
Developing Space Efficient Techniques for

Building POMDP Based Intelligent Tutoring Systems

Fangju Wang

School of Computer Science

University of Guelph

Guelph, Ontario, Canada N1G 2W1

Email: fjwang@uoguelph.ca

Abstract—In building an intelligent tutoring system (ITS), the
partially observable Markov decision process (POMDP) model
provides useful tools to deal with uncertainties, which are major
challenges in achieving adaptive teaching. However, the POMDP
model is very expensive. When a method of policy trees is used in
decision making, the number of trees and sizes of individual trees
are typically exponential. The great space complexity obstructs
application of the POMDP model to ITSs. In our research,
we developed space efficient techniques to address the space
complexity problem. The techniques minimize the number and
sizes of trees, and reduce space consumption of the tree database.
Encouraging results have been achieved: the techniques enabled
us to build a system with a manageable size, to teach a practical
subject.

Keywords–Intelligent system; intelligent tutoring system; adap-
tive teaching; partially observable Markov decision process; space
efficiency.

I. INTRODUCTION

In recent years, intelligent tutoring systems (ITSs) have
been playing increasingly important roles in computer sup-
ported education, which is a remarkable development in edu-
cation and training. ITSs have been built as teaching/learning
aids, and has been beneficial to students and teachers in fields
including mathematics [13], physics [8], computer science
[13], Web based education [2], and military training [13].

A key feature of ITSs is adaptive teaching. In each tutoring
step, an ITS should be able to take the optimal teaching action
based on information about its student’s current knowledge
states. An ITS achieves adaptive teaching by tracing student
knowledge states, and taking teaching actions based on the
states. The core modules in an ITS include a domain model,
a student model, and a tutoring model. The domain model
stores the domain knowledge. The student model contains
information about student states. The tutoring model represents
the system’s tutoring strategies.

Uncertainties in observing and tracing student states have
been major difficulties in building adaptive teaching systems.
Quite often, it is difficult to know exactly what the student’s
states are, and what the most beneficial tutoring actions should
be [13]. The partially observable Markov decision process
(POMDP) model provides useful tools for dealing with un-
certainties. Recently, researchers have been applying POMDP
techniques in building ITSs [6] [7].

A POMDP is an extension of a Markov decision process
(MDP) for modeling processes in which decisions have to

be made when uncertainties exist. In a POMDP, there is a
state space, which is not completely observable. The decision
agent infers its information about states based its actions and
observations, and represents the information as a belief. In
making a decision, it updates its belief, solves the POMDP
for an optimal policy, and uses the policy to choose an action.

Great computational costs are primary obstacles to building
a POMDP-based ITS. In a POMDP, both space and time
complexities are typically exponential. To build a POMDP-
based ITS for real world applications, we must address the
problems of computational complexities. In earlier stages of
our research, we developed techniques to reduce state spaces
[9], and to minimize the numbers of policy trees that comprised
solution spaces [10]. (The approach of policy trees is for
POMDP solving. It will be discussed in details later.)

Although we have achieved progress, problems with space
complexity are far from being solved. In an ITS for a practical
subject, a policy tree database might become unmanageable
in size and a single policy tree might exhaust the available
memory space. In this paper, we report our new techniques
for further reducing the size of a POMDP solution space in
an ITS. The techniques were aimed at minimizing the sizes of
individual trees.

In Section II, we review the work related to our research.
In Sections III, IV and V, we briefly introduce the technical
background of the POMDP model, and an ITS on POMDP, and
discuss the space efficiency issues in a POMDP based ITSs.
In Section VI, we describe our space efficient techniques, and
in Section VII, present and analyze some experimental results.

II. RELATED WORK

The work of applying POMDP to computer supported
education started in as early as 1990s [1]. In the early years,
POMDP was used to model mental states of individuals, and
to find the best ways to teach concepts. More recent work
included [3] [4] [6] [7] [11] [12]. The work was commonly
characterized by using POMDP to optimize and customize
teaching, but varied in the definitions of states, actions, and
observations, and in the strategies of POMDP-solving. In the
following, we review some representative work in more details.

The technique of faster teaching by POMDP planning is
the work reported in [6]. The technique was for computing
approximate POMDP policies, with the goal to select actions to
minimize the expected time for the learner to understand con-
cepts. The researchers framed the process of choosing optimal

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

actions by using a decision-theoretic approach, and formulated
teaching as a POMDP planning problem. In the POMDP, the
states represented the learners’ knowledge, the transitions mod-
eled how teaching actions stochastically changed the learners’
knowledge, and the observations indicated the probability that
a learner would give a particular response to a tutorial action.

