
Roadmap-based Planning in Human-Robot Collaboration Environments

Zahid Iqbal, João Reis, Gil Gonçalves

SYSTEC, Research Center for Systems and Technologies
Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Email: {zahid,jpcreis,gil} @fe.up.pt

Abstract—Enabling humans and robots to work together allows
for cost savings and workplace efficiency. The robot must be
equipped to perceive humans, and redirect its actions for co-
operative tasks or under hazardous situations. Thus, dynamic
motion planning appears as an essential exercise. We use dynamic
roadmaps for online motion planning in changing environments
combined with a voxel-based grid. The presented approach can
answer path planning queries efficiently. Visualized simulation
is an important technique for rapid verification of algorithms
or prototypes. We present an architecture that implements a
simulation of the robotic manipulator using the Robot Operating
System (ROS) and MoveIt.

Keywords–robotics technology, intelligent robotics, sampling-
based planning, perception and sensing, dynamic environments,
voxel-based grid.

I. INTRODUCTION

Today, there are opportunities for automation in many in-
dustries, such as automotive assembly lines, material transport,
space exploration. Frequently, robots support this automation,
improving thus the production volumes, bringing down costs,
and improving the precision and accuracy of the production
process. Additionally, as robots capabilities increase, they
can take on jobs that might be impossible or dangerous for
humans [1]. The ability to calculate and execute motion plans
is central to the operation of these robots. Fundamental motion
planning problem is to compute a set of inputs to the robot
that drive it from a start to a goal position while avoiding
collisions with the environment obstacles. Early works on
robot motion planning assumed a robot’s world to be known
and fixed at the time of planning. During the execution
of the plan, however, the robot might discover a deviation
from the assumed world state, such as a human entering its
operational area. Typical industrial assembly environments,
that confined robots to separate operation spaces isolated from
human workers, would bring robot operation to a halt under
such scenario [2], safety being the primary concern. In other
cases, the robot must replan its trajectory from scratch, which
might be computationally intensive for real-time operation.

Random sampling is an important technique employed by
popular planning algorithms such as Probabilistic Roadmaps
(PRM) [3], Rapidly Exploring Random Trees (RRT) [4] to
build network of feasible paths. For static environments, these
methods can efficiently make and execute plans, even when
there are obstacles. With some of these algorithms, such as
PRM that are multi-query, we can delegate roadmap building
as an offline exercise and run multiple queries online on
the available roadmap. However, we can realize a better

potential of the robots by operating them in unstructured
open environments that change dynamically. A robot would
only possess partial information of surroundings before it
commences operation; obstacles could appear or go away at
any time during its operation. This situation poses several
challenges for motion planning [5]. With efficient planning, we
can leverage the benefits of cooperation by assigning specific
production tasks to robot and humans, as well as make the
robot more autonomous. Specifically, it requires the ability to
account for new obstacles or changes in the environment and
continue to plan on the fly and quickly with some accuracy.

This work is an incremental exercise concerning building
a collabarative planning solution. We define collaboration as
working as a team to reach a common goal. In the collaborative
environment, physical contact between human and robot may
be inevitable and indeed desirable, enabling the robot to learn
from experience. To achieve accurate and efficient collabo-
ration, both robot and human need to perceive each other’s
intentions and must know their task set. With that knowledge,
the robot can plan and adapt its actions accordingly, ultimately
leading to the achievement of the mutual objective, all the
while assuring safety. A typical scenario could be the robot
as a work assistant that can hand in the next tool piece to the
human. Robot predicts that this piece is the one needed for the
person to continue its job and is shelved and outside human’s
access. Collaboration scenario primarily comprises a dynamic
environment, and any motion planning strategy that tackles the
dynamic obstacles must allow dealing with the collaboration
episodes accordingly. To this end, different approaches exist,
such as Incremental Path Planning [6] and Experienced based
Motion Planning (EBMP) [7]. The later employs a database of
previous searches and recalls an experience from the database
when it encounters a similar planning exercise. This may
involve repairing the previous plan and reduce the time of the
current query as opposed to planning from scratch. Likewise,
incremental search methods use previous search results to solve
similar path planning problems faster.

