
Prototyping TCP Options to Reveal

 Host Identity in IP Address Sharing Environments

Elie Abdo

France Telecom,

38, rue du General Leclerc

Issy Les Moulineaux, France

e-mails: elie.abdo@orange.com

Mohamed Boucadair

France Telecom

3, rue Clos Courtel

Rennes, France

mohamed.boucadair@orange.com

Jaqueline Queiroz

France Telecom

38, rue du General Leclerc

Issy Les Moulineaux, France

jaqueline.queiroz@orange.com

Abstract—Internet Service Providers must maintain the

delivery of IPv4 services during the forthcoming IPv6

transition period. For this purpose, Service Providers are likely

to deploy address sharing mechanisms. However, address

sharing techniques raise specific issues such as the difficulty to

distinguish unambiguously different hosts sharing the same

public IPv4 address. To mitigate some of the encountered

issues, HOST_ID TCP Option has been proposed as a means to

reveal the identity of a host when address sharing is deployed

by Internet service providers. If no HOST_ID is revealed to

remote servers, all subscribers sharing the same IP address

will be impacted by a misbehaving user. This paper documents

implementation and testing results of HOST_ID TCP Option.

Linux kernel and Carrier Grade NAT have been ported to

support the ability to inject HOST_ID Options while iptables

module has been modified to interpret the information

conveyed in HOST_ID and also to enforce dedicated policies.

Keywords- address sharing; HOST_ID; TCP Option.

I. INTRODUCTION

The explosion of the Internet in the past few years has
accelerated the exhaustion of IPv4 global addresses. While
only IPv6 deployment can solve IPv4 address shortage,
service providers are required to maintain their IPv4 service
offerings using the remaining global IPv4 addresses. To do
so, large scale address sharing techniques should be
implemented to serve a large number of subscribers with a
limited IPv4 address space. However, when different hosts
are sharing the same IPv4 address, several issues are likely to
be encountered [5]. These issues impact subscribers, service
providers and content providers: e.g. many services will fail
to work, legitimate users will share the reputation of
misbehaving users or ‘spammers’, etc. A use case example
would be, when a user is misbehaving, the shared IPv4
address will be reported on a blacklist by the content
provider; the access could be then denied for all subscribers
sharing that IP address. More issues encountered with IPv4
sharing techniques are detailed in [5].

To mitigate some of these issues, [2] identifies a list of
solutions aiming to reveal extra information that must be

unique for each host sharing the same IPv4 address: this
information is called HOST_ID.

If HOST_ID is revealed to remote servers, hosts are not
identified by the sole use of IPv4 address but the
identification will be based on the combination of the
external IPv4 address and the HOST_ID information. To
make such distinction possible, the HOST_ID must be
unique to each user who shares the same global IPv4 address
(no need to be globally unique). This information can be an
IPv6 prefix address, the private source IPv4 address, etc.

The HOST_ID can be injected by the address sharing
function (e.g., CGN (Carrier Grade NAT)) which is
transparent to the host. Another alternative to reduce
potential CGN performance degradation is to let the
Customer Premises Equipment (CPE) or the host injecting
the HOST_ID information; the CGN only verifies the
content of the Option.

The HOST_ID can be leaked in multiple levels of an IP
packet. The IP Identification (IP-ID) field of IP header may
be used to hold HOST_ID but this will require a dedicated
channel to inform servers whether this header is conveying
HOST_ID or not. HOST_ID can be put at IP level as a new
IP Option (e.g., [13]); however this alternative is unlikely
because IP options are not processed by intermediate routers
[4]. [3] defines HOST_ID solution as being a new TCP
Option suitable for all TCP-based applications. Other
proposals such as Proxy Protocol [12] and HIP (Host Identity
Protocol [9]) require modifications at both servers and CGN;
otherwise, connection could not be established. Another
HOST_ID proposal consists of sending the HOST_ID
information at the application level (e.g., HTTP header (XFF
or Forwarded-For [10]); this proposal solves the issue for
HTTP traffic only.

Defining HOST_ID as a TCP Option is superior to XFF.
This paper focuses on this alternative.

