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Abstract—One of the main challenges towards a smart factory is
the automation of processes and inclusion of personnel experience
in those systems. One of these challenges is related to advances
in artificial intelligence that have already been proven to be
effective in solving real world problems in the last decade. The
problem addressed in this paper is finding the most suitable
machine parameters of a laser seam welding process. Once new
quality requirements are defined by the customer, normally, a
machine calibration phase is required in order to find the proper
parameters that yield the desired quality of the product. To
address this problem, first a modeling phase was performed to
create a suitable model using Artificial Neural Networks (ANNs)
that map process parameters onto the observed product quality,
and second, the Basin-Hopping search algorithm was used to find
the machine parameters needed to achieve a target quality. In
order to demonstrate the robustness of the presented approach,
three datasets were used that represent three different pairs of
materials used for welding in the same machine. The results
demonstrate that ANNs are a flexible and robust technique to be
used in industry for process modeling and the calibration phase
can be minimized.

Keywords–Process Modeling; Process Parameter Optimization;
Artificial Neural Networks; Smart Manufacturing; Machine Learn-
ing.

I. INTRODUCTION

The increasing number of product variations as a result of
Mass Production to Mass Customization paradigm shift [1] has
been leading to the necessity of knowing in detail the machine
process dynamics. This is due to the quick change between
product variations being produced in a small-lot fashion, or
to the introduction of new machines in the shop-floor. This
happens mainly because manufacturing companies are getting
closer and closer to the end-customer, allowing for customized
products composed of multiple options and combinations, and
consequently leading to a high number of product variations.
This forces the manufacturing companies to be much more
responsive to the market needs as a way to increase their
market share and create new competitive advantages. However,
in order to achieve this level of competitiveness, smarter
and innovative ways to explore equipment capabilities and
reconfiguration are required. Given the machine operations
heterogeneity and shorter production cycles, there is a demand
for new techniques that intelligently can operate machinery
according to new and diverse product requirements, and rapidly
respond and react to these requirement changes, ultimately
leading to the automation of the manufacturing process.

Normally, the operation of a certain machine is guided by

a set of process parameters that influence process quality that
dictate the final result of a certain product. In order to achieve
that, the correct process parameters need to be chosen that
would yield the correct process quality subject to a set of
process conditions. Hence, there is an implicit relation between
the influence of machine parameters in the final quality of
the product. This way, a good understanding of how process
parameters influence the process quality is peremptory for pro-
cess automation. Normally, the exploration of these relations
is made by a set of experiments by performing a Design
of Experiment (DoE) - Full Factorial Design or Fractional
Factorial Design - to know how of the process parameters
map into the process quality. From these experimental findings,
normally a dataset is built and machine learning techniques
can be used to build process models, which is a simplified
version of the real world dynamics - also known as surrogate
model. However, as referred before, for the selection of the
most suitable process parameters according to certain process
quality, this model is necessary but not sufficient. Additionally,
an optimization problem is normally formulated to explore the
machine parameter feature space that minimizes the distance
between the desired process quality and the ones yielded by
the process model.

Such an approach is being widely used as a way to perform
process optimization as presented in several works reported in
the literature. Some examples of such works are [2] and [3]
where they use an ANN to model the process using experi-
mental data, and use the concept of Inverse ANN to optimize,
using Nelder-Mead algorithm, the process parameters for COD
removal in the aqueous treatment of alazine and for energy
processes, correspondingly. Another example is presented in
[4] where the authors used an ANN to model a thermoplas-
tic joining process and use Genetic Algorithms to find the
most suitable process parameters for joining. Moreover, [5]
compared Symbolic Regression via Genetic Algorithms with
ANN on the modeling and optimization of a controlled drug
release of pharmaceutical formulation. For a more thorough
understanding of the subject, [6] presents a good review
of the High-Dimensional, Expensive (computationally) and
Black-box (HEB) problems, presenting multiple examples on
a variety of disciplines.