Our work concerns path planning with obstacle avoidance
in dynamic collaboration scenarios. For efficient collaboration,
an intelligent monitoring system is inevitable [8, 9]. The
present work uses the monitoring solution in [8] and combines
with a PRM based approach, dynamic roadmaps. We organize
the work presented here in two distinct parts. The first part
explains dynamic motion planning for robots and reviews some
strategies that address dynamic environments (Section II). In
the second part (Section IV), we present the tools that allow
developing motion planning algorithms on a simulated model

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

of the robot. In Section III, we describe how we integrate
the monitoring solution with planning algorithm for efficient
motion planning. In Section V, we present the preliminary path
planning architecture using the popular tool support and based
on a voxelized grid. Finally, in Section VI, we conclude the
paper and present some future work directions.

II. MOTION PLANNING IN DYNAMIC AND UNKNOWN
ENVIRONEMNTS

The work presented here concerns industrial robotic arms
or so-called manipulators. In particular, we do not consider
mobile robots; proposed ideas will be applicable to trajectory
planning of a Universal Robot with a lift ability of 5 kg
(UR5) [10]. Mounted on a stationary platform, its links with
revolute joints and end-effector can move with a certain degree
of freedom.

A. Definitions
Fundamental to the path planning problem is the concept

of configuration and configuration space. The configuration
of a robot is a set of independent parameters that char-
acterize the position of every point in the object whereas
configuration space (denoted C) is the space of all possible
configurations [11]. The dimension of the configuration space
is determined by the degrees of freedom of the robot. A
configuration q is a vector of robot joint values. For instance, a
robotic arm with six revolute joints has six degrees of freedom
and its configuration is denoted q = {q1, q2, q3, q4, q5, q6}
where qi denotes ith joint angle. The configuration space C
is a space of these configurations, i.e., for 6 dimensions, we
have C = R6. Any path finding strategy places configurations
in C into two categories, those that are free Cfree, and others
that are in collision Cforb, i.e., occupied by obstacles. A
configuration q ∈ Cfree if the robot placed at q does not
intersect with workspace obstacles. A path is a continuous
sequence of configurations in Cfree connecting initial and goal
configurations. For dynamic scenarios, a notion of time is
incorporated in C, and resulting space may be termed as state-
time space [12]. It consists of pair (x, t) where x ∈ C and t
denotes the time. A path obeying dynamic constraints is termed
as trajectory.

B. PRM based approaches for dynamic environments
PRM approach, in the planning phase, randomly samples

configurations in the free space and builds a roadmap, i.e.,
Cfree. In the query phase, it finds paths in the roadmap to
guide robot from start to the goal. Dynamic obstacles in the
environment can invalidate parts of the previously constructed
roadmap in what concerns free space. Therefore, we need
methods to update the roadmap taking into consideration the
current state.

The works in [13] and [12] use PRM-based approach to
handle dynamic scenarios. The work in [12] extends PRM
by augmenting configuration space with a dimension of time.
The preprocessing step is like regular PRM. Online, checking
for static obstacles is not required for collision testing. It
incorporates the notion of free interval, the maximum contin-
uous segment of time that a configuration (a roadmap node)
is collision-free. Arriving earliest in a free interval allows
reaching the goal faster. Implicitly, this approach builds a free
interval graph that corresponds to the roadmap built in the

t

x

τ

vpτ
(x, t)

(x+ vpt, t+ τ)

(x, t+ τ)

(x− vpt, t+ τ)

l

Figure 1. A state-time grid of a single roadmap arc [12].

preprocessing phase, i.e., each vertex in free interval graph
maps to one node in the roadmap. The approach builds a local
trajectory first, i.e. traversing a single arc between two roadmap
nodes, and then extends to the complete interval graph. Robot
movement velocity is given maximum vmax. The approach
interpolates motion along a single arc using a two-dimensional
state-time grid where distance travelled along the arc and time
are two dimensions. The state-time space is discretized by time
step τ and velocity value vp < vmax; l is the length of the arc.
From a given state (x, t), three states are reachable (Figure 1).

