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Abstract—Nowadays, the reliability and robustness levels 

required for production systems are growing. These demands 

make philosophies, such as predictive maintenance essential in 

modern industry, among which the energy sector stands out. In 

this sense, this paper proposes an on-line monitoring system 

based on data mining models, which provides a useful tool to 

identify operation anomalies easily, being able to identify and 

prevent possible future failures. This approach has been 

applied successfully in a real case, where a performance 

analysis for the cooling systems of a solar-thermal power plant 

was implemented. 
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I.  INTRODUCTION  

Nowadays, it is easy to see that the presence of 
continuous and more critical processes is growing in the 
industrial ambience. As their names suggest, these types of 
processes must run uninterruptedly and demand more in their 
reliability levels. Obviously, these demands require special 
treatment beyond a reactive or preventive maintenance. 
These needs are directly translated into an increment on the 
number of on-line monitoring or analysis systems, following 
what is known as a Predictive Maintenance (PdM) [1] 
philosophy. Specifically, PdM consists of a defect inspection 
strategy to prevent future problems using data analysis and 
identifying indicators for its detection.  

The use of time series analysis to improve a process 
reliability is not a new approach [2][3]. However, the sensor 
number in processes, as well as their analytical capacity have 
grown systematically in the last years. An example of this 
evolution can be clearly seen in the energy industry, where 
machine learning and data mining analysis approaches are 
applied as useful tools to improve this service. 

Specifically, these techniques have been applied by 
energy utilities at different levels, as can be seen in [4], 
where their authors propose methodologies based on data 
mining analysis, for maintaining the elements of smart grid 
distribution networks (cables, joints, manholes, and 
transformers), forecasting their failure probability. 
Specifically for cables isolation analysis, we can find [5], 
which proposes a partial discharge analysis, using the 
combination of wavelet packet transform analysis and a 

probabilistic neural network. Related to power transformers 
maintenance, [6] proposes a smart fault diagnostic approach 
combining five well-known methods based on dissolved gas 
studies, using several Artificial Neural Networks (ANNs) for 
their individual classification analysis and one more for the 
combination of their results. 

Nevertheless, it is in the maintenance analysis of power 
generation systems where the application of intelligent 
approaches is more present in the last few years. As an 
example, [7] introduces an analysis framework for 
maintenance management of wind turbines, based on the 
characterization of correct operation settings, using ANNs. 
This framework directly obtains the information from the 
Supervisory Control and Data Acquisition (SCADA) system, 
combining it with an alarm and warning analysis. This 
approach allows the system to model the normal behavior of 
the gearbox bearing temperature. This estimation makes it 
possible to forecast possible damage in a gearbox earlier than 
traditional vibration-based approaches [8].  

As can be observed above in the previously cited articles, 
most of the efforts are focused on the prediction of failures in 
the gearbox of wind generators that are the typical elements 
with greater cost and difficult substitution in them. However, 
there exist a multitude of elements in a generation plant, and 
without which its target could not be carried out either. This 
is what happens with the fluid condenser and cooling tower, 
essential in the refrigeration system of a solar-thermal power 
plant, and whose operation must also be monitored. 

In this sense, this paper describes a Condition Monitoring 
System (CMS) to identify anomalies in the operation of both 
subsystems. For this, different approaches based on data 
mining have been evaluated to implement their operation 
models, determining the best option and validating their use 
for this purpose.  

Specifically, the presented paper has been divided as 
follows; Section II describes the different necessary stages to 
make up a process model (data filtering, main variables 
identification, modeling technique election, etc.). After this, 
an on-line monitoring approach based on these models is 
described in Section III. Once the modeling and monitoring 
approaches have been described, Section IV performs a real 
application of them over some elements of a solar-thermal 
power plant. Finally, Section V lays out the conclusion of 
this work. 
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II. PROCESS MODEL GENERATION 

As can be seen in next sections, the proposed analysis 
will be applied on a solar-thermal application. However, this 
CMS approach can be applied in the characterization of more 
applications or environments for a performance or a PdM 
analysis. In this sense, this approach proposes a monitoring 
system that analyzes the correct behavior of a process 
comparing it to one or more (if different modes of operation 
are identified) pre-estimated operating models, all of them 
based on data mining. Obviously, a correct estimation of 
these models will be essential for a valid operation of this 
monitoring system. Due to this, the modeling task will be 
described in detail, dividing it into four stages: 

A. Extraction of historical data 

This stage consists of the extraction of historical data of 
the process, which should contain measurements and event 
logs (typically collected from the process SCADA). 
Obviously, the length and granularity of this historical data 
must be adequate and contain a representative sample of the 
behavior in the plant under study. 

