents a real example to show how AVRA creates a
new context using unsupervised learning. A bolded result in
the table below indicates a result that exceeded the required
threshold. For this example, 5 existing contexts were included
in the computations. Prior to the events listed in Table II, the
user moved from the a browser window containing a cake
recipe to a browser search window and searched for keywords
related to the recipe (chocolate, cake, and cupcake). All
the while, AVRA was running in the background collecting
images and extracting onscreen text. When AVRA observed
the causal relationship between the onscreen recipe text, and
the search actions in the browser, it stored the data in the
AVRA database. When sufficient copies of the action were
observed, the unsupervised learning algorithm was triggered
to try and learn the new keywords into AVRA’s RS.

Starting with the first row of Table II, AVRA found that
images of a recipe website taken when the word cupcake was
onscreen strongly activated the facebook context (0.90) and
that word cupacke was semantically similar to the keywords
in desktop (0.18). Because no context demonstrated sufficient
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TABLE II. CREATING A NEW CONTEXT AFTER OBSERVING THE
USER.

Event Context Word AVRA Correct?

Similarity Clustering Decision

New
keyword
cupcake

console 0.02 console 0.07 Image
clustering.
Train
cupcake into
new context
newContext

YES
eclipse 0.04 eclipse 0.00
desktop 0.03 desktop 0.18

facebook 0.90 facebook 0.00
gene 0.01 gene 0.05

New
keyword
chocolate

console 0.02 console 0.04
Train
chocolate

into
newContext

YES
eclipse 0.04 eclipse 0.00
desktop 0.03 desktop 0.12

facebook 0.90 facebook 0.00
gene 0.01 gene 0.05

newContext 0.70 newContext 0.55

New
keyword
cake

console 0.02 console 0.05

Train
cake into
newContext

YES
eclipse 0.04 eclipse 0.00
desktop 0.03 desktop 0.12

facebook 0.90 facebook 0.00
gene 0.01 gene 0.05

newContext 0.70 newContext 0.60

image and word similarity, a new context was created in
AVRA. Continuing with the second row of Table II, AVRA
found that images captured when the word chocolate was on-
screen strongly activated the facebook context (0.90) as well
as the new context newContext (0.70). The word chocolate
was semantically similar to the keywords in desktop (0.12),
and newContext (0.55). Because only one context demon-
strated sufficient image and word similarity, the new keyword
chocolate was trained into AVRA for the newContext con-
text. For the third row of Table II, AVRA recognized the
images of the recipe website, and considered the keyword
cupcake semantically similar to the context newContext.
AVRA learned the keyword cake into the correct context. This
example shows that when the risk of concept drift is highest,
for a new context with only a few keywords, AVRA does
generally manage to build up the new context. There are cases
such as the third row in Table I, where keyword clustering
or image clustering fails to group an action into an existing
context where it belongs, fracturing the context into two (or
more) contexts.

3) Unsupervised Learning Relationships Between Key-
words: It is interesting to ask how long it takes to train
a new word embedding model for a new keyword (e.g.,
“nullpointerexception”) that is not in AVRA’s default model,
and how well that model works, given the fact that the raw data
was built through analyzing web pages returned by a search
engine.

To evaluate the ability of the generated
model to classify new entities, two small sets
of related keywords were created for testing
purposes: Animals (horse, dog, cow, pig) and Java

(baseexception, exception, standarderror, importerror),
and the similarity (from the cosine distance) to a new keyword
chicken was measured. An effective model should find that
chicken has a lower cosine distance to the average vector
for Animals than it does compared to the average vector for
Java keywords.

The 23MB corpus of text was downloaded and trained in
approximately 30 minutes for 9 keywords. 1, 744 of the links
produced usable text. In the collected corpus, the frequency
of the stemmed keywords was as follows: hors(8, 137),
dog(14, 412), cow(4, 914), pig(9, 933), baseexcept(434),
except(9, 109), standarderror(256), importerror(544),
chicken(6, 252). The average sentence length was 110.9 char-

acters, and 47, 566 distinct keywords were translated into word
vectors in the trained model. The model was created under
various hyperparameter configurations (random seed value,
training iterations between 5 and 50, context window size be-
tween 10 and 40) and each configuration was tested 10 times.
All of these measurements resulted in assignment of the new
keyword chicken to the context Animals. Generally, there
was a negative similarity between the keyword chicken and
the context Java, while there was always a positive similarity
between the keyword chicken and the context Animals.
Very surprisingly, the outcome was positive even when the
number of dimensions (also called the number of features)
used to represent word vectors was varied between 10 and 100.
AVRA sometimes misses the context or keyword information,
or has higher confidence in unhelpful recommendations than
detected helpful recommendations. Two overall challenges in
developing AVRA were poor classification of keywords with
very short text length (e.g., the terminal command “ls”), and
low context detection confidence (e.g., 2% confidence in the
correct class). These cases were rare but noticeable. Perhaps
the short keyword recognition could be resolved by modifying
the DNN input filter hyperparameters. The low confidence con-
text detection cases may be mitigated by collecting additional
image data for context training.

VII. CONCLUSION

This work presented AVRA’s unsupervised learning ap-
proach and explained with examples how AVRA combined
supervised and unsupervised learning to accomplish transfer
learning. An architecture for a deep learning recommender
system for personal computer users was described in this work.
Action recommendations produced by this design are person-
alized to the user and are generated in real-time. The AVRA
system mines information from screen capture data, rather than
interfacing with individual applications. Recommendations are
presented to the user in an intuitive button-based user inter-
face. The architecture described in this work can provide the
foundation for further research into recommender system for
personal computer users.

Future work planned for AVRA includes user acceptance
testing, testing with large sets of contexts and keywords,
collaborative filtering and related privacy considerations, the
expansion of AVRA’s input processing and modeling capabil-
ities, and more on unsupervised learning. Applying content-
based image recognition and semantic segmentation of images
to achieve face and object classification within a context (and
generating related recommendations) is an interesting area to
explore.
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