INTENSIVE 2012 : The Fourth International Conference on Resource Intensive Applications and Services

Grid Spider: A Framework for Data Intensive Research with Data Process
Memoization Cache

Daichi Yamada, Tomohiro Sonobe, Hiroshi Tezuka and Mary Inaba
Graduate School of Information Science and Technology
The University of Tokyo
Tokyo, Japan
{yamada.daichi, sonobe.tomohiro, tezuka.hiroshi, mary} @ci.i.u-tokyo.ac.jp

Abstract—As computational power grow, the new field of
“Data Intensive Computation” has emerged in which vast
amounts of data generated by radio telescopes, particle accel-
erators, electron microscopes, genomics and Earth observation
equipment is processed. In most cases, once the data has been
accumulated, it is not overwritten. It has also been observed
that in many cases the very same software is used to pre-
process the very same data, leading to identical results. To
address these issues, we propose “Grid Spider”, a framework
for data intensive scientific research which is optimized to
avoid re-computation through the utilization of our file cache
mechanism called “Data Process Memoization Cache” or DPM-
Cache. This mechanism requires pre-processing applications
to maintain referential transparency. Both the data and the
application are registered with Grid Spider prior to processing,
and for each execution of the application, Grid Spider records
the history of the coupling of the application, the input data
fie, and the output data file. To evaluate Grid Spider, we have
implemented “GEO Grid Spider II”’, which is a framework
within which geo-scientists can evaluate satellite data archives.

Keywords-data intensive; memoization; file cache; cache
replacement;

I. INTRODUCTION

Computers have been playing an important role in the
progress of scientific research from their inception. As
computational power has risen, supercomputers have been
increasingly utilized to provided the number-crunching nec-
essary for scientific simulations. More recently with the
rapid development of storage devices and distributed com-
puting, “Data Intensive Computation” has emerged which
analyzes huge volumes of of scientific observation data.

Radio telescopes, particle accelerators, electron micro-
scopes, genomics and Earth observation equipment are typ-
ical sources for such data requiring intensive computation
[1]. In most cases, the observation equipment tends to be
quite expensive, and many researchers and research groups
often share the data.

One common characteristic of this sort of data is that it
is never overwritten. Once written, it is merely read by the
interested researchers. In addition, it has been observed that,
in many cases, the very same software such as code libraries
for pre-processing is applied. Assuming that the very same
software is processing the very same data, is reasonable to

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-188-5

conclude that the results will also be the same. If a method
of avoiding this kind of re-computation were possible, it
would improve the resolution of the results.

To this end, we propose “Grid Spider”, a framework
tailored to data intensive scientific research. Grid Spider re-
quires applications to maintain their referential transparency
through a file cache mechanism called “Data Process Mem-
oization Cache” or DPMCache, thereby avoiding to a high
degree re-computation. Grid Spider users are scientific re-
searchers who heavily rely on application programs, but
seldom write their own code. Prior to processing, both the
data and the application are registered with Grid Spider. Grid
Spider then controls the execution, and records the coupling
of the application, the input data file, and the output data file.
To evaluate Grid Spider, we implemented “GEO Grid Spider
II”, a spacial data mining framework primarily utilized by
geo-scientists evaluating satellite data archives.

The organization of this paper is as follows. In Section
II, we propose a file cache mechanism called DPMCache,
which provides the core of the Grid Spider framework. We
then propose the Grid Spider framework, our core concept.
In Section III, we discuss GEO Grid Spider II, which is
a framework for the processing of satellite data by geo-
scientists. In this section we will introduce some interesting
results. In Section IV, we provide an evaluation of the Grid
Spider framework through simulations, offer related work in
Section V, then draw relevant conclusions in Section VI.