The researchers developed a method of forward trees for
solving the POMDP. Forward trees are variations of policy
trees. For the current belief, a forward trees was constructed to
estimate the value of each teaching action, and the best action
was chosen. The learner’s response, plus the action chosen, was
used to update the belief. And then a new forward tree was
constructed for selecting a new action. The costs for storing
and evaluating a forward tree is exponential in the task horizon
and the number of possible actions. To reduce the costs, the
researchers restricted the trees by sampling only a few actions,
and by limiting the horizon to control the sizes of trees.

In [4], a technique of gap elimination was developed to
make POMDP solvers feasible for real-world problems. The
researchers created a data structure to describe the current
mental status of each student. The status was made up of
knowledge states and cognitive states. The knowledge states
were defined in terms of gaps, which are misconceptions re-
garding the concepts in the instructional subject. Observations
are indicators that particular gaps are present or absent. The
intelligent tutor takes actions to discover and remove all gaps.

To deal with time and space efficiency problems, the re-
searchers developed two scalable representations of states and
observations: state queue and observation chain. By reordering
the gaps to minimize the values in d, a strict total ordering
over the knowledge states, or priority, can be created. A state
queue only maintained a belief about the presence or absence
of one gap, the one with the highest priority. The state queues
allowed a POMDP to temporarily ignore less-relevant states.
The state space in a POMDP using a state queue was linear,
not exponential.

The existing techniques for improving time and space effi-
ciency in POMDPs have made good progress towards building
ITSs for practical teaching. However they had limitations. For
example, as the authors of [6] concluded, computational chal-
lenges still existed in the technique of forward trees, despite
sampling only a fraction of possible actions and allowing
very short horizons. Also, how to sample the possible actions
and how to shorten the horizon are challenging problems. As
the authors of [4] indicated, the methods of state queue and
observation chain might cause information loss, which might in
turn degrade system performance in choosing optimal actions.

III. PARTIALLY OBSERVABLE MARKOV DECISION

PROCESS

A POMDP consists of S, A, T , ρ, O, and Z, where S
is a set of states, A is a set of actions, T is a set of state
transition probabilities, ρ is a reward function, O is a set of
observations, and Z is a set of observation probabilities. At
a point of time, the decision agent is in state s ∈ S, it takes
action a ∈ A, then enters state s′ ∈ S, observes o ∈ O, and
receives reward r = ρ(s, a, s′). The probability of transition
from s to s′ after a is P (s′|s, a) ∈ T . The probability of
observing o in s′ after a is P (o|a, s′) ∈ Z. Since the states are
not completely observable, the agent infers state information

from its observations and actions, and makes decisions based
on its inferred beliefs about the states.

An additional major component in POMDP is the policy
denoted by π. It is used by the agent to choose an action based
on its current belief:

a = π(b) (1)

where b is the belief, which is defined as

b = [b(s1), b(s2), ..., b(sQ)] (2)

where si ∈ S (1 ≤ i ≤ Q) is the ith state in S, Q is the
number of states in S, b(si) is the probability that the agent

is in si, and
∑Q

i=1 b(si) = 1.

Given belief b, the optimal π returns the optimal action. For
a POMDP, finding the optimal π is called solving the POMDP.
For most applications, solving a POMDP is a task of great
computational complexity. A practical method for POMDP-
solving is using policy trees. In a policy tree, nodes are actions
and edges are observations. Based on a policy tree, after an
action (at a node), the next action is determined by what is
observed (at an edge). A path in a policy tree is a sequence of
“action, observation, ..., action”. Figure 1 illustrates a policy
tree, where ar is the root action, o1, ..., oK are possible
observations, and a is an action. In a finite horizon POMDP
of length H , a policy can be a tree of height H .

o1 o2 oK

a aa ...

a a ...

o1 o2

a

oK

...

...

...

ar

Figure 1. The general structure of a policy tree.

In the method of policy trees, making a decision is to
choose the optimal tree and take its root action. Each policy
tree is associated with a value function. Let τ be a policy tree
and s be a state. The value function of s given τ is

V τ (s) = R(s, a) + γ
∑

s′∈S

P (s′|s, a)
∑

o∈O

P (o|a, s′)V τ(o)(s′)

(3)
where a is the root action of τ , γ is a discounting factor, o is
the observation after the agent takes a, τ(o) is the subtree in
τ which is connected to the node of a by the edge of o, and
R(s, a) is the expected immediate reward after a is taken in
s, calculated as

R(s, a) =
∑

s′∈S

P (s′|s, a)R(s, a, s′) (4)

where R(s, a, s′) is the expected immediate reward after the
agent takes a in s and enters s′. The second term on the right
hand side of (3) is the discounted expected value of future
states.

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

From (2) and (3), we have the value function of belief b
given τ :

V τ (b) =
∑

s∈S

b(s)V τ (s). (5)

Thus we have π(b) returning the optimal policy tree τ̂ for b:

π(b) = τ̂ = argmaxτ∈T V
τ (b), (6)

where T is the set of trees to evaluate in making the decision.