B. Identification of operating modes 

In this stage, the data are split up according to the 
different operation modes, in which the plant was operating. 
From this division, the next stages of this section (Data 
filtering and Models implementation) will be performed with 
each of these sets independently. 

C. Data filtering  

Unfortunately, it is very common to find anomalies in 
historical data. Due to this, before starting the modeling 
process, it is necessary to carry out an integrity analysis over 
them. These analyzes usually require a preliminary visual 
inspection, later choosing the most appropriate statistical 
method. A typical approach to this end (when normal 
behavior follows a normal distribution), is the use of 
interquartile distance criterion, which allows the filter 
process to determine a limit to separate the outlier data from 
those are considered as correct. 

D. Models implementation 

Once the data has been separated for each operation 
mode and the anomalies have been eliminated for each one, 
the following step will be to make the process models up.  

However, not all the information acquired from the 
SCADA (direct measurement, cross-effects between them 
and their non-linear effects) has the same effect over the 
parameter to be modeled, may not even be relevant. 
Therefore, to simplify the model, a sensitivity analysis based 
on Akaike Information Criterion (AIC) [9] has been carried 
out over the data. This process makes it possible to identify 
those variables without relevance, discarding them from the 
initial input set, simplifying the final input set of the model. 

After selecting these relevant variables, the next step is to 
make up a model with a better fit. In this sense, up to five 
different modeling data mining techniques are proposed for 
this task, such as: 

1) Linear model [10] 
In this approach, it consists of estimating the coefficients 

(βi) that represent the weight of each input (Xi), which try to 
fix the behavior of Y, following (1). This approach raises the 
drawback of not being able to model non-linear behavior. 
However, it is traditionally a good option for a large number 
of cases.  

1 1 2 2· · ... ·n nY X X X       (1) 

2) Linear model with quadratic and cubic terms [11] 
This model is really an extension of the previous 

approach, incorporating also the quadratic (β2,i) and cubic 
(β3,i) terms of the model inputs (Xi). Equation (2) represents 
this type of model, making it possible to incorporate possible 
non-linear effects implicit in the process behavior. 
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3) Linear model with second order combinations [11] 
This model considers multiple interactions between 

variables up to the second degree, the relationship now being 
expressed by (3). This expression makes it possible to model 
the possible cross-interaction between the inputs (Xi). 

2
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(3) 

4) Decision Tree [12]  
A decision tree is a regression model represented as a 

binary tree. Each node contains a condition and the data 
traverses the tree according to the conditions that they fulfill. 
The leaves (nodes without descendants) include the 
regression formula to apply to each data that reaches it. 

Therefore, a tree does not generate a linear model but a 
piecewise linear model. 

5) Random Forest [13] 
This last alternative consists of a classification and 

regression model based on a group of decision trees and a 
voting system. 

 

Finally, all of these techniques are evaluated, only the 
best of them will be chosen for the monitoring systems. 

III. MONITORING SYSTEM  

The modeling process is a complex task that typically 
involves a lot of data and requires a high computation cost. 
However, this process is only done once (as off-line task), or 
with low periodicity to obtain models that reflect some 
possible changes in the process. 

Conversely, on the on-line monitoring system, the pre-
estimated model is faced with the direct measurements of the 
parameter to be evaluated, using this error normalized by its 
standard deviation as a performance indicator of the correct 
operation (see Figure 1).  

This tool allows the user to identify anomalous trends 
easily, using standard deviation analysis, identified by the 
following color code: 
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Figure 2.  Solar flow basic shema [14]. 

 
Figure 3.  Basic schema of the heat exchange processes. 

 

Figure 1.  Monitoring interface of the proposed solution. 

 

Figure 4.  Condenser input temperature (in day and night modes). 

