
Component Models for Embedded Systems in
Industrial Cyber-Physical Systems

Luis Neto∗†, Gil Gonçalves∗†
∗SYSTEC-FoF, Research Center for Systems and Technologies - Factories of the Future

†FEUP, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal

Email: {lcneto,gil}@fe.up.pt

Abstract—Component Based Software Engineering is a tradi-
tional methodology that has significant advantages: reduction
of production cost, code reuse, code portability, fast time to
market, systematic approach to system construction and guided
system design by formalization and domain specific modelling
languages. This methodology is used in frameworks for enterprise
systems, user interfaces, Web applications, embedded systems
for Industrial Cyber Physical Productions Systems (ICPPS) and
Industrial Internet of Thing’s (IIoT). In this work, we surveyed
component model solutions and literature applied to Industrial
Cyber Physical Systems (ICPS). By conducting a reproducible
systematic mapping study, we search and select results of in-
terest. Research Questions (RQs) are formulated and addressed
by applying classification schemes to the results. Finally, the
classification results allow us to come up with a state-of-the
art in this domain and to draw some conclusions about design
considerations and research trends.

Keywords–Component Based Software Engineering; Component
Models; Embedded Systems; Industrial Cyber-Physical Systems.

I. INTRODUCTION

In this paper addresses a systematic mapping study in
component models for embedded systems in industrial envi-
ronments. All iterations of the systematic mapping process
are based in [1] and are detailed throughout the document,
finishing with results that consider the research questions
shown below. Heineman and Councill [2] provide a clear and
unambiguous definition of software component, component
model and software component infrastructure that we will use
as reference throughout this paper.

1) RQ1. Which component models exist whose scope of
application is ICPS and whose targets are embedded
systems?

2) RQ2. What are the similarities and design consider-
ations among them?

3) RQ3. How has research in this topic been evolving?
4) RQ4. What kind of contribution is given by particular

papers?
A software architecture designed using the component

model solution is developed as ”a composite of sub-parts
rather than a monolithic entity” [3]. The advantages of this
approach address many objectives of software industry, such
as: reduction of production cost, code reuse, code portability,
fast time to market, systematic approach to system construction
and guided system design by formalization and domain specific
modelling languages.

The component model is the foundation of a component
based design. It defines, briefly, the composition standard:

how components are assembled into larger pieces, how and
if they can be composed at design and/or runtime phases of
component life-cycle, how they interact, how the component
repository (if any) is managed, and the runtime environment
that contains the assembled application. Because of all of
this, component models are hard to build. Some problems
like achieving determinism and real-time, parallel flows of
component and system development, maintaining components
for reuse, different levels of granularity [4] and portability
problems [5] may occur.

Our study focuses on component models whose target
are factory shop floor systems, and component models that
allow to compose solutions for discrete or continuous con-
trol and automatic reasoning, the so called component-based
industrial automation applications. Component based design
architectures, as classified in Vyatkin’s work [6], are part
of traditional software engineering methodologies. From the
key areas of software engineering [6], we will focus our
attention on software design and construction, configuration
management, tools and methods.

We are interested in covering various levels of components,
from those that represent lower level parts of embedded
systems (such as drivers and system kernels) to higher level
(such as algorithms and services). Component models can
be characterized by their capability to assemble components.
These can be composed using wrapping, static and dynamic
linking, and ”plug-and-play” methods. Component models are,
typically, thin layers that operate on top of an operating system
(OS) or runtime environment (RTE), which brings portability
and reuse issues. Because of the advent of IIoT and ICPS,
many hardware vendors are providing heterogeneous solutions
that require OS and RTE independent solutions.

The rest of this paper is organized as follows: Section II
provides details of the search and selection process for articles;
Section III discusses some of the results found to provide the
reader with support for better interpretation of the mapping
process, later explained in Section IV. Section V concludes
the paper with a final discussion.

II. PRIMARY SEARCH

In [1], the authors present a series of steps that show how to
perform a systematic mapping study. These steps are illustrated
in Figure 1. The information sources for the first iteration
of the study were only databases of reference: SCOPUS,
IEEExplore and ACM Digital Library. The initial search string
used clearly reflects the research questions: (TITLE-ABS-

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-646-0

INTELLI 2018 : The Seventh International Conference on Intelligent Systems and Applications

KEY (component model) AND TITLE-ABS-KEY (in-
dustry) AND TITLE-ABS-KEY (embedded systems))

Following the systematic mapping process, we did a first
review of abstracts and selected a first set of documents based
on the criteria of Table I. Because every research topic has
a specific terminology unknown to the unfamiliar reader, new
keywords of interest (e.g., Software Component Framework,
Component-Based Software, Component Life Cycle, Compo-
nent Syntax, Component Semantics, Component Composition)
to the RQs were identified to increase the search efficiency.