From the above description, we can see that making a
decision (by using (3), (4), (5), and (6)) requires computation
over the entire state space S and solution space T . The two
spaces are typically exponential. They have been a bottleneck
in applying POMDP to practical problems.

IV. AN INTELLIGENT TUTORING SYSTEM ON POMDP

We developed an experimental system as a test bed for our
techniques, including the policy tree technique for intelligent
tutoring. In this section, we describe how we cast an ITS
onto the POMDP, and how we define states, actions, and
observations.

The instructional subject of the ITS is basic knowledge of
software. The system is for teaching concepts in the subject. It
teaches a student at a time, in a turn-by-turn interactive way.
In a tutoring session, the student asks questions about software
concepts, and the system chooses the optimal tutoring actions
based on its information about the student’s current states.

Most concepts in the subject have prerequisites. When the
student asks about a concept, the system decides whether it
should start with teaching a prerequisite for the student to make
up some required knowledge, and, if so, which one to teach.
The optimal action is to teach the concept that the student
needs to make up in order to understand the originally asked
concept, and that the student can understand it without making
up other concepts.

We cast the ITS student model onto the POMDP states,
and represent the tutoring model as the POMDP policy. At
the current stage, the student model contains information
about knowledge states. In the architecture, ITS actions are
represented by POMDP actions, while student actions are
treated as POMDP observations.

At any point in a tutoring process, the decision agent is in a
POMDP state, which represents the agent’s information about
the student’s current state. Since the states are not completely
observable, the agent infers the information from its immediate
action and observation (the student action), and represents the
information by the current belief. Based on the belief, the agent
uses the policy to choose the optimal action.

We define states in terms of the concepts in the instructional
subject. In software basics, the concepts are data, program,
algorithm, and so on. We use a boolean variable to represent
each concept: variable Ci represents concept Ci. Ci may take
two values

√
Ci and ¬Ci.

√
Ci indicates that the student

understands concept Ci, while ¬Ci indicates that the student
does not.

A conjunctive formula of such values may represent in-
formation about a student knowledge state. For example,
(
√
C1∧

√
C2∧¬C3) represents that the student understands C1

and C2, but not C3. When there are N concepts in a subject,
we can use formulas of N variables to represent student

knowledge states. For simplicity, we omit the ∧ operator, and
thus have formulas of the form:

(C1C2C3...CN) (7)

where Ci may take
√
Ci or ¬Ci (1 ≤ i ≤ N). We call

a formula of (7) a state formula. It is a representation of
which concepts the student understands and which concepts
the students does not.

In an ITS for teaching concepts, student actions are mainly
asking questions about concepts. Asking “what is a query
language?” is such an action. We assume that a student action
concerns only one concept. In this paper, we denote a student
action of asking about concept C by (?C), and use (Θ) to
denote an acceptance action, which indicates that the student
is satisfied by a system answer, like “I see”, or “I am done”.
The system actions are mainly teaching concepts, like “A query
language is a high-level language for querying.” We use (!C) to
denote a system action of teaching C, and use (Φ) to denote
a system action that does not teach a concept, for example
a greeting. As mentioned, ITS actions are represented by
POMDP actions, while student actions are treated as POMDP
observations.

V. ADDRESSING THE SPACE PROBLEMS

A. The Space Problems

When states are defined in terms of concepts in the
instructional subject, the number of state formulas is 2N , where
N is the number of concepts in the subject. When the method
of policy trees is used for POMDP-solving, in a finite horizon
POMDP of length H , the number of nodes in a policy tree is

H−1∑

t=0

|O|t = |O|H − 1

|O| − 1
(8)

where | | is the size operator. At each node, the number of
possible actions is |A|. Therefore, the total number of all
possible H-horizon policy trees is

|A|
|O|H−1

|O|−1 . (9)

The complexities result in great difficulties in creating and
storing states and policy trees in memory. In the following, we
report our techniques for addressing the space problems.

B. Prerequisite Relationships

We develop our techniques based on information about
pedagogical orders for learning/teaching contents in instruc-
tional subjects. Prerequisite relationships between concepts in
a subject are pedagogical orders of the concepts. If, to un-
derstand concept Cj the student must first understand concept
Ci, Ci is referred to as a prerequisite of Cj . A concept may
have zero or more prerequisites, and a concept may be a
prerequisite of zero or more other concepts. In this paper,
when Ci is a prerequisite of Cj , we call Cj a successor of
Ci. Prerequisite relationships can be represented in a directed
acyclic graph (DAG). Figure 2 illustrates a DAG representing
direct prerequisite relationships in a subset of concepts in
software basics.

