

Preliminary Evaluation of Speech-to-Text

Query Application for Parts Database

Yuichiro Aoki

Research and Development Group, Center for Technology

Innovation - Digital Technology

Hitachi, Ltd.

Tokyo, Japan

email: yuichiro.aoki.jk@hitachi.com

Tadashi Takeuchi

Research and Development Group, Data Science Laboratory

Hitachi, Ltd.

Tokyo, Japan

email: tadashi.takeuchi.dt@hitachi.com

Abstract— To ensure the safety and security of workplaces and

homes, parts replacement of mechanical/electric/electronic

devices is inevitable, because they will gradually break down.

Users have to search for the appropriate part numbers from a

parts database to order and replace the parts. In many cases,

users make phone calls to the support center of the vendors

instead of searching by themselves, which can be inconvenient

for the support center staff. In this paper, to reduce the

number of phone calls to support centers, we propose a

prototype of an automatic part number answering system from

natural language. This system consists of open-source speech-

to-text conversion and Structured Query Language (SQL)

generation from the natural language. Preliminary evaluation

results show that 83% of the voice questions returned the

correct part numbers. In addition, the search with our system

was executed an average of 3.86 times faster than with the

conventional manual keyword search.

Keywords-speech-to-text; SQL generation; natural language

processing.

I. INTRODUCTION

To ensure the safety and security of workplaces and
homes, parts replacement of mechanical, electric, and/or
electronic devices in factories, construction sites, and homes
is inevitable, as such devices will gradually deteriorate and
break down. Before a malfunction occurs, device users have
to search for the part numbers on a parts database to order
and replace parts. However, generally speaking, users do not
know the correct part names, thus they cannot use the
conventional manual keyword search. Instead, they make
phone calls to the support center of the device vendors,
which inconveniences the support center staff, who
invariably have little time to improve their productivity or
the quality of their support. To reduce the number of phone
calls or even completely eliminate them, one potential
solution is an automatic answering system for the part
number.

In this paper, we propose an automatic part number
answering system using speech recognition (speech-to-text)
and SQL generation from natural language and make a
preliminary evaluation of its functionalities and performance.
We use an open-source software for speech-to-text and
develop a SQL generation algorithm. More specifically, we

assume that “ask back” processing of the system is new and
more pragmatic than previous studies in real industry fields.

In Section II of this paper, we review related work. In
Section III, we describe the architecture of our system and
Graphical User Interface (GUI). The preliminary evaluation
results are reported in Section IV. In Section V, we discuss
the functionalities and the performance, followed by a
conclusion and future study in Section VI.

II. RELATED WORK

In this section, we review speech-to-text technology and
SQL generation technology from natural language. First, we
focus on speech-to-text. Table I shows the comparison of
speech-to-text technologies offered by various providers.
Amazon Transcribe on Amazon Web Services (AWS)
handles 14 languages, but does not handle Japanese and has
no sound model customization [1]. Cloud Speech-to-Text on
Google Cloud Platform (GCP) can recognize 120 languages
and dialects, including Japanese, and can customize the
sound model. However, it does not have a user dictionary [2].
Watson Speech to Text on IBM Cloud handles Japanese, has
a user dictionary, and can customize the sound model, but is
proprietary [3]. Speech-to-Text on Microsoft Azure handles
Japanese and can perform sound model customization.
However, it does not have a user dictionary [4].

TABLE I. COMPARISON OF SPEECH-TO-TEXT TECHNOLOGIES.

Name
Japan-

ese

User

Dictionary

Sound

Model

Custom-

ization

Open

Source

Software

Amazon

Transcribe
 ✓

Google Cloud
Speech-to-Text

✓ ✓

IBM Watson

Speech to Text
✓ ✓ ✓

Microsoft
Speech-to-Text

✓ ✓

Julius

(This Study)
✓ ✓ ✓ ✓

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

Figure 1. Overview of our system.