TABLE I. INCLUSION AND EXCLUSION CRITERIA

Inclusion Exclusion

• Books and papers
reporting final solutions,
methodologies and
evaluation of component
models for embedded
systems in industrial
scenarios.

• Available and existing
solutions (both commercial
and academic) with
documentation reporting
experiments, validation and
use cases.

• Opinion, survey, taxonomy
and classification
frameworks, and
philosophical findings
on component models
for embedded systems in
industrial scenarios.

• Books and papers with
less than 10 references
will be excluded.

• Any finding that does
not discuss the three
main keywords in the
abstract and introduction
”component model”,
”embedded systems”
and ”industry” will be
excluded.

• Component frameworks
with exclusive application
to enterprise systems,
user interfaces, web-
applications and others
rather embedded systems
for industrial domain.

A. Search and Screening
To the original set of steps - the blocks represented with a

contiguous outline - were added those outlined by dashed lines
of Figure 1. The first search query was built combining the
most frequent words of the accepted papers and the RQs. To
produce this set of frequent words the keywords and abstracts
of all accepted documents were gathered in a spreadsheet and
parsed. RapidMiner Studio [7] was the text analyser tool used
to count frequent words. Sequentially, this tool also allowed
to use an English stopwords filter and a n-Grams operator,
which allows to make combinations of n keywords, to count
frequencies of up to 4 consecutive words. After processing, the
resulting set of keywords contained 44 keywords of interest.
performing combinations with this set was a time consuming
process, so we tried to query the selected databases with the
entire set at a time but none of them accepted such a long
query. After that, we decided to try the Google Scholar search
engine. This option was viable because it accepted the long
set of keywords and this resulted in very accurate preliminary
results. The results from the two queries were merged to obtain
an extended set of papers. At that point, we decided that to
perform a pragmatic application of criteria. The number of
citations considered could not be the same because Google
Scholar takes in account citations from a wider set of sources
than the other databases. To solve this issue, each individual
paper of the first set was searched in Google Scholar. Then, for
each paper found, the multiplicative factor between the number
of citations in the first and second set was calculated. Finally,
the average of all multiplicative factors was calculated. This

average value was used to replace the minimum number of
references considered in Table I. For a Google Scholar paper
in the second set to be considered it must have a minimum
number of 36 citations.

The application of the exclusion and inclusion criteria spec-
ified in Table I drastically reduced the number of documents
considered in this study, as can be observed in Table II. The
final set of documents was used to conduct the evaluation. For
that, a specific classification scheme was combined with the
mapping process. This is detailed in the next chapters.

III. MAPPING PROCESS

The following works, after a complete reading were the
ones of major interest for this study and will be used through-
out the mapping process: PECOS [8], Timing Definition
Language (TDL) [9], FORMULA [10], Bold Stroke [11],
Rubus [12], Real-Time-Linux-Based Framework enhanced
with IEC 61449 [13], IEC 61449 model [14], Program-
ming Temporally integrated distributed embedded systems
(PTIDES) [15], Kevoree [5], [16], Automatic Reasoning [17],
Critical Scenario simulation using IEC 61449 [18] and Compo-
nent Design to tackle safety analysis [19]. Some of the papers
analysed did not provide enough details to fill rigorously the
classification schemes adopted, but all were of the highest
interest to provide insight in this study.

Figure 2 gives a concise overview of a component model.
It shows two main phases, from a component creation to
its usage. In the first stage, the component is built in a
builder environment, which can be a code editor (mostly when
developing from scratch) or in a graphical editor (mostly when
using reusing built components to produce a composite com-
ponent, these are normally represented by graphic shapes or
diagrams). The design phase ends with the developer sending
the component to a repository. In some cases, when there is
no repository, the component can be directly sent to a RTE.
In the deployment phase, components are fetched from the
repository, composed in a graphical or code environment and
finally sent to the RTE.