We observed, through examining tutoring processes of
human teachers and students, that concepts asked by a stu-
dent in successive questions usually had prerequisite/successor

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

bit byte data

binary digit
high level

language

assembly

language
machine
language

instruction program
application
program

word

language
programming

file

query

language

Figure 2. The DAG representing direct prerequisite relationships in a subset
of the concepts in software basics. An arrow indicates “is a prerequisite of”.

relationships with each other. Sometimes, after the teacher
answered a question, the student asked about a prerequisite of
the concept in the original question. This happened when the
student realized that he/she needed to make up the prerequisite.
Sometimes, after a teacher’s answer, the student asked about
a successor of the concept in the original question. This
happened when the student had learned the concept and wanted
to learn more along the line.

The observation suggests that we could group concepts in
an instructional subject based on their prerequisite relation-
ships, and limit computing within a subset of concepts when
an ITS answers a question. We have developed a technique
for partitioning a state space into sub-spaces and reducing the
sizes of sub-spaces. The technique allows an ITS to localize
the computing of a tutoring session within a sub-space. For
details of the partitioning technique, please see [9]. In the next
session, we describe the space efficient techniques for creating
and storing policy trees.

VI. SPACE EFFICIENT TECHNIQUES FOR POLICY TREES

A. Design Consideration

In this section, we present our policy tree techniques for
reducing the solution space of a POMDP, including design
consideration, structures of solution space and policy trees,
and decision making with the trees. We then describe a space
saving structure, which enables creating large policy trees in
limited memory. Our techniques can be applied to any ITSs,
in which instructional subjects can be subdivided into small
components to teach, and the components have pedagogical
orders with each other.

It can be seen from (6), (8) and (9), when a technique
of policy trees is applied, the costs (in time and space) for
making a decision depend on the size of T , the horizon H ,
and the sizes of S and O. The design goal of our techniques
is to minimize the H , and the sizes of T , S, and O that are
involved in making a decision, with least loss of information.

As mentioned, we observed that successive student ques-
tions likely concern concepts that have prerequisite/successor
relationships with each other. In our research, we define
tutoring sessions to include such questions, and answers to
them. A tutoring session is a sequence of interleaved student
and system actions, starting with a question about a concept,
possibly followed by answers and questions concerning the

concept and its prerequisites, and ending with a student action
accepting the answer to the original question. If, before the
acceptance action, the student asks a concept that has no
prerequisite relationship with the concept originally asked, we
consider that a new tutoring session starts.

For example, a tutoring session may start with a question
about application program and ends with an acceptance action.
In the session, there may be questions and answers about
application program, and about its prerequisites like program,
programming language, etc. (according to the DAG in Fig-
ure 2). If before the session ends, the student asks a question
about file, another tutoring session starts.

Tutoring sessions play an important role in our techniques.
By dividing a tutoring process into such sessions, we can
limit computing in a session to a subset of concepts that
have prerequisite/successor relationships with each other. We
partition the state space into sub-spaces, and localize the
computing in a session within a sub-space. In this way, we
reduce |S| involved in making a decision [9]. Based on the
partitioned state space, we split the solution space.

B. Structure of Solution Space

We classify questions in a session into the original question
and current questions. The original question starts the session,
concerning the concept the student originally wants to learn.
We denote the original question by (?Co), where Co is the
concept concerned in the question and superscipt o stands for
“original”. A current question is the question to be answered
by the system at a point in the session, usually for the student
to make up some knowledge. We denote a current question by
(?Cc), where the superscipt c stands for “current”. Concept
Cc is in (℘Co ∪ Co), where ℘Co is the set of all the direct
and indirect prerequisites of Co. A current question may be
asked by the student, or made by the system. The original
question is also the current question, right after it is asked. In
the above example of tutoring session, the question concerning
application program is the original question. if there is a
question about programming language, it is a current question.

In a session, the tutoring agent chooses an optimal policy
tree from a tree set to answer a question (see (6)). Since the
agent’s ultimate goal is to teach Co, and current questions in
the session concern prerequisites of Co, we can include only
the policy trees for teaching concepts in (℘Co ∪ Co) in the
tree set that is evaluated in the session started by (?Co).

The entire tree set T can thus be split into subsets of T Co

Cc ,
where Co is a concept that can be in an original question and
Cc is a concept in (℘Co ∪Co), where ℘Co includes all direct
and indirect prerequisites of Co. The computing for choosing
an action to answer a current question evaluates one subset
only: when the original question is (?Co) and current question
is (?Cc), the tree set to evaluate is T Co

Cc . In computing (6)
for answering the current question, the T in the equation is
substituted with T Co

Cc .