Julius is an open-source, speech recognition engine with

a large vocabulary. It supports statistical N-gram model and
rule-based grammars as a language model and Hidden
Markov Model as a sound model [17]. Julius translates
Japanese speech into Japanese text, has a user dictionary, can
customize the sound model, and is open-sourced [5]—in fact,
no speech-to-text technology other than Julius is open-
sourced. In addition, Julius can be deployed on the intra-
company cloud and has less risk of information leak. For
these reasons, we opt to utilize Julius for our system.

Second, we examine SQL generation technologies from
natural language [6][7]. Precise [8] constructs systematic
natural language queries that are easy to translate into SQL
queries. Rao et al. [9] convert inquiries that are written in
natural language and whose words are in the user-defined
dictionary into SQL queries. They cannot make queries
interactively. Safari and Patrick [10] transform general
natural language queries into restricted natural language
queries first and then convert them into SQL queries. NaLIR
[11] makes a syntax analysis of the natural language query
and shows its result to the user. Next, the user manipulates
the result manually and modifies the syntax tree to one that is
easy to convert into an SQL query. Sukthankar et al. [12]
generate complex SQL queries that include WHERE clauses.
Seq2SQL [13] converts natural language queries into SQL
queries by using reinforcement learning. However, the
accuracy of the generated SQL queries is about 50–60%. All
the systems above lack interactive functionalities on mobile
devices or have insufficient accuracy of the generated SQL
queries. In contrast, our system interactively converts the
natural language questions into SQL queries on mobile
devices such as an iPad® and does not show the details of
the analysis or the transformation. Moreover, it can generate
complex SQL queries using WHERE clauses. Preliminary
evaluation results show that 83% of the generated SQL
queries are correct.

Real world applications, such as Apple Siri [14], Google
Assistant [15], and Amazon Alexa [16], resemble our system.
However, they cannot use intra-company proprietary
databases. Our system can deal with such databases.

III. OVERVIEW OF OUR SYSTEM

In this section, we provide an overview of our system.
The device user makes a conversational input consisting of
the part information, such as the machine type name
(RX200), the component name (Frame), and the part name
(Bolt), to the system. The system analyzes the information
and returns the corresponding part number (B1234).

This process is shown in Figure 1. First, in step 1, the
user talks to the conversation agent on the iPad®, saying (for
example) “RX200, Frame, and Bolt”. In step 2, the
conversational agent accepts the utterance, formats it as
Moving Picture Experts Group (MPEG)-1 Audio Layer-3
(MP3) and sends it to the speech-to-text engine (Julius) on
the intra-company cloud.

(a) Complete question

(b) Incomplete question

Figure 2. GUI images on an iPad®.

9Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

Julius transcribes the utterance to text and sends it back to
the search agent on the iPad®. In step 3, the search agent
generates the SQL query. Words from the text are embedded
in WHERE clause. Finally, the search agent executes the
query on the parts database. The example SQL is as follows:

 SELECT part_number FROM parts_database WHERE
type=’RX200’ AND component=’Frame’ AND
part=’Bolt’.

The parts database returns the part numbers to the search
agent. If the search agent does not get a unique part number
from the SQL query, in step 4, it generates an additional
SQL query from the answer, as follows:

SELECT component FROM parts_database WHERE
type=’RX200’ AND part=’Bolt’.

The answer of the additional SQL query is displayed as
selection buttons on the iPad®. The device user taps the
appropriate button for the component name, that is, the
search agent asks back the device user what the component
name is. Finally, the search agent shows the part number,
which in this case is “B1234”, on the iPad® in step 5.
Manual correction of the speech recognition result can be
performed if the user finds incorrect results.

Next, we present the GUI of our system. Figure 2(a)
shows an example where a complete question is asked,
which includes a type name, a component name, and a part
name. The user verbally inputs the complete question and the
system transcribes it (red box in the figure). Then, the user
selects the appropriate text and the system replies with the
part number.

The case of an incomplete question is shown in Figure
2(b), where some of the required information is lacking in
the question—in this example, a component name. The
system analyzes this incomplete question and shows
candidates for necessary information that is missing in the
voice input (“ask back” processing, red boxes in the figure).
The user taps the appropriate candidate button and the
system replies with the part number.