This paper defines an extended HOST_ID TCP Option
and provides experimentation results of this TCP Option.
Linux Kernel, CGN and iptables modules have been ported
to support the HOST_ID TCP Option. Appropriate
validation effort has been conducted to achieve the following
objectives:

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

• Assess the validity of the HOST_ID TCP Option

approach.

• Evaluate the impact on the TCP stack to support the

HOST_ID TCP Options.

• Improve filtering and logging capabilities based upon

the contents of the HOST_ID TCP Option. This means

the enforcement of various policies based upon the

content of the HOST_ID TCP Option at the server side:

Log, Deny, Accept, etc.

• Assess the behaviour of legacy TCP servers when

receiving a HOST_ID TCP Option.

• Assess the success ratio of TCP communications when

a HOST_ID TCP Option is received.

• Assess the impact of injecting a HOST_ID TCP Option

on the time it takes to establish a connection.

• Assess the performance impact on the CGN device that

has been configured to inject the HOST_ID Option.

DS-Lite CGN is used (see Section III)
The remainder of this paper is organized as follows. An

overview of the HOST_ID TCP Option is described in
Section II. Then, Section III sketches at a glance an overview
of DS-Lite technique. Section IV highlights the required
Linux Kernel modifications to support the HOST_ID TCP
Option. Section V describes the testing conducted to evaluate
the behavior of legacy TCP servers and connection delays
when servers receive HOST_ID Options. Section VI presents
the modifications of the CGN to inject HOST_ID TCP
Option. Finally, Section VII illustrates the policies to be
enforced at servers’ side to make use of the HOST_ID and
therefore, to mitigate identification issues introduced by
address sharing mechanisms.

II. FOCUS ON HOST_ID TCP OPTION

The initial idea of defining a TCP Option to convey a
HOST_ID was defined in [14]. Nevertheless, the format of
that Option does not allow covering various use cases (such
as the load-balancer use case). A new TCP 10-byte Option is
proposed to meet this requirement (Figure 1). This Option
offers similar features than “Forwarded-For” HTTP header
[10].

• KIND number

• Lifetime (4 bits) indicates the validity lifetime of the

enclosed data, the following values are supported:

o 0: Permanent

o >0: Dynamic; this value indicates the validity time.

• Origin (4 bits) indicates the origin of the data conveyed

in the data field. The following values are supported:

o “0”: Internal Port

o “1”: Internal IPv4 address

o “2”: Internal Port and Internal IPv4 address

o “3”: IPv6 Prefix

o “>3”: No particular semantic

Figure 1: Format of HOST_ID TCP Option

• HOST_ID_data (7 bytes) depends on the Origin field;

padding is then required as data of different length can

be added.

Two modes of sending HOST_ID are supported: (1) The

SYN mode in which the HOST_ID TCP Option is sent in

SYN packets and (2) the ACK mode which requires to

define a new 2-byte long TCP Option called

HOST_ID_ENABLED and which is characterized as

follows: The address sharing function injects the

HOST_ID_ENABLED TCP Option in a SYN packet. If the

remote server supports the HOST_ID Option, it must return

the HOST_ID_ENABLED in the SYNACK packet. Then,

the TCP client sends an ACK including the HOST_ID TCP

Option.

III. DS-LITE AT A GLANCE

DS-Lite [3] address sharing technique is enabled in the
validation platform to conducted testing on CGN (Figure 2).
The DS-Lite model is composed of two components: (1) DS-
Lite CPE (Customer Premises Equipment) with a B4 (Basic
Bridging BroadBand) element and (2) one or several AFTR
(Address Family Transition Router) elements, deployed in
the network. The DS-Lite combines two techniques: IPv4-in-
IPv6 tunnel encapsulation/de-capsulation that is performed at
the B4 and the AFTR elements and the NAPT function [11]
implemented at the AFTR (i.e., CGN).

IV. LINUX KERNEL MODIFICATIONS

The objective of Linux Kernel modifications is to support
the HOST_ID Option in the SYN mode and then conduct
appropriate testing to assess the behavior of top 100,000
legacy HTTP servers, a list of FTP servers, Telnet and SSH
services when the HOST_ID TCP Option is conveyed to the
servers. The Kernel modified machine will be used
afterwards when the HOST_ID Options injection is
performed by the host; the address sharing function (see
Section VI) only verifies the Options’ content validity. This
implementation has the advantage to avoid overloading the
CGN.