Tree set T Co

Cc includes trees for concepts in (℘Cc ∪ Cc),
i.e., for Cc and its prerequisites. To answer (?Cc), the agent
evaluates all of them, to decide to teach Cc or one of its
prerequisites. Let C be a concept in (℘Cc ∪ Cc). In T Co

Cc ,
there is one or more trees for C. To simplify the discussion
here, we assume one tree for C. We denote the tree for C in
T Co

Cc by T Co

Cc .τC . Next, we discuss the structure of T Co

Cc .τC .

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

C. Structure of a Policy Tree

As discussed, in a tutoring session started by (?Co), the
goal of the agent is to teach Co. In a policy tree for answering
a current question, the leaf nodes must be a student action that
accepts (!Co), which is an action to teach the concept in the
original question. A path in the tree includes possible ques-
tions and answers concerning prerequisites of Co. Also, since
possible student questions in the session concern prerequisites
of Co, we limit the observation set O to include concepts in
℘Co only. (Student questions are treated as observations.)

The root of T Co

Cc .τC is (!C), i.e. an action teaching C ∈
(℘Cc ∪ Cc). When C has M prerequisites C1, ... CM , the
root has M + 1 children. The first M children are sub-trees
rooted by (!C1), ... (!CM) and connected by edges of (?C1), ...
(?CM). The last child is a sub-tree rooted by (!Cu), where Cu

is one of the direct successors of C. This sub-tree is connected
by an edge of acceptance action (Θ). For each direct successor
of the concept at the root, we construct a tree. The semantics
of such root-children structure is that after (!C), if the student
asks about a prerequisite of C, teach that prerequisite, if the
student accepts (!C), teach one of the direct successors of C.

In a policy tree, each sub-tree is structured in the same way.
That is, the root has an edge for each of its prerequisites and an
acceptance edge. However, if a prerequisite has been taught in
the path from the tree root, the edge is not included. If a root is
(!Co) for answering the original question, its acceptance edge
connects to an action terminating the session.

Figure 3 illustrates policy tree T ML
ML .τML, where ML

stands for machine language. The prerequisite relationships
are based on Figure 2. ML has three direct and indirect
prerequisites IN (instruction), BD (binary digit), and PL (pro-
gramming language). Therefore the root has three edges for
the prerequisites and an acceptance edge. Since the root is for
answering the original question, the acceptance edge connects
to a terminating action (represented by a horizontal bar). Figure
4 shows policy trees T ML

ML .τPL, T ML
ML .τIN , and T ML

ML .τBD.
Figure 5 shows policy trees T PL

PL .τPL and T PL
PL .τIN .

(!IN)

(!ML)

(!BD)

(!PL)

(?IN)

(!PL)

(?BD)

(!BD)

(!ML)

(!PL)

(!ML)

(?PL)

(!BD)

(!ML)

(?IN)

(!IN)

(!ML)

(?BD)

(!ML)

(?IN)

(!ML) (!PL)

(!ML)

(!BD)

(?PL) (?IN)
(?BD)(!PL)

(!ML)

(!ML)

(Θ)

(Θ)

(?BD)

(Θ) (Θ)

(Θ)

(Θ)

(Θ)

(Θ)
(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(!PL) (!IN)

(!IN) (!ML)

(Θ)

(Θ)

(Θ)
(Θ)

(Θ)

(Θ)

(Θ)

Figure 3. Policy tree T ML

ML
.τML.

The policy tree structure helps improve efficiency in both
space and time. Firstly, it minimizes the number of trees to

(!BD)

(!ML)

(?IN)

(!IN)

(!ML)

(?BD)

(!ML)

(!BD)

(?BD)(!PL)

(!ML)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(!PL)

(!IN)

(!ML)

(!BD)

(!PL)

(?IN)

(!ML)

(Θ)

(Θ)

(?BD)

(Θ)

(Θ)

(Θ)

(?IN)

(!PL)

(!BD)

(!ML)

(!PL)

(!ML)

(?PL) (?IN)

(!ML)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

(!PL) (!IN)

(!IN) (!ML)

(Θ)

(Θ)

(Θ)

(Θ)

(Θ)

Figure 4. Policy trees T ML

ML
.τPL (left), T ML

ML
.τIN (middle), and

T ML

ML
.τBD (right).

(?IN)

(!IN)

(!PL)

(Θ)

(Θ)

(Θ)

(!PL)

(!IN)

(!PL)

(Θ)

(Θ)

Figure 5. Policy trees T PL

PL
.τPL (left) and T PL

PL
.τIN (right).

evaluate. To answer (?Cc) in a session started by (?Co), the
agent evaluates the trees in T Co

Cc only, instead of all the possible
trees. Secondly, it minimizes the costs for evaluating individual
trees. A tree deals with only the concepts in (℘Co ∪ Co). We
can thus minimize the set of observations O. We can also
minimize the tree height: a path concerns related concepts only,
and unnecessary actions are excluded at the earliest possible
point. As discussed before, H and |O| determine the costs
for evaluating a tree. Minimizing H and |O| helps minimize
tree sizes and thus the space and time costs. In addition, this
structure causes no information loss. In a tree, all the possible
student actions (observations) have been taken into account.