For an arc a with start state-time (xs, ts) and destination
state xd, the approach maintains a stack where initially (xs, ts)
is present. In a loop, it pops a stack element. If it is collision-
free and not visited before, it pushes the reachable grid points
in an order that favours movement towards the goal. The
algorithm runs until the stack is empty or goal state xd has
been reached. Backpointers and the visit status of each state are
maintained. So if a certain movement encounters an obstacle,
we move back to the next unexplored state on the stack. The
algorithm chooses a short time step τ for better accuracy of the
algorithm. For finding a global trajectory, the algorithm sends
probes corresponding to single arcs and evaluates a function,
f(p) = g(p)+h(p), to determine how promising a given probe
p is. g(p) is the cost so far and h(p) is the estimate until the
goal state. Assuming (xu, tu) to be the top state on the stack
for probe p, the trivial estimate for g(p) is tu. To estimate h(p),
it uses a roadmap distance function D(xu.g) from the current
state xu until the goal state g. This estimate could come from
running a simple Dijkstra’s algorithm on the roadmap before
the query phase, giving h(p) = D(xu, g)/vmax. The probe
with minimum f(p) value has the highest priority. For a start
state s, the algorithm initializes probes on all arcs starting
from s and puts them on the priority queue, from which it
examines probes one by one. If the local trajectory found by
a prob reaches the goal, we have a solution. Otherwise, it
starts probes on outgoing edges and continues. The algorithm
terminates either when it finds the goal node or if no probes
are remaining.

The work in [13] start their approach alike the [12], i.e.,
building the roadmap in the preprocessing phase, accounting
for static obstacles. In the query phase, at first, the approach
connects query nodes to the roadmap. Next, it divides roadmap
nodes into three categories, those that are reachable from the
start node, those that are reachable from goal node, and those
that are not reachable from query nodes. A first attempt to

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

find path labels some edges as blocked; edges that are not
collision-free due to dynamic obstacles. An essential element
of this approach is the connectivity extension in two ways,
from a query node to a node reachable from the other query
node, and from query nodes to the roadmap portion which is
not yet connected to query nodes. The approach searches for
a path with enhanced connectivity. When the approach cannot
retrieve path from the roadmap, it uses RRT-connect [14]
which incrementally builds two random trees one rooted at
the start node and the other rooted at the goal node, and
tries to find a path. Finally, it can create new nodes if the
existing roadmap does not allow any path. This method can
store the key positions of the moving obstacle in a database.
For subsequent edge labelling, it compares the current position
of an obstacle to the stored value. If it’s the same, the previous
exercise (collision testing, and pathfinding) is still valid, thus,
avoiding new effort. Since dynamic obstacles can move at any
time different positions, so, practically, there can be infinite
positions that must be stored. For efficient memory usage,
the approach stores only the last checked positions. However,
this approach is beneficial in certain situations; for example,
when moving obstacles are doors that could be closed or
open, then storing a few positions might save significant future
recalculations.

C. Experienced based motion planning
Experience-based approach to motion planning builds on

knowledge from past planning exercises, i.e., [7]. It maintains
a database of past experiences from which it can retrieve a
partial or complete solution to the current problem. Such an
approach may be particularly beneficial in situations where a
robot is supposed to be operational in a fixed environment for
long periods. In such a situation, the robot would frequently
encounter similar obstacles and environments. Thus, planning
from scratch is not desirable because of redundant computation
effort. Repairing an available solution, instead, is faster. The
approach maintains a sparse roadmap for efficient memory
usage. Further, for speed up, it delays the collision checking
until after it has found a candidate path. Later, it tests the
path for collisions and removes any invalid segments. When
the path gets broken, the search is commenced. In a post-
processing step, it smoothes repaired paths before sending
these to the robot. The approach discretizes the solution path
into an ordered set of vertices and incorporates it into the
experience roadmap. In the query phase, it follows the general
approach, connecting query nodes to the graph, if this is
successful, then A* algorithm can return the optimal path
between start and goal nodes. As stated, it checks for possible
collisions with environmental obstacles after it has found the
candidate path. For this case, invariant constraints do not lend
any recomputation. Moving obstacles, however, can appear and
invalidate path segments. For this case, a new A* search is
run to find the path. The approach to finding a path through
disconnected components is similar to that of [13].

D. Incremental path planning
Incremental search methods reuse recent solutions to speed

up searching for similar problems. Assuming that we have
incomplete information about the world, replanning occurs
from the current state until the goal whenever an obstacle
encounters. When we have to execute the next action in the

graph search

plan

execute

graph changes

update previous
search

yesno

Figure 2. General methodology of incremental path planning.

plan, we receive changes, if any, in the graph. This information
could come from different sensors outside of the robot, such
as laser scanners or RGB cameras. Using this information, we
update the previous map instead of replanning from scratch.
We continue to perform this loop until we reach the goal
(Figure 2).

In the following, we briefly discuss an incremental planning
algorithm D* [15].