The rest of the paper is organized as follows. Section II
details the laser seam welding manufacturing process where
this research is focused. Sections III and IV explain how
the process modeling and process parameter optimization was
performed in this context, leading to Section V where the main
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TABLE I. PROCESS CONDITIONS, PROCESS PARAMETERS, PROCESS
QUALITY AND NUMBER OF EXPERIMENTS

PROCESS 1 PROCESS 2 PROCESS 3
UPPER THICKNESS 1.5 0.6 1.2
LOWER THICKNESS 1.5 1.2 1.5
P (KW) 4676.2±666.8 4408.3±742.1 4594.6±702.6
F (MM) -0.6±12.6 -0.3±14.0 -0.1±12.4
V (MM/S) 104.8±26.5 154.1±32.0 120.9±28.8
D (MM) 0.6±0.3 0.6±0.2 0.6±0.3
W (MM) 0.9±0.1 1.0±0.1 0.9±0.1
EXPERIMENTS 188 260 220

results are depicted and discussed. Finally, Section VI draws
some conclusions about the performed work.

II. LASER SEAM WELDING SCENARIO

To better understand the presented scenario of process
parameter optimization, a description of the process will be
given. The laser seam welding process is composed of laser
head mounted in a robotic arm with the goal of welding two
metal sheets by issuing radiation from the laser head to a local
area where the materials need to be joined. Thus, it creates
a melting zone around the laser focus in both sheets, which
solidifies once the the laser beam is moved through the desired
welding area. This produces a continuous welding seam while
the beam is moved along the overlapping sheets at a controlled
speed. In this particular scenario, the process parameters that
can be changed are described by 3 independent variables:
Laser Head Power (P); Focal Distance (F) from the surface
and Robotic Arm Velocity (V). The observed process quality
is described by the Weld Width (W) and Penetration Depth
(D) of the welded area. For this work, 3 different datasets
are used representing 3 different welding processes in the
same machine, where different pairs of materials with different
properties and thicknesses were used. These pairs are namely
DC04-HC380LA (Process 1), HC260LA-HC420LA (Process
2) and HC420LA-HC380LA (Process 3). Table I presents a
summary of the 3 datasets used. If the influence of process
parameters over process objectives is explicit in a dataset,
machine learning techniques can be used to model this relation,
building up a process model.

On top of this information, the process conditions define
in which context the process model is valid. For example, if
the a process model is trained using the process parameters
and quality of two metal sheets, both with 1.5mm of thickness
as in Process 1, such a process model becomes obsolete if
these thicknesses change, mainly because the relation between
process parameters and quality also change. In this context,
different thicknesses represent different product variations. As
a consequence of that, if a new product variation is introduced
in the manufacturing process, this process parameter and qual-
ity relation needs to be discovered and detailed as a dataset,
so the proper techniques can be used for Process Parameter
Optimization. If one wants to explore the relation between
already known processes and the conditions that describe the
new unseen processes, different machine learning techniques
must be applied. Transfer Learning is an emerging research
area that is yielding good results in multiple domains, and
can be applied to solve the presented problem of learning
a new process of a new product variation. In the recent
years, the Hyper-Model approach is also being applied to

the manufacturing context, which is named as Hyper-Process
Modeling [7], to deal with such an issue. However, the details
of how these techniques operate are out of the scope of this
paper. In the next sections we will present the approach for
modeling and optimization in the presented scenario of laser
seam welding.

III. PROCESS MODELING

Since we are modeling a predictor for continuous variables,
the presented problem is classified as regression. Hence, the
well known Multi-Layer Perceptron (MLP) was used to model
an ANN to map machine parameters onto the observed quality
data for the laser seam welding process. The concept of
artificial neuron is a generalization and simplification of the
biological neuron, which is nothing more than a mathematical
representation of information processing [8]. This way, the
same principle observed in biological systems is then used
in the concept of ANNs, where multiple layers of neurons
are stacked and connected to perform pattern recognition and
predictions. This results in feedforward ANN that proved
already of great practical value in solving difficult and specific
real life problems.

As its name indicates, for the MLP there are multiple layers
of fully connected neurons, meaning that all the neurons of a
layer are connected to each neuron of the subsequent layer.
These connections are often called weights and dictate how
much significance a neuron has to one another. The first layer
is called the input layer, the last layer is called output layer,
and the remaining in between are called hidden layers. This
means that we should have at least three layers to have an
MLP, and multiple topologies since these networks can grow
by number of hidden layers and number of neurons by hidden
layer. Normally, the input and output layers are fixed and
correspond to the number of features used for the prediction
(independent variables) and number of features that compose
the prediction (dependent variables). Based on this, the input
of each neuron is composed by the sum of the output of
M neurons from the precedent layer and the corresponding
weight, and is represented as follows:

aj =

D∑
i=0

w
(n)
ji xi (1)

where j is the corresponding layer, D is the number
neurons connected to the subsequent layer j plus 1 considering
the bias, w is the weight of the corresponding neuron, n is the
current layer and finally x is the output of the corresponding
neuron. The values of the variable w are called the model
parameters. Based on this, the input of a neuron in a subsequent
layer can be calculated based on each neuron output (x) of
the current and its influence (w). However, this is simply a
linear transformation of data, and no nonlinear dynamics of the
system can be grasped. Hence, the calculated input normally
is transformed using a nonlinear activation function h(.). This
dictates the final form of a neuron output based on the neurons
in the previous layer:

zj = h(aj) (2)