For better time efficiency, we construct ready-to-use policy
trees and store them in a tree database. When the agent needs
to make a decision with certain original question and current
question, it searches the database for a tree set, and evaluates
trees in the set only.

D. Decision-Making with Policy Trees

In a tutoring session started by (?Co), to answer current
question (?Cc), the agent evaluates trees in T Co

Cc by using (6),
and choose the optimal one. In using (6), it substitutes T with
T Co

Cc . For example, when the original and current questions
are both (?ML), the agent evaluates the four trees in T ML

ML

showed in Figures 3 and 4. It finds the tree of the highest
value (optimal tree) based on its current belief.

A policy tree is not a tutoring plan that the agent must
follow in the future. It is the choice for the current step.
After the optimal tree is selected, the agent takes the root
action. After taking the action, it terminates the session or

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

has a new current question, depending on the student action
(observation):

1) If the student action is (Θ), and the (Θ) edge con-
nects to a terminating action, the agent terminates the
current tutoring session;

2) If the student action is (Θ), and the (Θ) connects
to a (!C), the agent considers (?C) as the current
question in the next step.

3) If the student action is (?C), the agent considers (?C)
as the current question in the next step.

In the next step, to answer the current question which is
determined by using rules 2) and 3), the agent chooses an
action in the same way, i.e. by evaluating a set of policy trees,
and so on. Continue the above example with (?ML) being both
the original and current questions. If the policy tree for ML
is the optimal, the agent takes action (!ML). After (!ML), if
the student action is (Θ), the agent follows the edge of (Θ) in
the tree, and takes the terminating action to finish the session.
Whereas, if after (!ML) the student action is (?PL), the agent
considers that (?PL) is the current question in the next step.
It evaluates the trees in T ML

PL , and continues until it takes a
terminating action.

E. Structure for Dealing with Limited Memory

In constructing a tree database, the system creates each
policy tree in memory before storing it. To evaluate a policy
tree, the system first loads it into memory. Although our
technique can minimize the numbers of nodes and edges in
individual trees, and we use efficient data structures for tree
nodes and edges to reduce memory usage, some trees are still
very large. Those are trees for concepts having large numbers
of prerequisites. A single tree can be bigger than the memory
space available to run the ITS. Dealing with limited memory
is a challenging issue in applying a method of policy trees.

The structure we developed for policy trees offers flexi-
bilities in creating and loading policy trees in memory. Let
(?Co) and (?Cc) be original and current questions (Cc ∈
(℘Co ∪ Co)). As described, we create tree set T Co

Cc , which
includes policy trees for Cc and all its prerequisites. Let C ′,
C”, ... be prerequisites of Cc. The trees are T Co

Cc .τCc , T Co

Cc .τC′ ,

T Co

Cc .τC”, ... According to our rules for structuring policy

trees, T Co

Cc .τC′ , T Co

Cc .τC”, ... are subtrees of T Co

Cc .τCc . They
are connected to the root by edges of (?C ′), (?C”) ... This
structure allows us to physically create T Co

Cc .τC′ , T Co

Cc .τC”, ...

only, and create T Co

Cc .τCc as a root and pointers to the trees.

This approach can solve the problem that T Co

Cc .τCc exhausts
the available memory.

For example, when the original and current questions are
both (?ML), and ML has prerequisites PL, IN and BD, tree set
T ML
ML includes four trees: T ML

ML .τML, T ML
ML .τPL, T ML

ML .τIN ,
and T ML

ML .τBD. The four trees are illustrated in Figures 3
and 4. We can see that T ML

ML .τPL, T ML
ML .τIN , and T ML

ML .τBD.
are the first three subtrees of T ML

ML .τML. We can physically
create T ML

ML .τPL, T ML
ML .τIN , and T ML

ML .τBD. For T ML
ML .τML,

we include root (!ML) and edges (?IN), (?BD), and (?PL) only.

Another structural feature of the policy trees can be used
to save storage space. When Co1 is a prerequisite of Co2 , The
trees in T Co2

C can be used in T Co1

C with minor changes. Take
T ML
ML .τPL and T PL

PL .τPL (illustrated in Figures 4 and 5) as an
example. The two trees are both for PL but in different tree sets

(T ML
ML and T PL

PL). PL is a prerequisite of ML. By substituting
(!ML) in T ML

ML .τPL with a terminating action (represented as a
horizontal bar), the tree can be used as T PL

PL .τPL. This allows
us to create and store a tree in a tree set and use it in multiple
sets with minor changes. This structure may help save storage
space for the tree database.