A. Classification Schemes
Four classification schemes will be taken into account to

perform the mapping of papers found. The first classification
scheme divides the results in: opinion, survey, taxonomy
and classification frameworks, and philosophical findings. The
second scheme is based on available and existing solutions
(both commercial and academic) providing documentation
reporting: experiments, validation and use cases. The third
classification, which is based on previous ones, specifically
addresses RQ3. The last classification scheme addresses RQ4
and the categories used are based in [1].

Some classification categories can not be applied to some
papers from the extended set of relevant works. For examples
theoretical and other survey papers does not apply to the
choose taxonomy for component models. For this reason
the number of references in the classification tables is not
consistent.

1) Taxonomy Based: There exists literature [20, 21, 22, 23]
that propose classification schemes specifically for component
based software engineering. In [22], the authors provide a
formal and comprehensive framework of classification that will

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-646-0

INTELLI 2018 : The Seventh International Conference on Intelligent Systems and Applications

Figure 1. Modified Systematic Mapping Process.

TABLE II. DOCUMENTS AFTER CRITERIA

SCOPUS IEEExplore ACM Digital Library Google Scholar Duplicates
Initial (Duplicates) 390 206 135 913 133
>10 References (Duplicates) 42 17 14 71 10
Text Analysis (Duplicates) 5 4 4 5 1
Final Set 18

not used because of the superficial nature of the reviewing
process in systematic mapping approaches. The taxonomy that
we will address is proposed in [20] and it classifies component
models using the following three characteristics.

• Component Syntax: The syntax of components is the
component definition language. In some cases it is a
programming language, but if the solution is required
to be more flexible it can be a specific language
defined by the component model. In the last case, a
compiler can generate code in various programming
languages and make the components more versatile.
Table III shows the syntax of the component models
analysed.

• Component Semantics: The semantics of a compo-
nent is what it is meant to be: it can be an object
(in the sense of object oriented languages), it can
be a plain piece of business logic code and also to
be manipulated by a manager instance created by
the container at deployment phase. In this sense, the
semantic is given by the run-time environment and
defined by the component model. Table IV shows the
semantics of the component models analysed.

• Composition: Process in which components are as-
sembled together to create new components or sys-
tems. This process can happen in two phases (Fig-
ure 2) of the software component life-cycle: at deploy-
ment phase, the builder environment is able to retrieve
existing components from the repository and use them
to create a new one, that in the end packaged, cata-
logued and sent to repository; at deployment phase,
existing components in the repository can be assem-
bled and later instantiated in a run-time environment.

TABLE III. COMPONENT SYNTAX

Component Syntax Component Model
Object Oriented Programming Language
IDL (interface definition language) [12, 5]
Architecture Description Languages [8, 9, 10, 13, 14]

TABLE IV. COMPONENT SEMANTICS

Component Semantics Component Model
Classes [12]
Objects [13, 14, 5]
Architectural Units [8, 9, 10]

TABLE V. COMPOSITION CLASSIFICATION

CharacteristicsCategory Component Models DR RR CS DC CP
1 [8, 10] x x x X x
2 [12], x x X x x
3 [9] x x x x X
4 [13, 14] X X x X x
5 [5] x x X x X

Regarding the composition classification, the original tax-
onomy in [20] defines 5 characteristics of composition. These
characteristics were mapped into categories for this study. The
characteristics are: DR, In design phase new components can
be deposited in a repository; RR In design phase components
can be retrieved from the repository; CS: Composition is
possible in design phase; DC, in design phase composite com-
ponents can be deposited in the repository; CP, composition is
possible in deployment phase. Table V shows the composition
classification for the component models analysed.

2) Design Considerations: A component system capable
of performing real time was a characteristic perceived as
of the highest importance when reading through the chosen
papers. This characteristic also introduce some concerns that
are typical from the high performance computing domain.
Parallelism, (a)synchronism, worst case execution time, events,
threads, the mix of hard, soft and non real-time constraints are
characteristics that concern to industrial control applications
and that are hard to achieve altogether in component models.
Integrating technologies from multiple vendors is challenging
and often results in fragile tool chains that requires a con-
siderable effort to maintain. This also touches the domain of
granularity: a single component can emulate an entire system
(coarse grained), benefiting from the reliability and efficiency,

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-646-0

INTELLI 2018 : The Seventh International Conference on Intelligent Systems and Applications

Figure 2. Component Model Overview.

but having a reduced capability of reuse. The footprint of
components and its container (the run-time environment) is
a recurrent concern when developing to embedded systems,
which are typically very constrained. System communication
refers to the application of component models to distributed
systems. In scenarios where several nodes in a network are
distributed physically over a production plant, the component
model should be capable of making this nodes interact as
components of a monolithic system.