Normally, the chosen nonlinear functions are sigmoid or
hyperbolic tangent.
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Based on this, we have trained our ANN with Adaptive
Subgradient Methods for weight optimization [9]. P, F and V
specify the inputs feature space X and D and W define the
output feature space Y , leading to 3 neurons for the input
layer and 3 neurons for the output layer. All the neurons from
both input and output layers have a linear activation function,
while in the hidden layers the sigmoid activation function
was used. The number of hidden layers and neurons was
obtained experimentally through a trial and error process of all
combination of number of layers L = {2, 3} and number of
neurons per layer M = {4, 6, 8, 10}. An adaptive learning rate
was used starting at 0.5 and decreased once two consecutive
epochs fail to decrease the training loss by at least 1e-8, or
fail to increase validation score by the same value. For the
purposes of training, the input values were normalized between
0 and 1. All the network topologies assessed are depicted in
Table II together with the MSE and R2 to evaluate, which
one should be used in order to minimize the overfitting effect.
As for the training process, a 5-fold Cross-Validation was
used for each topology, meaning that 80% of the data was
used for the training set, and the remaining was kept aside
to assess the generalization capability of the networks. In the
training routine of the ANN, the number of epochs was set to
30000, and 10% of the data was used as a validation set during
training. After the training process, the network was evaluated
in the test set.

Instead of the usual Early Stopping where the training is
stopped when the error of the validation set stops decreasing
representing overfitting and loss of generality, a Model Check-
point technique was used. The reason behind not using the
Early Stopping lies in the difficulty of specifying a reasonable
patience value - number of epochs that the method should
wait to stop training once the validation error stops decreasing
[10]. On one hand, if the value of patience is set too low, the
training might stop before the network converges to a suitable
parameter solution, and on the other hand, if the patience is
too high, the validation error might increase quickly and model
generalization is lost. Both cases depict a situation that we
consider not fair to compare networks in terms of performance.
The Model Checkpoint just keeps track of the best parameter
set regarding the validation error and once the network is
trained, the best parameters are returned. This way, we consider
this approach to be the most fair for network comparability.
However, the main drawback of such an approach is longer
periods for training the network due to constant storage and
comparability of the best parameters regarding the current
parameter set of the ANN. If the cost per minute for training
is not a constraint, we strongly encourage to use such an
approach.

As main training results, and as can be seen from Table II,
for process DC04-HC380LA the best topology regarding the
minimization of MSE is 6-6-6, not considering the network
input and output layers, where the lower MSE is 0.0086 and
R2 of 0.918. This means that the network will have a total of 5
layers, being 2 the input and output layers, together with these
3 hidden layers. As for the HC260LA-HC420LA process, the
best topology is 10-10 where the lowest MSE is 0.0063 and a
R2 of 0.926. Finally, for the last process HC420LA-HC380LA
the minimum MSE found was 0.0084 for a topology of 10-
10-10, leading to a R2 of 0.916. Once found these topologies,
we need to finalize the models so they can be ready for the

TABLE II. ANN TOPOLOGY ASSESSMENT IN ORDER TO FIND THE MOST
SUITABLE MODEL FOR EACH PROCESS.

Process ANN
Topology MSE R2

DC04 - HC380LA

[4,4] 0.0120 0.883
[6,6] 0.0091 0.913
[8,8] 0.0100 0.898
[10,10] 0.0110 0.897
[4,4,4] 0.0100 0.904
[6,6,6] 0.0086 0.918
[8,8,8] 0.0097 0.908
[10,10,10] 0.0093 0.910

HC260LA - HC420LA

[4,4] 0.0065 0.922
[6,6] 0.0065 0.923
[8,8] 0.0063 0.926
[10,10] 0.0063 0.926
[4,4,4] 0.0070 0.916
[6,6,6] 0.0070 0.919
[8,8,8] 0.0065 0.924
[10,10,10] 0.0065 0.924

HC420LA - HC380LA

[4,4] 0.0087 0.912
[6,6] 0.0088 0.912
[8,8] 0.0088 0.913
[10,10] 0.0092 0.909
[4,4,4] 0.0085 0.914
[6,6,6] 0.0085 0.915
[8,8,8] 0.0086 0.916
[10,10,10] 0.0084 0.916

following optimization step. For this case, the whole dataset
was used to train a ANN with the topology that minimizes the
MSE on the test set on 5-fold cross validation, and therefore
is the topology that maximizes the generalization of the ANN.