VII. EXPERIMENTS

We experimented our system using a data set of software
basics. This data set contains 90 concepts. A concept has zero
to five prerequisites. In the following, we first present the
results concerning system performance in adaptive tutoring,
and then the results concerning space usage.

30 students participated in the experiments, randomly di-
vided into two groups of the same size. Each student studied
with the ITS for about 45 minutes. The students were adults
who knew how to use desktop or laptop computers, or smart
phones, and application programs, including Web browsers,
email systems, text processors, and phone apps. None of
the students took a course on computer software before the
experiments. The ITS taught students in the first group with
the POMDP turned off. When a student asked about a concept,
the system either taught the concept directly, or randomly
selected a prerequisite to teach. The ITS taught students in
the second group with the POMDP turned on. The system
chose the optimal action when answering a question.

The performance perimeter was rejection rate. Roughly, if
right after the system taught concept C, the student asked a
question about a prerequisite of C, or said “I already know
C”, we considered the student rejected the system action.
For a student, the rejection rate is calculated as the ratio of
the number of system actions rejected by the student to the
total number of system actions for teaching the student. The
rejection rate of a student could be used to measure how the
student was satisfied with the teaching, and thus measure the
system’s abilities to choose optimal actions.

TABLE I. NUMBER OF STUDENTS, MEAN AND ESTIMATED VARIANCE OF

EACH GROUP.

Group 1 Group 2

Number of students n1 = 15 n2 = 15
Sample mean X̄1 = 0.5966 X̄2 = 0.2284

Estimated variance s2
1
= 0.0158 s2

1
= 0.0113

We applied a two-sample t-test method to evaluate the
effects of the optimized teaching strategy to the teaching
performance of an ITS. For the two groups, we calculated
means X̄1 and X̄2. Sample mean X̄1 was used to represent
population mean µ1, and X̄2 represent µ2. The alternative and
null hypotheses were:

Ha : µ1 − µ2 6= 0, H0 : µ1 − µ2 = 0

The means and variances calculated for the two groups are
listed in Table I. The mean rejection rate in Group 1 was
0.5966 and the mean rejection rate in Group 2 was 0.2284.
The statistical analysis suggested we could reject H0 and
accept Ha. That is, the difference between the two means was
significant.

In the following, we discuss the results related to space
usage. As described, we partitioned the state space, so that we

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

TABLE II. NUMBERS OF CONCEPTS, TREE SETS, TREES, AND TREE

HEIGHTS IN SUB-SPACES.

Sub- # of # of # of Max set Max

space concepts tree sets trees size inheight

1 21 98 285 18 30

2 23 134 456 25 22

3 20 111 388 22 26

4 27 188 753 29 37

5 25 173 684 26 32

6 26 169 682 31 35

could localize computing in a tutoring session within a sub-
space. For each sub-space, we created tree sets, each of which
contained policy trees to be evaluated for certain questions.
For the data set of software basics, our algorithms partitioned
the state space into six sub-spaces.

Table II lists the numbers of concepts, tree sets, and trees
in each sub-space. It also lists the maximum size of tree sets
and maximum tree height in each sub-space. It can be seen that
the largest tree set contained 31 trees, and the maximum tree
height was 37. That is, in the worst case, to answer a question
the system evaluated a set of 31 trees of maximum height
37. Such tree sets and heights did not create major efficiency
problems for a modern computer. When the experimental ITS
run on a desktop computer with an Intel Core i5 3.2 GHz 64 bit
processor and 16GB RAM, the response time for answering
a question is less than 300 milliseconds. This includes the
time for calculating a new belief, choosing a policy tree, and
accessing the database of domain model. For a tutoring system,
such response time could be considered acceptable.

TABLE III. MEMORY CONSUMPTION OF ITS COMPONENTS.

ITS Component Storage usage (MB)

States 3

P (s′|s, a) 5,319

P (o|a, s′) 44

R(s, a) 13

Tree database 3,671

Policy tree values 37

Table III includes the information about storage usage.
The ITS components consuming memory/disk space are states,
state transition probabilities P (s′|s, a), observation probabil-
ities P (o|a, s′), expected rewards R(s, a), and policy trees.
We also saved tree values (computed by using (3)) for pos-
sible re-use, for better response time. The tree values were
re-computed when the probabilities were updated. The tree
database consumed 3,671 MB. Our techniques for structuring
policy trees helped reduce the tree database to a manageable
size. Before the space-saving structures were used, the tree
database consumed about three times the space, and some
policy trees could not be created because the available memory
was exhausted.