IV. PRELIMINARY EVALUATION

In this section, we report our preliminary evaluations of
the functionalities and performance of our system. All
evaluations are done in Japanese. We use the Apple® iPad®
(6th Generation) and the intra-company cloud for the
evaluation.

A. Functional Evaluation

We manually make 100 artificial oral questions to test the
coverage of the system. Each question is composed of a
machine type name, a component name, and a part name.
That is, all questions are complete question cases. All
combinations of the names in the questions are different
from each other. Examples of questions are “RX200, Frame,
and Bolt” or “RX78, Generator, and Chain”. One of the
authors orally inputs these questions in the office.

Table II lists the functional evaluation results. As shown,
the system delivered the correct part numbers for 83 of the
questions. However, 12 questions exhibited inappropriate
speech recognition, and there were five error results.

TABLE II. FUNCTIONAL EVALUATION RESULTS.

Results
Number of

Questions

Correct part number 83

Inappropriate speech recognition 12

Other errors 5

Total 100

TABLE III. BREAKDOWN OF 83 SUCCESSFUL RESULTS

Voice

Input

Additional

Info Needed

Manual

Correction

Number of

Questions

✓ 0

✓ ✓ 2

✓ ✓ 40

✓ ✓ ✓ 41

Figure 3. Speedup over the conventional search.

Table III shows the breakdown of the successful 83

results. In the case of voice input only, there were no results.
When we used the voice input and the additional information
input required by the system (“ask back” processing), there
were two results. Using the voice input and the manual
correction of the small speech recognition mistake, there
were 40 results. When all three items were used, there were
41 results.

B. Performance Evaluation

Next, we evaluate the performance of the system. We
prepare 11 additional oral questions from the device users.
These 11 questions are different from the 100 questions in
the previous section in that they were actually used by the
device users in real engineering fields. Some questions are
incomplete, such as “RX78 and Generator”. One of the
authors orally inputs these questions in the office, too. Figure
3 shows the speedup of the search time over the conventional
search. The conventional search specifies the correct part
name manually using a keyboard and then searches for it. If
the search does not get the part number within 300 seconds,
we assume the search time to be 300 seconds. When we
tallied the results, we found that our system had a speedup
larger than 1 in all questions except #6 (0.88 times). The
average speedup was 3.86.

10Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

V. DISCUSSION

 In this section we will discuss the functional and

performance evaluation results.

A. Functional Evaluation Results

First, our system could not transcribe 12 questions
properly due to a deficiency of the synonym dictionary for
terms such as “urea”. We need to expand the synonym
dictionary to include domain-specific terms. The other five
errors are currently under investigation.

Second, 81 of the 83 questions that led to the correct part
number required manual correction of the transcribed text.
This is because Julius failed to detect the pauses between
words, as the background noise of the evaluation
environment was not exactly small. A noise-resistant system
is a future consideration. Parameter tuning of Julius may
improve the situation.

Third, 43 questions required additional information to
reach the correct part number. This is because the same part
and component names appeared in a device type. In such
cases, the system asks back the device user which
information is needed. To automate this issue, we propose to
display probable combinations of names and the user to
select proper one.

B. Performance Evaluation Results

In the conventional search, the device user needed to
know the correct type/component/part name before the
search. In addition, some questions lacked information (e.g.,
component name). As a result, the user could not input the
correct search keywords and six of the 11 questions did not
lead to correct part numbers within 300 seconds. In contrast,
our system could obtain all the correct part numbers within
300 seconds. In several cases, questions about the missing
information were automatically asked back by the system. In
question #6, the tester coincidentally knew the correct part
name, so the conventional search was executed faster than
our system.

Additionally, our system acquired the part numbers an
average of 3.86 times faster than the conventional search.
We assume that the automatic “ask back” processing in our
system helped reduce the search time.