TABLE VI. DESIGN CONSIDERATIONS

Design Consideration Component Model
Component Granularity [5]
Intelligent Reasoning [17]
Real-time [12, 21, 9, 11, 13, 14, 15, 18]
Security [5, 19]
Footprint [12, 5]
Portability [10, 10, 13, 14]
Component Reuse [11, 13, 14]
System Communication [21, 9, 14, 15, 5]
Systematic Design [12, 10, 10, 14, 16]

3) Design Considerations Over Time: The graph of Fig-
ure 3 shows the evolution of design considerations over the
years. Despite the small population used to trace the graph,
some conclusions can be drawn. This classification addresses
RQ3.

Figure 3. Design Considerations Over Time.

4) Type of Research and Contribution: According with
the research type facet defined in [1], Table VII shows a
classification of works presented in the previous sub chapters.
This table addresses RQ4.

IV. RESULTS AND DISCUSSION

In this section we discuss some of the findings with more
relevance to the topic. The objective of this analysis and the
present discussion is to gain some insight about component
models and about some details in the solutions found. There
are some design considerations typical of industrial scenarios
that this research addresses and are important to retain.

According to Lau et al. [3], components can be divided into
2 main classes, 1) objects, as in OO languages; 2) architectural
units, that together compose a software architecture. According
to the authors, there are no standard criteria for what consti-
tutes a component model. Components syntax, is the language
used to component definition and which may be different
from implementation language. Typically the component con-
tainers and runtime environments are general purpose server
computers. In this case we are interested in a particular kind
of architecture in which a centralized general purpose server
holds the component repository and the runtime environment
is contained in physically distributed embedded systems. The
taxonomy that Lau et al. [3] work defines will be used to
describe the results found in the systematic mapping study.
The authors conclude that a theory that supports component
model process in the whole life-cycle does not exist and that a
perfect component model should allow composition at design
and runtime phases. A component should be deployed along
with a complete information of its provided and required
interfaces [2]. To enable reuse and interconnection of com-
ponents, component producers and consumers must agree on
a set of interfaces before the components are designed. These
agreements can lead to standardized interfaces.

The authors of [21] present a survey of component frame-
works for embedded systems, they point out two main diffi-
culties in the development of component systems. The authors
also present the evaluation criteria for a real-time component
model for embedded systems and compare the frameworks pre-
sented against the given criteria. Component frameworks for
industrial domain are also presented: THINK [24], MIND [25]
(based in THINK) and SOFA HI [26]. The classification

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-646-0

INTELLI 2018 : The Seventh International Conference on Intelligent Systems and Applications

TABLE VII. TYPE OF RESEARCH AND CONTRIBUTION CLASSIFICATION

Contribution Facet
Metric Tool Model Method Process

[12, 9, 10, 11] [12, 10, 11] [12, 9, 11, 13, 17] [10, 13, 16, 19]
Research Facet

Evaluation
Research

Validation
Research

Philosophical
Paper

Experience
Research

Opinion
Paper

Solution
Proposal

[12, 13, 17] [9, 10, 13] [11, 16] [12, 9, 10, 11, 16, 19] [12, 9, 10, 13, 17]

criteria and review of the frameworks are very enlightening
in the sense that reading this work provides a great deal of
insight into component frameworks from various perspectives
of application.

Authors in [13] consider component based development as
a key promising technology in embedded research domain.
Here the authors point out the differences that make com-
ponent model solutions for general purpose computers not
viable to embedded systems. A series of component models
for embedded systems in industry (both based in software
engineering and control theory best practices) are pointed out.
From our experience in recent European projects, industrial
component models need to look into disciplines, such as IIoT
and machine learning. Beyond control, embedded systems of
today smart factories must analyse data, communicate with
vendor independent hardware (sensors, machines, actuators,
cloud systems and HMI devices) and take actions.

Rubus [12] is a component model for embedded systems.
This work regards industrial requirements that were elicited
considering mixed timing and resource constrained require-
ments. The components in this solution also have a set of
modes and/or a set of states that allows the components to
execute distinct code for different system states.