TCP stack of the Linux Kernel has been modified to
support HOST_ID TCP Option. Subsequently, recompiling
the machine allows the machine to inject the HOST_ID
Options and then drive the testing. Through these
modifications, we can inject the HOST_ID TCP Options in
all SYN packets.

To configure the different HOST_ID Data forms, we
defined new Kernel sysctl (system control) variables as
HOST_ID injection impacts Kernel TCP driver which allows
changing the configuration without rebooting the machine
under test. Kernel modifications and recompilation have
been made using Fedora and Debian Linux distributions, on

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

different Kernel versions. The following configurations
options have been implemented:

• Enable/Disable injecting the TCP Options

• Support HOST_ID and HOST_ID_ENABLED

• Data form is configurable and can inject: Source IPv6

address or the first 56 bits of the IPv6 address, Source

IPv4 address, Source port number, Source IPv4 address

and Source port number.

Figure 2: The DS-Lite Architecture

V. EXPERIMENTATION AND RESULTS

The testbed setup is shown in Figure 3. Two hosts are
directly connected to the Internet: Host1 is a machine which
does not support HOST_ID while Host2 is a modified
machine (i.e., patched with the updated Kernel described in
Section IV). We run the testing on both machines in parallel
for all the HOST_ID TCP Options. The results obtained for
Host1 are used as reference for measurements. In this testing,
we first connected the hosts to an enterprise network and
then to two ISPs networks to make sure that HOST_ID
Options are not stripped. For this purpose, we configured a
local server with a public IPv4 address to make it reachable
from the Internet.

This configuration is then used to assess the behavior of
the top 100,000 websites when a HOST_ID Option is
enabled. Also FTP, Telnet and SSH services have been
tested.

We coded a Python robot as the traffic generator. The
robot automates the retrieval of objects identified by URLs,
and returns different connection information (different
timing measures). The retrieval of pages is based upon
Pycurl, a Python interface of libcurl. The robot consists of
two programs. The first one takes an URL as an input
parameter, performs the DNS lookup and then tries to
connect to the corresponding machine and retrieves the
objects identified by the URL. It returns either different time
values and connection status or an error message with the
source of the error in case of connection failure (e.g., DNS
error).

Figure 3: Machines directly connected to Internet

The TCP connection establishment time is calculated as
the difference between the CONNECT_TIME and
NAMELOOKUP_TIME where NAMELOOKUP_TIME is
the time it took from the start until name resolution is
completed and CONNECT_TIME is the time it took from
the start until the connection to the remote host (or proxy) is
completed. The second program prints URLs to an output
file with the corresponding connection time. If connection
could not be established, the program returns an error
message with the corresponding error type.

We performed the testing in parallel on the two machines
(Figure 3) for all the HOST_ID TCP Options. We repeated
the cycle several times for each Option in different days.
Then, we calculated TCP sessions establishment delays as
average of testing repetitions. Also we computed sessions’
success ratio and compared the results using the no-Option
testing results (used as reference). The local server, shown in
Figure 3, is used to verify HOST_ID TCP Options are
correctly injected.

We considered various combinations of Data revealed in
the HOST_ID TCP Options (see Section II): source port,
IPv4 address, source port: IPv4 address, 56 bits of IPv6
Prefix and HOST_ID_ENABLED.

SSH and Telnet sessions have been successfully initiated
for all HOST_ID TCP Options with the local server.

Below are reported both the success ratio and the average
time to establish the TCP session a connection for HTTP and
FTP services.

A. HTTP

The same results were obtained for hosts connected to an
enterprise network and to networks of two ISPs. These
results are synthesized in Tables 1.