II. DATA PROCESS MEMOIZATION CACHE AND
GRIDSPIDER

In 1968, very early in the era of computers, memoization
[2] was proposed by Donald Michie to optimize computation
by reducing the cost of re-calculation; for each function call,
an argument and its result is recorded, and the result is used
without the computation in subsequent calls to the same
function with the same argument. This technique is used
in many fields, and the condition for a function for which
memoization works properly is, the function always returns
the same value for identical arguments. This technique was
primarily used in the functional language, but later in [3],

INTENSIVE 2012 : The Fourth International Conference on Resource Intensive Applications and Services

Peter Norvig shows that, if only the function has referen-
tial transparency, then external automatic memoization is
possible. This technique has been applied in many fields
[3] [4]. We noticed that this concept can be also applied
to the application programs for data intensive science in
which applications and vast data archives are shared by
many researchers, and that, once the data is acquired, it is
never overwritten. We extend the concept of memoization
beyond the domain of a single program execution to multiple
program executions using a file cache. For this, we need
to allow programs to have referential transparency to store
the output of the applications and to record the triplet of
(1) the application used, (2) the input file applied, and
(3) the output file generated. Since the cost of storage
is continuously dropping, it is now feasible to divide an
application into several modules and store the intermediate
results of each module. This will enhance the share-ability
of the application.

We propose a file cache system we have called “Data
Process Memoization Cache” or DPMCache. An application
consists of a sequence of application modules which have
referential transparency, and the output of each module is
stored as a cache file until storage space is full (Figure 1).
When storage becomes full, cache replacement occurs with
a replacement policy that is dynamically changeable for the
DPMCache based on the history that its framework records.

input

(get data J—>[search Mt. J—{ comp Mt. Fuji)*[show resuItJ

v ¥ N
| cache | | cache | output
Figure 1. Application list

It is often observed that several applications use iden-
tical pre-processing, and in these cases, these applications
constitute the application tree (Figure 2). The application
tree is a union of the application lists, and the results of
shared modules are also shared. For example, processes such
as distortion correction and noise removal are required my
multiple applications.

We propose the Application Tree Structure Cache Re-
placement Policy (ATS). The ATS scores each cache file
based on the Application Tree Structure. Modules with many
branches in an application tree are likely candidates for
shared pre-processing. To detect this, we adopt a scoring
system in which (1) cache files generated by a module with
many branches, (2) cache files created by a module requiring
more time, and (3) cache files of a smaller size are all given
a higher score. Therefore, cache files with lower scores are
selected to be replaced by ATS. Figure 2 shows how ATS

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-188-5

[ModuIeD) [ModuleCJ ------------
[ModuI;G)[‘I:doduleF] (h;oduIeE]--lm

Figure 2. Application Tree

leaves untouched files created by Module B and Module D
which score higher due to their many branches.

To utilize this DPMCache scheme, we propose a frame-
work for data intensive scientific research called “Grid
Spider” which has the objective of omitting avoidable re-
computation by sharing the results of all users of the
framework. Grid Spider controls (1) the enforcement of
the referential transparency of application modules, (2) the
management of data files so that files are unique and are
not overwritten, (3) recording the history of history triplets
consisting of the module, the input file and the output file,
and (4) applying the optimal cache replacement policy to
cache files based on the history triplets.

Application modules and input data are registered with
Grid Spider in advance, and users construct an application
by combining application modules.

Grid Spider is intended to be used in a distributed envi-
ronment. Figure 3 shows the configuration of the system.
The users send an query to the parent node consisting of
search areas and applications. The query is then divided into
requests that correspond to the divided search areas, and
these requests are assigned to child nodes. The child nodes
run the application, and they return the results to the parent
node. The application tree and the cache files independently
correspond to the the child nodes. The assignment of the
request depends on the coordinates of the search area, and
each child node is assigned its own search areas. If there
is a conflict between the assignment nodes, the parent node
takes over the load-balancing.