Authors in [8] present a good list of reasons that motivates
a component model specific for field devices. A case study
in which a single board computer containing the PECOS
solution and controlling a motor speed was developed in
their work. This involved a component for representing a
speed sensor and others to encapsulate control algorithms that
were specifically developed for this case. The board had both
web-access protocols (HTTP over TCP/IP) and an interface
for an industrial protocol(ModBus). This solution show how
components can be passive, in the sense that they are invoked
by a scheduler or other components; or they can be active,
own a thread to process asynchronous events or perform long
computations in background.

V. CONCLUSION

To draw more realistic conclusions commercial and other
academic and non-academic solutions, which were of our
knowledge, but not found during the search phase, should be
considered in the evaluation and mapping. Some of them are
Matlab/Simulink [27], Node-RED [28], Scade [29], OSGi [30]
and 4DIAC [31]. In addition, to make the study reproducible,
it is important to mention that intuitive findings (such as when
analysing papers and consulting other informal search engines
and databases) were not included.

Some interesting conclusions can be taken from the design
considerations over time in the graph of Figure 3. There
are only two papers considering security issues, the second
one [5] is about a component model designed for cyber-
physical systems, in which security is a hot-topic. In the same

classification line, real-time considerations are shown to prevail
over the years. This finding can somewhat confirm that this is
a hard subject to tackle in component architectures. Intelligent
reasoning is an emergent topic of nowadays, we decided to
include that design consideration in the classification scheme
of Table VI, exactly to make readers perceive that only in most
recent paper of interest [5] it was addressed. This also could
mean that security and artificial intelligence are open topics
of research in the software engineering component models
domain. As we have seen, there are multiple works using
IEC 61499, it seems to be the de facto standard for com-
ponent syntax and semantics in industrial automation. Other
concerns that seems to prevail are the communication, design
and portability of components. Last but not least, apart from
commercial and other non-academic solutions, it seems that
this topic is not evolving in the recent years. This can also be
a signal that the emergent software engineering methodologies
for industrial automation [6] are capturing a lot of attention
from the academic community.

REFERENCES

[1] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson,
“Systematic mapping studies in software engineering.”
in EASE, vol. 8, 2008, pp. 68–77.

[2] B. Councill and G. T. Heineman, “Definition of a soft-
ware component and its elements,” Component-based
software engineering: putting the pieces together, 2001,
pp. 5–19.

[3] K.-K. Lau and Z. Wang, “Software component models,”
IEEE Transactions on software engineering, vol. 33,
no. 10, 2007, pp. 709–724.

[4] C. Maga, N. Jazdi, and P. Göhner, “Reusable models
in industrial automation: experiences in defining appro-
priate levels of granularity,” IFAC Proceedings Volumes,
vol. 44, no. 1, 2011, pp. 9145–9150.

[5] F. e. a. Fouquet, “A dynamic component model for cyber
physical systems,” in Proceedings of the 15th ACM
SIGSOFT symposium on Component Based Software
Engineering. ACM, 2012, pp. 135–144.

[6] V. Vyatkin, “Software engineering in industrial automa-
tion: State-of-the-art review,” IEEE Transactions on In-
dustrial Informatics, vol. 9, no. 3, 2013, pp. 1234–1249.

[7] RapidMiner, Inc. Rapidminer studio. Last
accessed 2018.05.04. [Online]. Available:
https://rapidminer.com/products/studio/

[8] T. Genßler, A. Christoph, M. Winter, O. Nierstrasz,
S. Ducasse, R. Wuyts, G. Arévalo, B. Schönhage,
P. Müller, and C. Stich, “Components for embedded
software: the pecos approach,” in Proceedings of the 2002
international conference on Compilers, architecture, and
synthesis for embedded systems. ACM, 2002, pp. 19–
26.

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-646-0

INTELLI 2018 : The Seventh International Conference on Intelligent Systems and Applications

[9] E. Farcas, C. Farcas, W. Pree, and J. Templ, “Transparent
distribution of real-time components based on logical
execution time,” in ACM SIGPLAN Notices, vol. 40,
no. 7. ACM, 2005, pp. 31–39.

[10] E. K. Jackson, E. Kang, M. Dahlweid, D. Seifert, and
T. Santen, “Components, platforms and possibilities: to-
wards generic automation for mda,” in Proceedings of
the tenth ACM international conference on Embedded
software. ACM, 2010, pp. 39–48.

[11] W. Roll, “Towards model-based and ccm-based appli-
cations for real-time systems,” in Object-Oriented Real-
Time Distributed Computing, 2003. Sixth IEEE Interna-
tional Symposium on. IEEE, 2003, pp. 75–82.