1) D* algorithm: D* is an incremental search algorithm,
considered to be the dynamic version of A* algorithm [16]
since it permits edge costs to change as the algorithm runs.
The algorithm begins at the goal state donated G and works
its way back to the start state; on its way, it keeps on reiterating
and updating costs to reflect optimal paths. Each graph node
can be in one of the following states NEW, CLOSED, OPEN,
RAISE or LOWER. The OPEN list maintains nodes needing
expansion. The algorithm runs until the current robot state is
CLOSED. The algorithm maintains two cost estimates for each
node, namely path cost function h(G,X) and key function
k(G,X). Path cost function gives the current estimate of the
sum of arc costs from state X to goal state G, and key function
denotes the minimum of h(G,X) which we can regard as the
previous estimate of h(G,X). The algorithm sorts the OPEN
list according to nodes key values. When expanding a node on
the OPEN list, the key function allows changing the current
node state as RAISE or LOWER. When k(G,X) < h(G,X),
current estimate indicates an increased cost, so X state is
changed as RAISE, otherwise as LOWER. Next, it propagates
changes from expansion to the neighbours that are now placed
on the OPEN list and expanded in turn. Each node has a back
pointer which leads to the target. Algorithm reports a solution
path when the next node for expansion is the start node. We
follow back pointers from the start until the goal.

There have been different improvements to the original D*
such as D* Lite [17], and Focussed D* [18]. Focussed D* is an
informed incremental heuristic search algorithm that combines
ideas from A* and D*. D* Lite, though not directly based on
D*, implements similar ideas to path planning in unknown
environments as D*. With lower implementation overhead, it
yields better performance.

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

III. PROPOSED APPROACH

In this section, we describe the approach that makes use
of the voxel-based grid for motion planning. We envisage
using a roadmap based approach for its simplicity and ease
of development. This is an extension of previous work [19],
now addressing the dynamic environment.

A. Dynamic roadmap with voxel-based occupancy grid
A voxel represents a value on a regular grid in three-

dimensional space, useful for many applications such as Dy-
namic Roadmaps [20] to create a mapping from an area in
the workspace to states in C. The work in [8] presents a
monitoring approach that outputs a voxel grid. The voxel-based
grid renders the entire scene of the collaborative environment
as a grid composed of cubes with a given dimension, known
as voxels. We can describe the granularity of the grid with the
size of one side of the cube. The resolution can be set higher or
lower by choosing the dimension of the unit cube in the grid,
i.e., for a higher resolution, we choose a smaller size of the
voxel, thus corresponding to more voxels in the grid, and vice
versa. The resolution of the grid presents a tradeoff between
the accuracy of the planning queries and computation effort.
The monitoring solution can also label the workspace objects.
When voxels in the grid are labelled, we can identify, at first, if
an object in the collaborative environment occupies the voxel,
and secondly, which type of object, i.e., either a robotic part
itself, human, or an obstacle object. A labelled voxel-based
grid can efficiently solve planning queries, in particular, in the
presence of static obstacles. In the query phase, before the
search commences, occupied voxels would indicate Cforb and
the remaining nodes would make the Cfree.

In our system, we need an accurate mapping of workspace
objects from the voxel grid to the coordinates that planning
algorithms can work with. Monitoring solution considers the
origin (0, 0, 0) to be at the base-center of the robotic arm.
For the tools used in this work (section IV), every point on
the robotic arm, and in the workspace can be calculated in
reference to the planning-frame, which is the frame of the
”base-link” of the arm, and its origin is at position (0, 0, 0).
When we have a common reference point, and with some
additional information from the voxel grid such as dimensions
of individual voxels as well as of the hyper-cube that represents
the complete voxel grid, we can map the goal positions and
obstacle positions from the voxel grid into the planning so-
lution, which allows solving subsequent path-planning queries
efficiently. Figure 3 shows an example voxel grid with extreme-
points and dimensions identified.

However, for dynamic obstacles, we incorporate further
information, such as input from prediction algorithms dic-
tating the temporal occupancy status of voxels. Accounting
for dynamic scenarios, here we stipulate two possible ways
to handle it. We can have an additional dimension of time
to the voxel-based grid. And, we can associate a probability
of occupancy procc for any voxel c at any given time t, i.e.,
procc(c, t) ∈ [0, 1]. This input, might come from the perception
sensor, and aid in redirecting paths of the manipulator in the
presence of dynamic obstacles.