The optimal replacement policy is determined by how the
cache is accessed. For example, LRU works well in many
cases, but it works poorly when scanning arrays. Therefore,
we propose Node Scoring Adaptive Policy or NSAPolicy
which dynamically switches the replacement policy in a
distributive environment. In our proposal, child nodes send
the cache hit rate to the parent node, and the parent node
chooses the highest scored policy and applies it to the child
nodes. The parent node checks the highest score policy and
switches the child nodes’s cache replacement policy.

INTENSIVE 2012 : The Fourth International Conference on Resource Intensive Applications and Services

child node 1

request queue

query

parent
application

-
‘ «—————— | node assign
result
et assign] [resut M~ OO

request queue result I l

g DPMCache
application] l .
app tree

SLE

DPMCache

cache download

child node 2

Figure 3. System design

III. GEO GRID SPIDER II

Using Grid Spider, we designed and implemented GEO
Grid Spider II (GGSII) as an instance of the Grid Spider
framework for geoscientists treating satellite data.

On GGSII we can easily implement search applications
using geographical information. Figure 4 shows the example
results of a search for circular objects on global aerial maps
such as round irrigated farm plots. Figure 5 shows a sample
result from a search of face-like objects. This application
was implemented by modifying the sample code in OpenCV.
Thus, we can easily incorporate other applications into the
framework as modules.

Figure 4. Irrigated farm plots in Figure 5. Face search application
Brazil (Venezuelan coast)
Figure 6. Detected mountains with higher threshold (left) and lower

threshold (right)

Figure 6 shows the locations of the similar mountains
detected by the algorithm [5]. The left photo depicts the
results of the first trial, and the right photo depicts results
after the threshold adjustment. In cases where threshold and
parameter tuning is desired, the GS framework works quite
well.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-188-5

To make this framework useful to active geoscientists,
we consulted them and considered several use cases. In
the consideration of distributed system implementation we
categorized these use cases into three groups: (1) world
wide : involving global searches for objects with specified
features; (2) concentrated : involving focused searches after
disasters such as large earthquakes or volcano eruptions;
(3) mixed pattern : combining both global and focused
elements.

IV. EVALUATION

For the evaluation of GGSII, we first performed the
simulation, then implemented the system for clusters.

We compared the replacement policies (1) First In First
Out or FIFO, (2) Least Recently Used or LRU, (3) Segment
LRU, (4) Bimodal Insertion Policy or BIP, (5) the proposal
method ATS, and (6) the proposal method NSAPolicy.

A. Simulation
We implemented a event-driven type simulator in Java
where the parent-node/child-node ratio is 1:20.

Module Count

400000 11000000
320000 8800000
240000 6600000
160000 4S5 4400000
80000 2200000
o —mmmmm T e o — T e

coord& random& coord random coord& random& coord random
reassign reassign reassign reassign

Total Time

module count
time

Figure 7. World Wide, Global survey

Module Count
310000 20000000

Total Time

232500 16000000

12000000
155000
8000000

e T
o 0

coord& random& coord random coord& random& coord random
reassign reassign reassign reassign

module count
time

Figure 8. Concentrated, disaster

For the distributed system, we compared the combination
of location specific distribution and random distribution
against the combination of with reassignment and without
reassignment. Figures 7 and 8 show the module counts and
the total time for the global distribution use case and the
local disaster distribution use case.

Random distribution proved unproductive due to the re-
quest being assigned to a node lacking a cache file. Location-
specific distribution was more productive in respect to cache
hits, but experienced distribution imbalance, especially in
disaster cases. We adopted the combination of first location
specific distribution migration for load-balancing.

Figure 9 shows the changes by total cache size. This graph
show the use case of a world wide survey. ATS performs
well.