[12] K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg,
J. Lundback, and K.-L. Lundback, “The rubus component
model for resource constrained real-time systems,” in
2008 International Symposium on Industrial Embedded
Systems. IEEE, 2008, pp. 177–183.

[13] G. Doukas and K. Thramboulidis, “A real-time-linux-
based framework for model-driven engineering in control
and automation,” IEEE Transactions on Industrial Elec-
tronics, vol. 58, no. 3, 2011, pp. 914–924.

[14] V. Vyatkin, “Iec 61499 as enabler of distributed and intel-
ligent automation: State-of-the-art review,” IEEE Trans-
actions on Industrial Informatics, vol. 7, no. 4, 2011, pp.
768–781.

[15] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and
J. Zou, “Distributed real-time software for cyber–physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, 2012,
pp. 45–59.

[16] V. Tran, D.-B. Liu, and B. Hummel, “Component-based
systems development: challenges and lessons learned,”
in Software Technology and Engineering Practice, 1997.
Proceedings., Eighth IEEE International Workshop on
[incorporating Computer Aided Software Engineering].
IEEE, 1997, pp. 452–462.

[17] M. Khalgui, O. Mosbahi, Z. Li, and H.-M. Hanisch,
“Reconfigurable multiagent embedded control systems:
From modeling to implementation,” IEEE Transactions
on Computers, vol. 60, no. 4, 2011, pp. 538–551.

[18] M. Khalgui, E. Carpanzano, and H.-M. Hanisch, “An
optimised simulation of component-based embedded sys-
tems in manufacturing industry,” International Journal of
Simulation and Process Modelling, vol. 4, no. 2, 2008,
pp. 148–162.

[19] D. Domis and M. Trapp, “Integrating safety analyses and
component-based design,” in International Conference on
Computer Safety, Reliability, and Security. Springer,
2008, pp. 58–71.

[20] K.-K. Lau and Z. Wang, “A taxonomy of software
component models,” in 31st EUROMICRO Conference
on Software Engineering and Advanced Applications.
IEEE, 2005, pp. 88–95.

[21] P. Hošek, T. Pop, T. Bureš, P. Hnětynka, and M. Mal-
ohlava, “Comparison of component frameworks for real-
time embedded systems,” in International Symposium
on Component-Based Software Engineering. Springer,
2010, pp. 21–36.

[22] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R.
Chaudron, “A classification framework for software com-
ponent models,” IEEE Transactions on Software Engi-
neering, vol. 37, no. 5, 2011, pp. 593–615.

[23] H. J. Reekie and E. A. Lee, “Lightweight component
models for embedded systems,” in Published as Technical
Memorandum UCB ERL M02/30, Electronics Research
Laboratory, University of California at Berkeley. Cite-
seer, 2002.

[24] J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller,
“Think: A software framework for component-based op-
erating system kernels.” in USENIX Annual Technical
Conference, General Track, 2002, pp. 73–86.

[25] MINALOGIC. Mind: Assembly technol-
ogy for embedded software components.
Last accessed 2018.05.04. [Online]. Avail-
able: http://www.minalogic.com/en/minalogic/about-
minalogic-0

[26] M. e. a. Prochazka, “A component-oriented framework
for spacecraft on-board software,” in Proceedings of
DASIA. Citeseer, 2008.

[27] The MathWorks, Inc. Simulink - sim-
ulation and model-based design. Last
accessed 2018.06.14. [Online]. Available:
https://www.mathworks.com/products/simulink.html

[28] M. Blackstock and R. Lea, “Toward a distributed data
flow platform for the web of things (distributed node-
red),” in Proceedings of the 5th International Workshop
on Web of Things. ACM, 2014, pp. 34–39.

[29] Esterel Technologies SA - A wholly-owned subsidiary
of ANSYS, Inc. Scade suite - control software
design — esterel technologies. Last accessed
2018.06.14. [Online]. Available: http://www.esterel-
technologies.com/products/scade-suite/

[30] O. Alliance, “Osgi-the dynamic module system for java,”
2009.

[31] T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder,
A. Valentini, and A. Martel, “Framework for distributed
industrial automation and control (4diac),” in Industrial
Informatics, 2008. INDIN 2008. 6th IEEE International
Conference on. IEEE, 2008, pp. 283–288.

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-646-0

INTELLI 2018 : The Seventh International Conference on Intelligent Systems and Applications