In order to better evaluate the generalization of the trained
ANNs, Figure 1 presents the MSE prediction histograms for all
the presented welding processes. As can be seen, most of the
samples are between the range of 0 and 0.02, being the most
of them around 0. Thus, this supports the presented results
in Table II where a good performance was achieved with the
ANN training using the real datasets provided.

IV. PROCESS OPTIMIZATION

As the main purpose of training such models is to perform
process parameter optimization, we will now assess the per-
formance of the model by providing a set of process quality
values from the dataset, and by using optimization algorithms,
the best process parameters should be found. This optimization
process simulates what could happen in a real scenario when a
shop-floor operator needs to know the most suitable machine
parameterization in order to meet the customer specifications.
In this context, the process quality parameters defined by the
customer are the weld width and depth yielding more robust
or fragile welds in the final product. Different customers might
have different requirements depending on the product applica-
tion. One might only want to join metal sheets for aesthetics,
where not a strong joining is required when compared with
a car chassis that should be as strong and robust as possible
in the automotive industry. Therefore, based on these quality
values, the process parameter optimization should return the
parameters to be used in the machine.

More concretely, the process models provide a prediction
from a certain x (process parameters) finding the most suitable
ŷ (process quality). Contrary to this, in the process parameter
optimization, the idea is to provide the desired process quality
y in order to find the best process parameterization x̂. This
means that we can specify the customer requirements and
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Figure 1. MSE Prediction histograms for the three ANNs trained for each of the processes.

obtain the optimal, or near optimal, machine parameterization.
Based on this, a set of optimization routines was made using
the trained models to assess how close the parameterization
found is from the ground truth. For this test, the whole dataset
was used to assess the robustness of the model in the wider
range of shop-floor conditions.

For the process parameter optimization the Basin-Hopping
algorithm [11] was used to find the most suitable machine
parameters by minimizing the difference between the target
y and optimized process quality ŷ. The Basin-Hopping (BH)
algorithm was first introduced by Wales and Doye in 1997 to
study the lowest-energy structures of Lennard–Jones clusters
consisting of up to 110 atoms, and is based on the Monte-
Carlo algorithm and gradient-based local search. It is therefore
a stochastic algorithm aiming to find the global minimum of
a certain function (in this case a loss function) and is mainly
based on the following steps: 1) Random perturbation of the
coordinates to be tested in the provided function; 2) Step
towards the local minimization of the solution; 3) Reject or
Accept the proposed coordinates based on the minimization
step. As for the acceptance test, the Metropolis criterion is
used from the Monte-Carlo application. For this algorithm
an initial Temperature of 20 was set to cause large jumps
in the loss function value, a number of 20000 iterations for
the optimization process and stop after 1000 iterations of no
solution improvement. As for the optimization process, the
process models are used to iteratively assess a set of pro-
cess quality values according to a certain process parameters
produced by the optimization algorithm. Since these process
models have used a normalized dataset between 0 and 1, we
have constrained the solution search by the algorithm also
between 0 and 1. As an initial guess of a solution, we have
set the value to 0 for each of the parameters to be optimized.

Regarding the problem formulation, we aim to minimize
the difference between the real process quality (here called
target) and the solution generated by the algorithm. For that
purpose, the loss function used was simply the MSE to
assess these differences. Therefore, 3 defines the minimization
problem:

x̂ = argmin
x

L(ŷ, y)

= argmin
x

n∑
i=1

(yi − ŷi)
2

(3)

where x̂ is the machine parameterization, y is the target
process quality to be achieved, x is the tested input and ŷ is
the process quality predicted by the process model trained with
experimental data.

V. RESULTS

In the present section, the best optimizations will be
depicted as a main result of this paper. However, we must
first clarify what is a good or bad optimization process in this
context. Intuitively, one might think that a good optimization
process is just to find a certain process parameterization that
yields the closest process quality considering a defined target.
The objective is to minimize a loss function that calculates the
distance between what the model produces and the provided
target. Hence, as this distance is close to 0, the best. However,
in practice, this might not be useful if the difference from
the ground truth of process parameters x is too far from the
solution found from the algorithm x̂.