Secondly, we employ ideas from the reviewed approaches,
in particular, those based on random roadmaps in combination
with voxel-based grid for dynamic path planning of robotic
manipulator. Consider the roadmap R and the voxel-based

(100, -300, -200)

(500, 100, 200)

(400 cm, 100 voxels)

(400 cm, 100 voxels)

(400 cm, 100 voxels)

Figure 3. An example voxel grid.

grid G. The nodes in R are configurations qi in Cfree, and
cells of grid G are denoted c. For each c in G, we check
configurations qi representing a position of the end-effector
and that fall in c. With a large number of cells in G having
many such configurations, we can stop computing the roadmap
R, lending a uniform distribution of end-effector positions
over the workspace. An occupied c invalidates the respective
q in R. Obstacles appearing, disappearing, or changing their
positions represent dynamic scenarios. The grid G can inform
us when a cell gets occupied or becomes free. The scene can
update based on actions of an external agent, e.g., a human that
shares the workspace with the robot. Whenever one or more
objects occupy a cell, a reference counter keeps increasing
in respective node or edge in R, denoting invalid nodes. The
approach keeps renewing the state of some nodes or edges
as these become occupied or free. An RRT algorithm is used
when the path gets broken, and the algorithm cannot compute
the query.

IV. TOOL SUPPORT FOR DEVELOPING MOTION PLANNING
ALGORITHMS

In this section, we briefly describe the tools that we have
used to develop motion-planning solution.

A. Robot Operating System (ROS)
ROS [21] provides a framework to develop and test robot

software as well as to deploy such software to the real robots.
As the scope of the robots has significantly grown, a fully
functional code must contain software for hardware drivers,
perception algorithms, abstract reasoning, trajectory planning,
control and more. For any single user, it might not be possible
to cover all aspects of software development for a robot. For
the same reason, the final software architecture would incur
a significant integration effort. The main objective of ROS
is to manage the complexity of software development for
robots. It contains helpful tools and open software packages
for perception, navigation, transforms and simulations, allow-
ing rapid prototyping of software for experiments. Emulating
the motion of robots and the world in a virtual workspace
without physically depending on an actual robot saves cost
and time. ROS supports development in different programming
languages, mainly C++ and Python.

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

ROS master

node 2
subscriber

registration registration

Topic

publish subscribe

node 1
publisher

messages

roscore

ROS master Parameter server rosout

Figure 4. ROS core communication system and an example of nodes publish
& subscribe to topics.

Conceptually, the computation graph within ROS is the
peer-to-peer network of ROS processes that are processing
data together. roscore is the core of the system providing a
collection of nodes and programs. roscore contains three main
functional module suits, which are ROS Master, Parameter
Server and rosout logging node. ROS Master provides naming
and registration to nodes in the ROS system; it allows nodes
to find each other. A node is an executable unit of code
that implements a specific functionality, similar to a software
module in traditional usage. A typical system within ROS
comprises many nodes and is a graph where links represent
nodes communication. ROS has a publish-subscribe model of
communications. Nodes communicate with each other using
topics as communication channels. Nodes publish to a topic
to send messages and subscribe to it for receiving messages.
There can be multiple publishers and subscribers of a given
topic (Figure 4). The basic message types include boolean,
float, integer or string; users may use custom types as well.

B. URDF
Unified Robot Description Format (URDF) is an XML

format for describing a robot model in ROS. Different ROS
programs can interpret the URDF model of physical robot,
e.g., tools such as rviz that allows to visualize it. In the most
basic form, URDF describes the topology of the robot, listing
its joints and links, where a joint connects two links. Topology
makes a tree structure, where each link has precisely one
parent, but it can have multiple child nodes. The geometry
of the robot is represented through coordinate frames and
transforms between these frames. Transforms have a transla-
tion and rotation components; translation measured in meters
is specified in coordinate axes x, y and z whereas rotations
in radians along x, y and z-axis are known as roll, pitch
and yaw respectively. For ROS system to know about robot
model, a launch script loads URDF file to the parameter server.
The same script publishes joint state values. The kinematics
libraries within ROS can read joint states, and carry out

respective forward and inverse kinematics analysis to produce
the relative transforms. The model also allows specifying
visuals for robot parts using notations as a cylinder, sphere
or box, and colour values with material tags. More complex
information, such as collision information, inertia, joint and
velocity limits, can also be given here. Specific utilities, e.g.,
urdf parser can check for the validity of the URDF file.