 Correct operation (green points). Cases whose 
predictions do not differ by more than 2σ. 

 Warning (yellow points). Cases whose predictions 
have an error between 2σ and 3σ.  

 Offlimit (red points). Cases whose predictions exceed 
3σ.  

 Out (black points). Cases whose distances exceed 
10σ. 

 

This analysis is able to anticipate a possible failure. For 
example warning points, although still in the normal data 
range, require greater observation to estimate if the system 
has a tendency to leave such margins. Offlimit points may 
represent a clear anomaly case (and a possible failure cause). 
And Out points, which are clearly out of the model and are 
operation modes completely out of training. These points 
should be studied separately to find possible failures. 

IV. STUDY CASE 

Once the proposed approach to monitoring and PdM has 
been described, this section shows its application over a solar 
power plant based on heliostats. 

As a brief description, this type of power plant uses 
mobile mirrors (or heliostats) that are oriented reflecting and 
concentrating sunlight toward a specific spot (typically 
located on a tower). This concentrated radiation generates 
heat energy that will be converted into motion through a 
turbine and various fluid circuits (with molten salts and 
fluids like water). Later, this rotating energy will be 

converted to electricity through a power generator (as can be 
seen in the Figure 2).       [14]         

Thus, neither the power generation levels nor critical 
operations were analyzed for this example. Actually, the 
proposed analysis consists of monitoring two elements of the 
cooling system; the fluid condenser and the cooling tower. 
Specifically, the fluid condenser is the first stage of the 
cooling system, and it is responsible for carrying out the heat 
exchange between the water-steam and the cooling circuits 
(see Figure 3). The next element, the cooling tower is the 
part of the cooling process where the water of this circuit is 
cooled down in other heat exchangers, to be finally poured 
into a water tank.  

Regardless of the temperature ranges in which both 
process operate, both have the same target (reduce the 
temperature of the fluid that is flowing through it). In this 
sense, a good indicator to evaluate this target fulfillment 
could be the difference between the input and output 
(thermal jump) of each one. Due to this, both processes have 
been analyzed, following in both the same approach 
(obviously varying the input data set for each).  

The available information and its reliance for each 
process is summarized in Table I, which has provided up to 
522,664 observations (one year of data approximately). Each 
of them was divided into two operation modes (day and 
night modes), as can be seen in the example shown in Figure 

95Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-576-0

INTELLI 2017 : The Sixth International Conference on Intelligent Systems and Applications (includes InManEnt)



TABLE I.  COMPLETE SET OF INPUT PARAMETERS 

Available measurements Relev.* 

Temperature at steam input in the fluid condenser  

Pressure at steam input in the fluid condenser (1) 

Level at steam input in the fluid condenser  

Temperature at cooling water input in the fluid condenser (2) 

Pressure at cooling water input in the fluid condenser (1) 

Temperature at cooling water output in the fluid condenser (2) 

Pressure at cooling water output in the fluid condenser (1),(2) 

Flow of the input cooling water in the fluid condenser  

Motor current of the cooling tower (2) 

Temperature of water tank  

Level of water tank  

pH of water tank  

Ambient temperature  

Relative humidity  

Atmospheric pressure  

Active power generated (1) 

* Note: (1) relevant for the fluid condenser model, (2) relevant for the cooling 

tower model. 

TABLE IV.  COMPARISON BETWEEN MODELING METHODS (FLUID 

CONDENSER, NIGHT MODE) 

Method σ (ºC) 

Linear model 1.497 

Model with quadratic and cubic terms 1.403 

Second order cross model 1.454 

Decision tree 1.360 

Random forest (five trees) 0.635 

 
TABLE V.  OBTAINED RESULTS WITH SELECTED MODEL AND 

UNFILTERED DATA (FLUID CONDENSER, NIGHT MODE) 

Category Correct Warning Offlimit Out 

Percentage (%) 95.50 2.48 1.94 0.08 

 

 

Figure 6.  Distribution for complete set of unfiltered historical data 

with selected model (fluid condenser, night mode). 