Hence, Table III depicts the best solutions that minimize
the distance between the target quality and the optimized one
for all three processes, along with the process parameters to be
suggested to the operator in a real application. Additionally,
both MSE for process parameters found and resulting process
quality are depicted. As can be seen, the obtained MSE for the
process quality is very low, meaning that the algorithm used
for the optimization process is very effective in finding the
global optimum solution. Complementarily, Figure 2 presents
the histogram for each process with number of samples in
relation to the MSE between target and optimized quality. It
can be seen that most of the MSE samples are near the value
0 regarding the total samples present in each dataset of the 3
processes.

However, as previously discussed, this is not very useful if
the solution minimizes the distance from the target but the real
parameterization is not close to the real application, or if it is
even out of the parameterization bounds. This can be observed
in Table III in some parameterizations suggested on Process 2
(Opt.), which are not very close to the real parameterization
used. Thus, we need to ensure that this is an exception and
not the rule.

In order to correctly evaluate the process parameter op-
timization using the trained process models, not only this
distance from the target should be considered, but also the
difference between process parameters and the ground truth.
Therefore, Table IV presents the 3 best solutions that minimize
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Figure 2. Histogram depicting the number of samples in relation to the MSE for the target and optimized quality.

TABLE III. PROCESS PARAMETER OPTIMIZATION FOR THE BEST 3
SOLUTIONS IN THE TEST SET THAT MINIMIZES THE DISTANCE BETWEEN

OPTIMIZED AND REAL QUALITY.

Process Case Parameterization Quality MSE
Param.

MSE
QualityP F V Depth Width

Process 1

Real 3500 -10 100 0.14 0.67 0.362 1.828e-7Opt. 5500 -20 127.18 0.14 0.67
Real 5000 -10 80 1.1 1.05 0.079 5.99e-7Opt. 5100 8.97 61.72 1.09 1.048
Real 5000 5 160 0.15 0.72 0.021 6.003e-7Opt. 5385 11.45 153.46 0.149 0.718

Process 2

Real 3500 -20 80 0.67 1.25 0.0711 3.848e-10Opt. 4264 -19.96 124.13 0.67 1.25
Real 4500 -20 130 0.65 1.2 0.016 3.911e-10Opt. 4934 -20 138.86 0.65 1.2
Real 4000 15 170 0.21 0.71 0.414 1.495e-9Opt. 5333 -18.79 220 0.21 0.709

Process 3

Real 4000 -15 90 0.87 1.07 0.023 2.11e-9Opt. 3500 -15.41 75.85 0.869 1.069
Real 4500 15 90 0.97 1.2 0.345 1.058e-7Opt. 3500 -20 65.13 0.97 1.199
Real 4500 15 120 0.47 1.12 0.281 1.968e-7Opt. 5500 -15.38 142.98 0.469 1.12

the MSE for process parameterization, where a more balanced
trade-off between MSEs is achieved. We can see that the
presented solutions are near in both process parameters and
process quality, being the ideal case in a practical application
where a shop-floor operator can truly rely on what the system
advises him to do. Hence, in order to understand if these results
are consistent throughout the entire dataset, Figure 3 depicts
the histogram for each process with the MSE between desired
x and optimized process parameters x̂. It can be seen that the
majority of the samples are around 0, meaning that the process
model, together with the optimization technique, are capable
of indicating a suitable machine parameterization according to
a given process quality. Although, there are some samples with
higher errors, also revealing that the process model, for a very
small amount of data points is not capable of providing a good
indication of machine parameters.

VI. CONCLUSION

As discussed in the present paper, the process automa-
tion is one of the key challenges to be addressed in this
fourth industrial revolution, and can be tackled using machine
learning. Hence, we will conclude this paper by wrapping up
with the pros and cons related with the approach of process
parameter optimization and also some future work and research
directions.

As for the pros, the first and most obvious is the automation
of finding the most suitable machine parameters of a certain

TABLE IV. PROCESS PARAMETER OPTIMIZATION FOR THE BEST 3
SOLUTIONS IN THE TEST SET THAT MINIMIZES THE DISTANCE BETWEEN

OPTIMIZED AND REAL PARAMETERIZATION.