C. MoveIt
MoveIt [22, 23] is a set of software packages with spe-

cific capabilities for mobile manipulation, such as kinematics,
motion planning and control, 3D perception and navigation.
MoveIt is integrated with standard ROS. It uses plugins for
most of its functionality; motion planning (Open Motion
Planning Library (OMPL) [24]), collision detection (default:
Fast Collision Library (FCL) [25], and kinematics (default:
OROCOS Kinematics and Dynamics Library (KDL) for for-
ward and inverse kinematics for generic arms.

1) MoveIt setup assistant (SA): has the objective to re-
duce the entry barrier for developing robot software. It can
automatically set up the task pipeline for producing an initial
configuration quickly. Robot model URDF (section IV-B) is a
prerequisite for MoveIt setup assistant. The configurations set
by the assistant include self-collision matrix, planning group
definitions, robot poses, end effector semantics, virtual joints
list, and passive joints list. The first step of the SA is the
generation of a self-collision matrix for the robot that can
be used in future planning to speed up collision checking.
This collision matrix encodes pairs of links on a robot that
can safely be discarded from collision checking due to the
kinematic infeasibility of there actually being a collision.
During the step-by-step process user can provide information
on different motion planning aspects. Virtual joints attach the
robot to the world. Planning groups semantically describe
parts of the manipulator, i.e., what constitutes a gripper or
which joints and links comprise an arm. SA allows adding
certain fixed poses of the manipulator. We can define query
positions such as the initial and the goal configurations of the
manipulator, and end-effectors can be labelled. In the last step,
SA generates several configurations and launch files that can
be used inside a ROS package.

V. PROPOSED SOLUTION ARCHITECTURE

In this section, we present the general architecture for de-
veloping a dynamic motion planning approach using the tools
described in the last section. For a simulation of the robotic
manipulator, we identify three key functional modules in the
architecture, perception, modelling and planning (Figure 5).

The central component Motion planning framework is
developed as a ROS node and integrates different modules
into the final motion-planning solution. Perception of the
world is available through the voxel-based grid (discussed in
section III-A). This grid is formed using data from vision
sensor ZED 2K stereo vision camera [8].

The model of the manipulator, a prerquisite for the MoveIt
setup assistant is given as a URDF file; central node looks
for the robot description parameter on the ROS param server
to get the URDF. We used the model available in the UR5
repositories [26] that we have installed and built. An initial set
of configurations generated by MoveIt setup assistant defining
query poses, self-collision matrix, planning groups, is also

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

Trajectory execution

Planning scene

Sensor data

Voxel-based grid

Perception

co
llisio

n
 d

e
te

ctio
n

Planning algorithms
OMPL

Planning

Fo
rw

a
rd

 &
 in

v
e
rse

kin

e
m

a
tics

URDF model

Robot description

Motion planning
framework

legend

external modules

moveit packages

ROS package

Figure 5. Robot manipulator motion planning - simulation architecture and
module relationship.

available on the param server, that Motion planning framework
can look.

Concerning motion planning, MoveIt has a plugin based
on the OMPL library that primarily implements randomized
motion planners, such as PRM (Probabilistic RoadMaps), RRT
(Rapidly Exploring Random Trees), RRTConnect etc. The
central node offers an interface to the motion planner through
ROS actions or services (a communication paradigm in ROS).
Collision checking in MoveIt happens inside the planning
scene. In particular, we can specify either pose goals or joint-
space goals. Pose goals define a position of the end-effector in
3-d cartesian coordinates, whereas a joint-space goal identifies
a distinct final configuration for the joints (given by individual
joint angles). For both cases, we can plan the movement of
the robotic arm to the desired goal. These tests have been
done within graphical simulator Rviz as well as on the UR5
robotic arm. The framework allows us to add collision objects
(obstacles) to the workspace. Collision objects are geometric
primitives such as a box or a cylinder, and can be easily
specified through their key dimensions and 3d position. In
this case, the planned trajectory will avoid the obstacle or
fail to find a solution when the target configuration cannot
be achieved in the presence of the obstacle.