TABLE I. HTTP RESULTS – CUMULATED SUCCESS RATIO

 No-

Option

HOST_ID Failures Failure Ratio

1-1000 995 995 0 0.000%

1001-2000 992 991 1 0.101%

2001-3000 986 986 0 0.000%

3001-4000 991 990 1 0.101%

4001-5000 993 993 0 0.000%

5001-6000 996 996 0 0.000%

6001-7000 995 994 1 0.101%

7001-8000 984 983 1 0.102%

8001-9000 993 992 1 0.101%

9001-10000 991 991 0 0.000%

10001-20000 9785 9776 9 0.092%

20001-30000 9764 9746 18 0.184%

30001-40000 9778 9766 12 0.123%

40001-50000 9757 9746 11 0.113%

50001-60000 9771 9761 10 0.102%

60001-70000 9761 9751 10 0.102%

70001-80000 9744 9736 8 0.082%

80001-90000 9739 9730 9 0.092%

90001-100000 9736 9719 17 0.175%

1-100000 97751 97642 109 0.112%

For the top 100,000 websites [15], connection failures

occurred for 2249 HTTP sites. These failures were reported

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

as being caused by DNS issues, connection timeouts (e.g.,
servers down), connection resets by peers, connection
problems and empty replies from servers. The 2249 failures
occur, whether HOST_ID Options are injected or not

Figure 4: Proxy Server

The same results were obtained for HOST_ID and

HOST_ID_ENABLED. The connection failures’ ratio for
HOST_ID_ENABLED is 0,105% while it is 0.112% for the
HOST_ID Option in comparison with total established
connections (when no HOST_ID Option is present). These
results were obtained for all the HOST_ID TCP Options
(source port, IPv6 prefix, etc.). When any HOST_ID TCP
Option is conveyed, 103 servers did not respond; however
when no Option is injected, all these servers responded
normally. For six additional servers which did not respond:
Three servers did not respond to the SYN packets sent by the
host and three servers responded with malformed and
erroneous SYN/ACK packets so connection is dropped by
host when receiving the SYN/ACK packet. When
HOST_ID_ENABLED is enabled, malformed SYN/ACKs
were received by the host too, but these packets were error-
free (a long series of NOP Options). This justifies the
connection success for these two Options.

The results show that including a HOST_ID TCP Option
does not systematically imply an extra delay for the
establishment of the TCP session.

When an HTTP proxy is in the path (Figure 4), it strips
the HOST_ID TCP Options. The testing has been conducted
by verifying packets’ content received by the local server: no
HOST_ID Options were present in the received SYN packets
at the server despite being sent by the host.

B. FTP

Two combinations of the HOST_ID TCP Option have
been tested: (1) HOST_ID (source port) and (3) HOST_ID

(source port: IPv4 address).
A list of 5591 FTP servers [16] has been used to conduct

these tests. Among this list, only 2045 were reachable:
failure to reach 942 servers due to connection timeout,
failure to reach 1286 servers due to DNS errors, failure to
reach 717 servers because access was denied, connection
error with 500 servers, failure to reading response from 81
servers and bad response from 20 servers. When HOST_ID
TCP Options are injected, 9 FTP servers did not respond to
the SYN packets sent by the host. The connection failure
distribution is presented in Table 2.

The results show that the sending a HOST_ID TCP
Option does not systematically imply an average extra delay
for the establishment of the TCP sessions with remote FTP
servers. Based upon the average of the session establishment

time with the 2045 FTP sites, no extra delay is observed
when the HOST_ID TCP Option is injected.

TABLE II. FTP RESULTS – CUMULATED SUCCESS RATIO

 No-Option HOST_ID Failures Failure

Ratio

1-100 100 100 0 0,00%

101-200 100 99 1 1,00%

201-300 100 99 1 1,00%

301-400 100 100 0 0,00%

401-500 100 100 0 0,00%

501-600 100 100 0 0,00%

601-700 100 100 0 0,00%

701-800 100 100 0 0,00%

801-900 100 99 1 1,00%

901-1000 100 99 1 1,00%

1001-2000 1000 995 5 0,50%

2000-2045 45 45 0 0,00%

Total 2045 2036 9 0,44%

VI. ISC AFTR MODULE MODIFICATIONS

This section presents the modifications to support the
HOST_ID functionalities by the ISC-AFTR module [7].