INTENSIVE 2012 : The Fourth International Conference on Resource Intensive Applications and Services

Module Count Total Time

400000 y 9000000
300000 6750000

€
3
I=}
o Q
O 200000 E 4500000
=) =
o
g 100000 2250000

0 0o —

4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
cache size cache size
O ATS ©O BIP SLRU © LRU ©O FIFO O NSAPolicy
Figure 9. Changes by the total cache size for the intensive global case

B. Experiment on cluster system

We implemented the GGSII on a cluster of eight Pow-
erEdge R410s with an Intel(R) Xeon(R) CPU E553 with
2.40GHz of 4 core x 2, with a 12GB memory and a 430GB
HDD. For data, we used Shuttle Radar Topography Mission
data or SRTM, and Digital Elevation Model or DEM. Each
file was 2.8MB, and the 14,168 files corresponding to
almost 80% of the Earth’s surface totaled about 40GB. We
repeatedly ran the application to detect mountains similar
to Mt. Fuji as described in section III, and changed the
parameters for each execution.

Total Time
600
__ 450
=
E 300
© e
S
* 150
0
5 75 10 12.5 15

cache size [GB]

O ATS ©O BIP SLRU
O LRU © FIFO O NSAPolicy

Figure 10. Comparison of query processing time (survey pattern)

Figure 10 shows the results from an experiment similar to
the one depicted in Figure 9. ATS performs well to a level
comparable to the simulation results.

V. RELATED WORK
A. GEO Grid

Global Earth Observation Grid or GEO Grid [6] is a
grid system that was developed by the National Institute
of Advanced Industrial Science and Technology (AIST).
The application provides through GEO Grid a birds-eye
view displayed in the viewer in 3D and in the Volcanic
Gravity Flow Simulation. For example, the GEO Grid task

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-188-5

force released the crustal movement data and the propagatin
animation of the tremors [9] recorded during the 2011
Tohoku Earthquake on Japan’s Pacific coast.

B. Cache Consistency

Maintaining cache consistency is important to a cache
system in a distributed environment. “If-modified-since”
[8] is used on Web systems, and is used to disable one
cache when the record is updated on a second cache on
a distributed file system such as CODA[7].

In addition, these systems often use read-only data so
consistency is maintained. For Gird Spider, the input is
write-once, and the cache is write-once because the module
has referential transparency. Therefore, cache coherency is
automatically maintained.

VI. CONCLUDING REMARKS

We are proposing the file cache scheme DPMCache and
a framework for data intensive research called Grid Spider.
To demonstrate the usefulness of Grid Spider, we imple-
mented GEO Grid Spider II which focuses on satellite data
archives and geophysicists. We evaluated the system using
both simulation and real implementation, and compared the
replacement policies. We have shown the effectiveness of
our replacement policy which utilizes the history of the
execution of the applications.

For future research, we intend to focus on the time in
queue of disk IO, and the communication between each
node. In addition, we plan to utilize the scheduling algo-
rithms to reduce processing time.

REFERENCES

[1] Microsoft Research, “The Fourth Paradigm: Data-Intensive
Scientific Discovery”, in T. Hey, S. Tansley, K. Tolle, 2009.

[2] D. Michie, “Memo Functions and Machine Learning”, Na-
ture, No. 218, pp. 19-22, 1968.

[3] P. Norvig, “Techniques for Automatic Memoization with
Applications to Context-Free Parsing”, Comput. Linguistics,
Vol. 17 No. 1, pp. 91-98, 1991.

[4] J. Mayfield, et al., “Using Automatic Memoization as a
Software Engineering Tool in Real-World AI Systems”, Proc.
of the 11th Conf. on AIA, 1995.

[5] R. Wakuta and T. Sonobe, “SPGF Search Places by Geo-
graphical Features all around the world Search and verifica-
tion system”, SAINT2010, 2010.

[6] S. Sekiguchi et al. “Design principles and IT overviews of
the GEO Grid”, Syst. J., IEEE, 2008.

[7] J. Kistler and M. Satyanarayanan, ‘“Disconnected Operation
in the Coda File System.” ACM Trans. Comp. Syst., 1992

[8] R. Fielding et al., “Hypertext Transfer Protocol — HTTP/1.17,
RFC2616, June 1999

[9] GEO Grid disaster task force, http://disaster-e.geogrid.org/,
Jan 2012