VI. CONCLUSION

To reduce the number of phone calls to support centers,
we have developed an automatic part number answering
system consisting of an open-source speech-to-text software
and SQL generation from natural language (Japanese).

The functional evaluation results demonstrated that 83%
of the questions returned the correct part numbers. Moreover,
the performance evaluation results showed that our system
executed the search an average of 3.86 times faster than the
conventional search.

In future work, we will examine how to improve the
accuracy of voice recognition under noisy environments and
decrease latencies of the system for speedup. In addition, we

are planning to evaluate the performance and robustness of
the SQL generation algorithms.

ACKNOWLEDGMENT

The authors thank Dr. Tsuyoshi Tanaka and Dr. Hiroaki
Shikano for supporting this research.

REFERENCES

[1] Amazon Web Services, “Amazon Transcribe” [Online].
Available from: https://aws.amazon.com/transcribe/
2020.03.26

[2] Google Cloud, “Cloud Speech-to-Text” [Online]. Available
from: https://cloud.google.com/speech-to-text 2020.03.26

[3] IBM, “Watson Speech to Text” [Online]. Available from:
https://www.ibm.com/cloud/watson-speech-to-text
2020.03.26

[4] Microsoft, “Speech-to-Text” [Online]. Available from:
https://azure.microsoft.com/en-au/services/cognitive-
services/speech-to-text/ 2020.03.26

[5] Julius, “Open-Source Large Vocabulary Continuous Speech
Recognition Engine” [Online]. Available from:
https://github.com/julius-speech/julius 2020.03.26

[6] B. Sujatha, S. V. Raju, and H. Shaziya, “A survey of natural
language interface to database management system,”
International Journal of Science and Advanced Technology,
vol. 2, no. 6, pp. 56–61, 2012.

[7] H. S. Dar, M. I. Lali, M. U. Din, K. M. Malik, and S. A. C.
Bukhari, “Frameworks for Querying Databases Using Natural
Language: A Literature Review,” arXiv:1909.01822, 2019.

[8] A.-M. Popescu, O. Etzioni, and H. Kautz, “Towards a theory
of natural language interfaces to databases,” in Proc. of the
8th International Conference on Intelligent User Interfaces, pp.
149–157, 2003.

[9] G. Rao, C. Agarwal, S. Chaudhry, N. Kulkarni, and D. S. H.
Patil, “Natural language query processing using semantic
grammar,” International Journal of Computer Science and
Engineering, vol. 2, no. 2, pp. 219–223, 2010.

[10] L. Safari and J. D. Patrick, “Restricted natural language based
querying of clinical databases,” Journal of Biomedical
Informatics, vol. 52, pp. 338–353, 2014.

[11] F. Li and H. V. Jagadish, “Constructing an interactive natural
language interface for relational databases,” in Proc. of the
VLDB Endowment, vol. 8, no. 1, pp. 73–84, 2014.

[12] N. Sukthankar, S. Maharnawar, P. Deshmukh, Y. Haribhakta,
and V. Kamble, “nQuery: A Natural Language Statement to
SQL Query Generator,” in Proc. of ACL2017, Student
Research Workshop, pp. 17–23, 2017.

[13] V. Zhong, C. Xiong, and R. Socher, “Seq2SQL: Generating
Structured Querues from Natural Language using
Reinforcement Learning,” arXiv:1709.00103, 2017.

[14] Apple, “Siri” [Online]. Available from:
https://www.apple.com/siri/ 2020.08.14

[15] Google, “Google Assistant” [Online]. Available from:
https://assistant.google.com/ 2020.08.14

[16] Amazon, “Alexa” [Online]. Available from:
https://developer.amazon.com/en-US/alexa 2020.08.14

[17] A. Lee and T. Kawahara, “Recent Development of Open-Source
Speech Recognition Engine Julius,” Asia-Pacific Signal Information
Processing Association Annual Summit and Conference, 2009.

11Copyright (c) IARIA, 2020. ISBN: 978-1-61208-798-6

INTELLI 2020 : The Ninth International Conference on Intelligent Systems and Applications