All privately-addressed IPv4 packets sent from DS-Lite

serviced hosts are sent to an AFTR device where an isc_aftr

daemon program is responsible for processing received

packets. The NAPT function is performed by the AFTR. To

activate/de-activate ISC-AFTR functionalities, e.g.,

patching TCP MSS values, fix MTU, etc, the corresponding

variables must be configured in the ‘aftr.conf’ configuration

file. We modified the ISC-AFTR code in order to support

the following functionalities: (1) Inject the HOST_ID TCP

Options, (2) Retrieve an existing HOST_ID TCP Option in

case this Option is not configured and (3) Check the validity

of the integrity of the contents of HOST_ID TCP Option in

case the corresponding Option is already present in the SYN

packet and at the same time the Option is enabled at the

AFTR. We modified the “aftr.c” source code to support the

HOST_ID Options functionalities (described above)

depending on the configuration variables in “aftr.conf”.

Modified ISC-AFTR can be configured to inject HOST_ID

TCP Option conveying: Source Port Number, Source IPv4

Address, Source IPv4 Address + Source Port Number, 56

bits of the IPv6 Source Address used by the AFTR to

identify a tunnel endpoint.

The setup shown in Figure 5 is used to validate the
implemented modifications in the ISC-AFTR module. We
used the local server in our testing to check the contents of
HOST_ID Options held in SYN packets. We also
investigated the SYN packets sent by the host. Thereby, we
compared the content of the packets sent by the host and
those received by the server to judge if the functions
implemented at the AFTR are applied properly. All possible
combinations of HOST_ID Options sent by the host and
HOST_ID Options configured at the AFTR. The AFTR can
inject several Options, strip existing Options, check the
validity of received Options. The host is a machine
supporting HOST_ID TCP Option.

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

Figure 5: Testbed Setup – DS-Lite CGN environment

Figure 6: Platform Testbed – AFTR Performance

To conclude about the performance impact of enabling to

inject HOST_ID on the CGN, we used a commercial testing
product. This tool supports multiple application protocols
such as HTTP and FTP for both IPv4 and IPv6 (including
encapsulation). The DS-Lite model can be built directly from
a port of this product: IPv4 packets are directly encapsulated
in an IPv6 tunnel; the client's port emulates hosts and B4
elements at the same time. This port is directly connected to
the AFTR tunnel endpoint. The AFTR's IPv4 interface is
connected to the testing product server side where servers are
assigned IPv4 addresses. The testbed setup of this testing is
shown in Figure 6.

The testing client’s port is configured with IPv6
addresses representing the B4. The testing tool also supports
the DS-Lite “level” where the number of clients connected to
each B4 and their addresses are configured. The AFTR
address is defined at this level.

In this test group, the total number of B4 elements is
5000 behind; one client is connected to each B4 (in total,
5000 clients are configured). However, the number of active
users varies from 10 to 100, 500, 1000 and 5,000 during each
testing simulation. We configured five servers with IPv4
addresses. These servers support HTTP and FTP traffic. For
each HOST_ID TCP Option, we repeated the testing for a
different number of active users (N=10, 100, 500, 1000 and
5,000) and for HTTP and FTP traffic. The HOST_ID
Options are injected by the CGN.

The testing duration was about 50 seconds during which
the number of active users varies as a function of time:
during the first 10s, the number of active users reaches the
maximum and remains the same for the next 20 s. Then it
decreases to zero during the next 20s. The same testing was
also run for FTP traffic. No particular impact on the
performance of the CGN (used in our testing) has been
observed.

Tables 6 and 7 show some testing statistics showing
details about connections' success ratio, latency and other
information that can be useful to evaluate the impact of
HOST_ID on the CGN (ISC-AFTR). The results clearly
show that there is no impact of HOST_ID Options on session
establishment success ratio, which is quite similar to the
success ratio when packets do not hold Options or when

HOST_ID Options are not used. Also, the number of
established connections does not decrease when any
HOST_ID Option is injected, so the CGN (ISC-AFTR)
performance is not impacted by the fact of adding the
HOST_ID Options. The HTTP connection latency does not
increase when HOST_ID is present if we compare the
latency measured at different times for the different Options.