Process Case Parameterization Quality MSE
Param.

MSE
QualityP F V Depth Width

Process 1

Real 3500 -10 80 0.69 1.01 9.688e-5 1.349e-5Opt. 3500 -9.77 82.73 0.689 1.004
Real 5500 20 120 0.12 0.73 1.655e-4 2.405e-4Opt. 5500 20 123.78 0.138 0.718
Real 4500 5 120 0.44 0.94 4.657e-4 1.613e-4Opt. 4437 4.36 122.28 0.422 0.937

Process 2

Real 3500 -20 100 0.57 1.2 3.285e-5 1.743e-4Opt. 3500 -19.99 101.68 0.573 1.181
Real 5500 10 220 0.48 0.86 4.501e-5 4.66e-4Opt. 5500 10.46 220 0.46 0.883
Real 3500 -20 120 0.41 1.07 8.348e-5 3.267e-4Opt. 3500 -20 122.69 0.43 1.05

Process 3

Real 3500 20 60 0.93 1.21 1.55e-6 2.095e-5Opt. 3500 20 59.63 0.934 1.215
Real 3500 -20 70 0.76 1.15 3.778e-6 3.86e-6Opt. 3500 -20 70.56 0.762 1.148
Real 3500 20 90 0.23 0.64 2.075e-5 3.883e-5Opt. 3500 20 91.34 0.222 0.645

process model, or at least give a good initial guess for the
machine calibration phase. Moreover, we must also highlight
the suitability of ANNs in the context of process modeling,
referring its flexibility, robustness and versatility when com-
pared to the difficult process of analytical modeling by experts
defining a set of equations that define the process dynamics.
Additionally, we should also refer that search algorithms for
global optimum are good candidates to address the problem
of process parameter optimization and quickly find a close
parameterization to the one used in the machine. All together,
these factors are of great importance for manufacturing com-
panies that are willing to explore the benefits of key enabling
technologies associated with Industry 4.0.

Regarding the cons of such approach, we should refer to the
constraint associated with most machine learning techniques
of data availability. In order to train a model that should
perform well in real world applications, a fair amount of data
is required, which is often very difficult in manufacturing
systems since these data come from machine experiments
and require high material and personnel costs. Moreover, a
good understanding of the machine learning algorithms to be
used is also required to achieve fair results, otherwise results
might not be the most satisfactory for real world scenarios
and or even incorrect. Related with this topic, we should
highlight approaches to address overfitting, where k-fold cross
validation is one of the most widely used approaches when
finding hyperparameters for the model, where a wide range
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Figure 3. Histogram depicting the number of samples in relation to the MSE for the desired and optimized parameters.

of values need to be tested. Also, one should be aware of
model finalization where the model with the parameters that
maximize generalization should be trained with the whole
dataset, and not only with training set. This is one of the
most critical points that should be understood once machine
learning models are used in real life applications and not only
in scientific papers. Ultimately, as these techniques might tend
to increase the complexity once optimizing all its parameters,
it is also very important to have experience dealing with such
techniques.

As for the future work, there are at least two challenges
that we should discuss in the context of manufacturing systems.
One of them is the topic of Transfer Learning in manufacturing
systems [12] [13]. As one of the presented cons is the amount
of data required for modeling, this issue can be tackled
with Transfer Learning where the main goal is to improve
the learning process of a new task using little amount of
data, based on already existing models. In the context of
manufacturing systems, this could represent training a process
model with a small amount of experiments of a new machine
or a new process in an already deployed machine.

Last, but not least, is the topic of Adaptive Learning where
the process model is updated during time. It is known that
unforeseen events and the inherent degradation of machine
components forces to maintenance activities and replacement
for new parts that are no longer the same as the initial state of
the machine. Complementary Learning System (CLS) theory
[14] has brought new promising methods that address the
update of a machine learning algorithm as a stream of data
is available. The CLS proposed the organization of a learning
system in two different parts: 1) Hippocampus as a quick
learner of new information with volatile properties and seen as
short term memory, and 2) Neocortex, as a high level structural
learner with a long term memory [15]. This architecture, which
has its roots in neuroscience, have inspired a set of new
works that recently tackle the problem of adaptive learning
or continuous learning for machine learning systems.

As a conclusion, there are very interesting opportunities
for machine learning to enter into manufacturing systems, and
help to improve the efficiency and effectiveness of processes
through the use of techniques like the ones presented in this
work, and many others that still lack the validation in industry.
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