TABLE II.  COMPARISON BETWEEN MODELING METHODS (FLUID 

CONDENSER, DAY MODE) 

Method σ (ºC) 

Linear model 1.488 

Model with quadratic and cubic terms 1.309 

Second order cross model 1.313 

Decision tree 1.364 

Random forest (five trees) 0.598 

 
TABLE III.  OBTAINED RESULTS WITH SELECTED MODEL (FLUID 

CONDENSER, DAY MODE) 

Category 
Percentage of 

cross-validation 

subset (%) 

Percentage of 

complete 

filtered set (%) 

Percentage of 

complete set 

(%) 

Correct 95.36 95.57 89.37 

Warning 2.54 2.51 6.23 

Offlimit 2.01 1.83 4.30 

Out 0.09 0.09 0.10 

 

 

Figure 5.  Distribution for complete set of filtered historical data with 

selected model (fluid condenser, day mode). 

TABLE VI.  COMPARISON BETWEEN MODELING METHODS (COOLING 

TOWER, DAY MODE) 

Method σ (ºC) 

Linear model 0.940 

Model with quadratic and cubic terms 0.906 

Second order cross model 0.717 

Decision tree 1.269 

Random forest (five trees) 0.380 

 
TABLE VII.  OBTAINED RESULTS WITH SELECTED MODEL (COOLING 

TOWER, DAY MODE) 

Category 
Percentage of 

cross-validation 

subset (%) 

Percentage of 

complete 

filtered set (%) 

Percentage of 

complete set 

(%) 

Correct 94.70 94.96 84.87 

Warning 3.21 3.06 5.88 

Offlimit 2.06 1.96 8.61 

Out 0.03 0.02 0.64 

 

 

Figure 7.  Distribution for complete set of filtered historical data with 

selected model (Cooling tower, day mode). 

4. Thus, following the previously described AIC selection 
method, it is possible to identify four relevant variables for 
each model (see details in Table I). From this information, 
and applying the procedures described in previous sections, 
it is possible to infer up to four system models (one for each 
subsystem and each mode), necessary for the proposed 
monitoring. 

As can be seen in Table II, Table IV, Table VI and Table 
VIII, the best evaluated techniques in the four cases is the 
random forest, using an implementation with five trees. 

In this sense, a cross-validation technique was proposed 
to validate each model. This test allows each method to show 
how well they function and how good they are. 

On the one hand, once the more adequate technique has 
been chosen, a fluid condenser model raises a standard 
deviation of 0.61589ºC in day mode and 0.62475ºC in night 
mode. Additionally, on the other hand, the cooling tower 
model raises a standard deviation of 0.38035ºC in day mode 
and 0.62475ºC in night mode. Therefore, it is possible to 
conclude that these proposed models are a valid estimation 
for the studied subsystems. This conclusion is also validated 
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TABLE VIII.  COMPARISON BETWEEN MODELING METHODS (COOLING 

TOWER, NIGHT MODE) 

Method σ (ºC) 

Linear model 0.965 

Model with quadratic and cubic terms 0.952 

Second order cross model 1.281 

Decision tree 1.376 

Random forest (five trees) 0.422 

 
TABLE IX.  OBTAINED RESULTS WITH SELECTED MODEL AND 

UNFILTERED DATA (COOLING TOWER, NIGHT MODE) 

Category Correct Warning Offlimit Out 

Percentage (%) 94.92 3.09 1.96 0.03 

 

 

Figure 8.  Distribution for complete set of unfiltered historical data 

with selected model (Cooling tower, night mode). 

by Table III, Table V, Table VII and Table IX, and also from 
Figure 5 to Figure 8 that show the distribution of the error 
between real an estimated historical data. 

V. CONCLUSIONS 

As was commented in this paper, the accuracy 
requirements of current systems have grown enormously in 
the last few years. This evolution makes the monitoring and 
on-line analysis (such as PdM) essential in the production 
systems, among which the energy industry stands out. 

In this sense, a PdM approach based on data mining 
techniques is proposed in this paper. This approach brings up 
a comparison between the real performance of a plant and an 
estimation (based on a model) of it, identifying a possible 
deviation from it as an anomaly, which could lead to future 
failure. 

This approach has been evaluated over the cooling 
subsystems of real solar-thermal power plant. In this way, 
the analysis of this application made possible to validate its 
usefulness, comparing different modeling techniques and 
identifying the more appropriate of them for this application. 
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