A. Preliminary test
We perform a simple test with regards to chosen tools. In

this experiment, we use PRMstar [27] algorithm. We consider
a joint-space goal given by the following configuration vector
{−1.83,−1.732, 1.8,−1.634,−1.57, 2.88} where joint angles
are listed in radians. We test the motion of UR5 arm to
this goal configuration in the absence of a collision object.
Figure 6 shows the results for this test. For reference, see
Figure 6 (a) that considers the case with no obstacle object
and start and goal positions of the robotic arm. Start position
is the manipulator lying in the x-y plane. In Figure 6 (b) we
see the path trail that UR5 follows to reach the goal position.
For the cases (a) and (b), the algorithm creates 785 roadmap
states and solution is found in 5.009850s.

It is important to note that monitoring solution that outputs

(a)

(b)

Figure 6. Motion planning of UR5 manipulator.

the voxel-grid is a complementary component of intelligent
motion planning. Its main objective is to provide online
information on the workspace occupancy by different objects
in the scene. Path planning component availabe via MoveIt is
a standalone component. The reported experiment, validates
the later.

VI. CONCLUSION

Robot path planning is a classic problem and is compli-
cated in human-robot collaborative environments that present
dynamic scenarios for motion planning. In this paper, we
have reviewed some motion planning approaches that address
such environments, i.e., where complete information is not
available at planning time. We combine a voxel-based grid
with a roadmap-based approach, for its simplicity and ease
of development. Random sampling might result in roadmaps
with disconnected components, and thus, it fails to find a
path when start and goal configurations lie in disconnected
components. For such cases, an online planner such as RRT
would be helpful as it incrementally builds the complete path
to the target. The software development for robots requires
a breadth of knowledge and steep learning curve. For this
reason, tools such as ROS and MoveIt with available functional
packages can improve development time. We briefly described
some essential concepts from these tools. And, presented a
simulation architecture based on these tools.

The temporal validity of free spaces is not apparent in the

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

reviewed approaches. The cell marked as occupied may get
free before the execution, but the algorithm has rendered it as
occupied. It can be marked free only in the following planning
episode. In this case, the planner might find an alternative path
without the high cost. The contrary is more costly when space
gets occupied between planning episodes, and the algorithm
has not yet marked it occupied; leading to a failed query.
Our future work will investigate this scenario. To efficiently
handle dynamic scenarios, we can input fresh voxel grids to the
planning program, with a certain frequency. The refresh rate
of the voxel grid depends on the response time of previous
planning query. Currently, we are looking into solutions to
address these issues.

ACKNOWLEDGMENTS

INDTECH 4.0 – New technologies for intelligent manu-
facturing. Support on behalf of IS for Technological Research
and Development (SI à Investigação e Desenvolvimento Tec-
nológico). POCI-01-0247-FEDER-026653

REFERENCES

[1] R. I. Association, “How Robots Are Taking
on the Dirty, Dangerous, and Dull Job,”
https://www.robotics.org/blog-article.cfm/How-Robots-
Are-Taking-on-the-Dirty-Dangerous-and-Dull-Jobs/209,
accessed: 2020-05-19.

[2] P. Anderson-Sprecher, “Intelligent Monitoring of As-
sembly Operations,” Robotics Institute, Carnegie Mellon
University, Tech. Rep. CMU-RI-TR-12-03, June 2011.

[3] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars, “Probabilistic Roadmaps for Path Planning in
High-Dimensional Configuration Spaces,” IEEE Transac-
tions on Robotics and Automation, vol. 12, no. 4, August
1996, pp. 566–580.

[4] S. M. LaValle, “Rapidly-Exploring Random Trees: A
New Tool for Path Planning,” Department of Computer
Science, Iowa State University, Tech. Rep. TR 98-11,
October 1998.

[5] D. Katz, J. Kenney, and O. Brock, “How Can Robots
Succeed in Unstructured Environments,” in Workshop
on Robot Manipulation: Intelligence in Human Environ-
ments at 4th Robotics: Science and Systems Conference
(RSS 2008). Citeseer, June 2008.

[6] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong Plan-
ning A*,” Artificial Intelligence, vol. 155, no. 1-2, 2004,
pp. 93–146.

[7] D. Thornton Coleman IV, “Methods for Improving Mo-
tion Planning Using Experience,” Ph.D. dissertation, Uni-
versity of Colorado, 2017.

[8] L. Antão, J. Reis, and G. Gonçalves, “Voxel-based
Space Monitoring in Human-Robot Collaboration En-
vironments,” in 2019 24th IEEE International Confer-
ence on Emerging Technologies and Factory Automation
(ETFA). IEEE, 2019, pp. 552–559.