VII. ENFORCE POLICIES AT THE SERVER SIDE

Internet-facing servers should be able to manipulate the
HOST_ID information. For illustrating purpose, we modified
iptables module to enforce policies based on the content of
the HOST_ID. The modification of the iptables module aims
to: strip any existing HOST_ID Option, match any
HOST_ID value, log the content of TCP headers including
the HOST_ID information, print the HOST_ID rules on
screen, drop packets holding a HOST_ID Option and drop
packets holding a specific HOST_ID value.

TABLE III. HTTP RESULTS (N=100)

TABLE IV. HTTP RESULTS (N=5,000)

We built a specific Kernel module to apply HOST_ID

matching rules on the packets passing through the network
interfaces. This module compares the HOST_ID Options’
values hold by packets with the HOST_ID values specified
in the iptables rule table: when a packet matches the
HOST_ID’s range, the corresponding rule will be applied for
this packet. After updating the iptables package with the
required HOST_ID libraries, we enforced and tested
different HOST_ID policies at the server side. Testbed

 No Option HOST_ID O-Enabled

TCP connection

established

1662 1813 1679

TCP SYN sent 1718 1819 1726

Success Ratio 96 99 97

TCP Retries 1577 1783 1576

TCP timeouts 798 934 808

Latency t=20s 1,7 1,9 1,8

t=30s 3,3 2,25 3,3

t=50s 5 4,5 5

HTTP throughput 47,56 48,59 48,06

TCP connections

Established/s

20,94 21,35 21,19

 No Option HOST_ID O-Enabled

TCP connection

established

1576 1796 1998

TCP SYN sent 1794 2009 2262

Success Ratio 87 89 88

TCP Retries 3018 3013 3149

TCP timeouts 1167 1213 1417

Latency t=20s 2,2 2,2 2,5

t=40s 3,7 3,3 3

t=60s 7,8 7 5,6

HTTP throughput 45 51,45 57,2

TCP connections

Established/s

19,8 22,45 25,05

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

configuration shown in Figure 5 is used for the testing. The
AFTR supports injecting HOST_ID Options and iptables
modules have been patched at the local server. Logging is
performed only for received SYN packets. A specific file is
generated for that purpose.

To strip a given HOST_ID Option, TCPOPTSTRIP rule
must be applied. The verification consists in logging and
then checking the headers of the SYN packets, precisely the
TCP Options: e.g., the following rules must be enforced to
strip HOST_ID from a received SYN packet:

iptables -t mangle -A INPUT -j TCPOPTSTRIP -p tcp --

strip-options hostid

iptables -A INPUT -j LOG --log-tcp-options -p tcp --syn

The first rule applies for the mangle table and allows
stripping HOST_ID whose role is to remove Option and
replaces them by NOP Options (NOP=No Operation=0x01).
The second rule enables the logging of SYN packets with the
corresponding TCP Options. After applying these rules (i.e.,
to strip and log HOST_ID) on the local server, we tried to
access the local server’s pages from the host. We repeated
the testing several times and a different HOST_ID Option is
enabled by the AFTR each time. Then the “iptables.log” file
is checked: only one SYN packet is logged with 4 bytes
stripped out in the TCP Option part. All IPv4 packets going
through the AFTR are also logged to compare with the
server’s logged stripped packets. The comparison of the
SYN packets logged by the server with the SYN packets sent
by the AFTR clearly shows that the stripped Option is
HOST_ID. The remote server should be able to track
connections coming from different clients; it should log
packets headers including the HOST_ID TCP Option
information. This is implemented owing to a simple
command:

iptables -A INPUT -j LOG --log-tcp-options -p tcp --syn

To log packets matching a given HOST_ID value or
range of values, the following rule must be enforced:

iptables -A INPUT -p tcp --syn -m hostid --hostid

value[:value] -j LOG --log-tcp-options

This command matches the HOST_ID values conveyed in

SYN packets with the specific value [or the specific range of
values] determined by the configured rule. The value to
match for HOST_ID is the content of HOST_ID_Data.