We also experimented the techniques with a data set of
statistics. This data set included all the 231 concepts taught in
a textbook on introductory statistics [5]. The state space was
partitioned into 28 subspaces. The techniques were effective in
dealing with space efficiency issues with this subject. In this
paper, we will not present the experimental results because of
the limited page space.

VIII. CONCLUSION

The issue of space efficiency has been a major obstacle in
building a POMDP-based intelligent tutoring system. Policy
trees may consume very large space, even exhaust the available
memory to crash a system. We developed a set of techniques
to address the space problems caused by policy trees. With
the techniques, we could minimize the number of trees, and
minimize the sizes of individual trees. We could further reduce
the space consumption by allowing trees to share the same
tree components. Encouraging results have been achieved in
experiments.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC). Patrick
Hartman implemented part of the system and conducted some
of the experiments.

REFERENCES

[1] A. Cassandra, “A survey of pomdp applications”, Working Notes of AAAI

1998 Fall Symposium on Planning with Partially Observable Markov

Decision Process, Oct 23-25, 1998, Orlando, FL, USA. AAAI Press,
Palo Alto, CA, USA, July, 1998, pp. 17-24.

[2] B. Cheung, L. Hui, J. Zhang, and S. M. Yiu, “SmartTutor: an intelligent
tutoring system in web-based adult education”, The journal of Systems

and software, Elsevier, Cambridge, MA, USA, vol. 68, pp. 11-25, 2003,
ISSN: 0164-1212.

[3] H. R. Chinaei, B. Chaib-draa, and L. Lamontagne, “Learning Observation
Models for Dialogue POMDPs”, in Canadian AI’12 Proceedings of the

25th Canadian conference on Advances in Artificial Intelligence, May
28-30, 2012, Toronto, ON, Canada, Springer-Verlag, Berlin, Heidelberg,
2012, pp. 280-286, ISBN: 978-3-642-30353-1.

[4] J. T. Folsom-Kovarik, G. Sukthankar, and S. Schatz, “Tractable POMDP
Representations for Intelligent Tutoring Systems”, ACM Transactions on

Intelligent Systems and Technology, New York, NY, USA vol. 4, pp.
29:1-29:22, 2013, ISSN: 2157-6904.

[5] G. W. Heiman, Basic Statistics for the Behavioral Sciences, Sixth Edition,
WadSworth, Cengage Learning, Belmont, CA, 2011, ISBN-13: 978-0-
8400-3143-3.

[6] A. N. Rafferty, E. Brunskill, L. Thomas, T. J. Griffiths, and P. Shafto,
“Faster Teaching by POMDP Planning”, in Proceedings of Artificial

Intelligence in Education (AIED) 2011, June 28 - July 2, 2011, Auckland,
New Zealand. Springer, New York, NY, USA, July, 2011, pp. 280-287,
ISBN: 078-3-642-21869-9.

[7] G. Theocharous, R. Beckwith, N. Butko, and M. Philipose, “Tractable
POMDP Planning Algorithms for Optimal Teaching in SPAIS”, in IJCAI

PAIR Workshop (2009), July 11-17, 2009, Pasadena, CA, USA. AAAI
Press, Palo Alto, CA, USA, July, 2009, ISBN: 978-1-57735-426-0.

[8] K. VanLehn, B. van de Sande, R. Shelby, and S. Gershman, “The Andes
Physics Tutoring System: an Experiment in Freedom”, in Nkambou
et-al eds. Advances in Intelligent Tutoring Systems, Berlin Heidelberg:
Springer-Verlag, 2010, pp. 421-443, ISBN: 3642143628.

[9] F. Wang, “Handling Exponential State Space in a POMDP-Based Intel-
ligent Tutoring System”, in Proceedings of 6th International Conference

on E-Service and Knowledge Management (IIAI ESKM 2015), Okayama,
Japan, July, 2015, pp. 67-72, ISBN: 978-1-4799-9957-6.

[10] F. Wang. “A new technique of policy trees for building a POMDP based
intelligent tutoring system”, in Proceedings of The 8th International

Conference on Computer Supported Education (CSEDU 2016), Rome,
Italy, April, 2016, pp. 85-93, ISBN: 978-989-758-179-3.

[11] J. D. Williams, P. Poupart, and S. Young, “Factored Partially Observable
Markov Decision Processes for Dialogue Management”, in Proceedings

of Knowledge and Reasoning in Practical Dialogue Systems, 2005.

[12] J. D. Williams, and S. Young, “Partially observable Markov decision
processes for spoken dialog systems”, Computer Speech and Language,
Elsevier, Cambridge, MA, USA, vol. 21, pp. 393-422. 2007, ISSN: 0885-
2308.

[13] B. P. Woolf, Building Intelligent Interactive Tutors, Burlington, MA,
USA: Morgan Kaufmann Publishers, 2009, ISBN 978-0-12-373594-2.

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)