[9] R. Nogueira, J. Reis, R. Pinto, and G. Gonçalves, “Self-
adaptive cobots in cyber-physical production systems,” in
2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE,
2019, pp. 521–528.

[10] U. Robots, “UR5 collaborative robotic arm,” https://
www.universal-robots.com/products/ur5-robot/, 2015, ac-
cessed: 2019-12-20.

[11] T. Lozano-Pérez, “Spatial Planning: A Configuration
Space Approach,” in Autonomous Robot Vehicles.
Springer-Verlag, 1990, pp. 259–271.

[12] J. P. Van Den Berg and M. H. Overmars, “Roadmap-
based Motion Planning in Dynamic Environments,” IEEE
Transactions on Robotics, vol. 21, no. 5, 2005, pp. 885–
897.

[13] L. Jaillet and T. Siméon, “A PRM-based Motion Plan-
ner for Dynamically Changing Environments,” in 2004
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 2.
IEEE, 2004, pp. 1606–1611.

[14] J. J. Kuffner Jr and S. M. LaValle, “RRT-Connect: An
Efficient Approach to Single-Query Path Planning,” in
Proceedings of the 17th IEEE International Conference on
Robotics and Automation (ICRA 2000), vol. 2. IEEE,
April 2000, pp. 995–1001.

[15] A. Stentz, “Optimal and Efficient Path Planning for
Partially-Known Environments,” in Intelligent Unmanned
Ground Vehicles. Springer, 1997, pp. 203–220.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis
for the Heuristic Determination of Minimum Cost Paths,”
IEEE Transactions on Systems Science and Cybernetics,
vol. 4, no. 2, July 1968, pp. 100–107.

[17] S. Koenig and M. Likhachev, “Fast Replanning for
Navigation in Unknown Terrain,” IEEE Transactions on
Robotics, vol. 21, no. 3, 2005, pp. 354–363.

[18] A. Stentz et al., “The Focussed Dˆ* Algorithm for Real-
Time Replanning,” in IJCAI, vol. 95, 1995, pp. 1652–
1659.

[19] Z. Iqbal, J. Reis, and G. Gonçalves, “Path planning for
an industrial robotic arm,” in The Eighth International
Conference on Intelligent Systems and Applications (IN-
TELLI 2019). IARIA, 2019, pp. 30–36.

[20] M. Kallman and M. Mataric, “Motion planning using
dynamic roadmaps,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, vol. 5. IEEE, 2004, pp. 4399–4404.

[21] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-
source robot operating system,” in ICRA workshop on
open source software, vol. 3, no. 3.2. Kobe, Japan,
2009, p. 5.

[22] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],”
IEEE Robotics & Automation Magazine, vol. 19, no. 1,
2012, pp. 18–19.

[23] S. Chitta and I. Sucan, “Moveit,” https://moveit.ros.org/,
2012, accessed: 2019-10-31.

[24] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open
motion planning library,” IEEE Robotics & Automation
Magazine, vol. 19, no. 4, 2012, pp. 72–82.

[25] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general
purpose library for collision and proximity queries,” in
2012 IEEE International Conference on Robotics and
Automation. IEEE, 2012, pp. 3859–3866.

[26] I. GitHub, “Universal Robot,” https://github.com/ros-
industrial/universal robot, 2019.

[27] S. Karaman and E. Frazzoli, “Sampling-based algorithms
for optimal motion planning,” The international journal
of robotics research, vol. 30, no. 7, 2011, pp. 846–894.

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

https://www.robotics.org/blog-article.cfm/How-Robots-Are-Taking-on-the-Dirty-Dangerous-and-Dull-Jobs/209
https://www.robotics.org/blog-article.cfm/How-Robots-Are-Taking-on-the-Dirty-Dangerous-and-Dull-Jobs/209
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/products/ur5-robot/
https://moveit.ros.org/
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/universal_robot

	Introduction
	Motion planning in dynamic and unknown environemnts
	Definitions
	PRM based approaches for dynamic environments
	Experienced based motion planning
	Incremental path planning
	D* algorithm

	Proposed approach
	Dynamic roadmap with voxel-based occupancy grid

	Tool Support for developing motion planning algorithms
	Robot Operating System (ROS)
	URDF
	MoveIt
	MoveIt setup assistant (SA)

	Proposed solution architecture
	Preliminary test

	Conclusion