When the HOST_ID Option is injected by the CGN, if the
data field value corresponds to the iptables value (or range of
values), the packet header is logged. Otherwise, if the
HOST_ID data is out of range or the packet does not hold the
HOST_ID Option, the packet is not logged. To drop packets
matching HOST_ID value (or a range of values), the
following command must be executed:

iptables -A INPUT -p tcp --syn -m hostid --hostid value

[:value] -j DROP

The HOST_ID Option is enabled at the CGN level. After
applying the previous rule, hosts try to access HTTP content
of the local server. A host sends SYN packets but the server
does not respond. Because this packet matches the iptables
matching value, the corresponding rule is applied to the SYN
packets: a SYN packet is dropped so the host does not
receive any packet in return. While the host is still trying to
retrieve pages by sending SYN packets, the command
‘iptables –F’ will flush all iptables rules. Once applied, the
host establishes successfully a TCP session with the server.

VIII. CONCLUSION AND NEXT STEPS

Both implementations of HOST_ID Option at the Linux
Kernel TCP stack and the CGN demonstrated that HOST_ID
support is feasible and not complex. Testing, conducted
using different testbed configurations, has led to: no impact
is induced by injecting HOST_ID TCP Options on TCP
session establishment delay, only few HTTP servers did not
respond when HOST_ID Option was present. The success
ratio is not significantly impacted, FTP session success ratio
is slightly impacted by the presence of HOST_ID Options
(0.44% of connection failures have been observed for 2045
servers), no impact of HOST_ID Options on the performance
of the CGN (ISC-AFTR), SSH and Telnet sessions were
established successfully, filtering and logging the incoming
connections based upon the content of HOST_ID Option
information were applied and tested successfully. Further
work will focus on security implications of revealing a host
identifier.

REFERENCES

[1] M. Bagnulo, P. Matthews and I. van Beijnum, “Stateful

NAT64: Network Address and Protocol Translation from

IPv6 Clients to IPv4 Servers”, RFC 6146, April 2011.

[2] M. Boucadair, J. Touch, P. Levis and R. Penno, “Analysis of

Solution Candidates to Reveal a Host Identifier in Shared

Address Deployments”, draft-ietf-intarea-nat-reveal-analysis,

February 2012.

[3] A. Durand, R. Droms, J. Woodyatt and Y. Lee, “Dual-Stack

Lite Broadband Deployments Following IPv4 Exhaustion”,

RFC 6333, August 2011.

[4] R. Fonseca, G. Porter, R. Katz, S. Shenker and I. Stoica, “IP

options are not an option”, UCB/EECS- 2005-24, 2005.

[5] M. Ford, M. Boucadair, A. Durand, P. Levis and P. Roberts,

“Issues with IP Address Sharing”, RFC 6269, June 2011.

[6] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley

and H. Tokuda,, “Is it still possible to extend TCP?”,

November 2011, http://nrg.cs.ucl.ac.uk/mjh/tmp/mboxes.pdf.

[7] ISC AFTR, http://www.isc.org/software/aftr [retrieved: June,

2012].

[8] A. Medina, M. Allman and S. Floyd, “Measuring the

Evolution of Transport Protocols in the Internet”, ACM CCR,

35(2):37–52, 2005.

[9] R. Moskowitz, P. Nikander, P. Jokela and T. Henderson,

“Host Identity Protocol”, RFC 5201, April 2008.

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

[10] A. Petersson and M. Nilsson, “Forwarded HTTP Extension”,

draft-ietf-appsawg-forwarded-for, January 2012.

[11] P. Srisuresh and K. Egevang, “Traditional IP Network

Address Translator”, RFC 3022, January 2001.

[12] W. Tarreau, “The Proxy protocol”, November 2010, http://

haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

[retrieved: June, 2012].

[13] Y. Wu, H. Ji, Q. Chen and T. Zou, “IPv4 Header Option For

User Identification In CGN Scenario”, draft-chen-intarea-v4-

uid-header-option, March 2011.

[14] A. Yourtchenko and D. Wing, “Revealing hosts sharing an

IP address using TCP option”, draft-wing-nat-reveal-option,

December 2011.

[15] Alexa, http://www.alexa.com/topsites [retrieved: June, 2012]

[16] FTP sites, ftp-sites.org [retrieved: June, 2012]

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

