
Formalizing and Verifying Anonymity of Crowds-Based Communication Protocols
with IOA

Yoshinobu KAWABE
Department of Information Science, Aichi Institute of Technology

1247 Yachigusa Yakusa-cho, Toyota, Aichi, Japan
kawabe@aitech.ac.jp

Abstract—Crowds is a communication protocol that guaran-
tees sender’s anonymity. As a case study, this paper provides
a computer-assisted anonymity proof for Crowds. To prove
anonymity, we first describe a simple specification of Crowds
with an I/O-automaton-based formal specification language.
Then, the specification is translated into first-order logic
formulae with a formal verification tool. Finally, by showing
the existence of an anonymous simulation, the anonymity
of Crowds is proved. In this proof, a theorem proving tool
is employed. Also, in this study, we formalize an extension
of Crowds that guarantees the anonymity with regard to a
recipient.

Keywords-anonymity; formal verification; Crowds; theorem-
proving

I. INTRODUCTION

On the Internet, there are many services and protocols
where anonymity should be provided. For example, an
electronic voting system should guarantee anonymity to
prevent the disclosure of who voted for which candidate.
When such services and protocols are developed, an anony-
mous communication system, such as Crowds [8], is often
employed as a sub-protocol.

It is important to prove the correctness of anonymous
communication systems. In the field of software engineer-
ing, there are formal method studies that have analyzed
distributed systems. There are also formal method studies
for anonymity, e.g. [4][9]; the method in [9] is a model-
checking approach, and the method in [4] incorporates
theorem-proving. In this study, based on the proof method in
[4] we verify that a Crowds-based communication protocol
is anonymous. To prove the anonymity, this study describes
a simple specification of the protocol with a formal speci-
fication language. The specification is translated into first-
order predicate logic’s formulae with a verification tool, and
the anonymity of Crowds is proved with a theorem prover.
This paper also specifies an extension [5][6] of Crowds
that guarantees recipient’s anonymity as well as sender’s
anonymity.

There are already studies [5][6][10] that analyzed Crowds-
based communication protocols. To analyze a Crowds-based
protocol, in this study we employ I/O-automaton and a
theorem proving tool; especially, the author believes that

this is the first attempt to describe [5]’s protocol with I/O-
automaton.

This paper is organized as follows. Section II illustrates
the notion of anonymity and its formalization. In Section III,
a formal specification of Crowds is described. In Section
IV, the specification is translated into first-order predicate
logic’s formulae, and the anonymity is verified with a
theorem proving tool. Section V formalizes an extension of
Crowds that guarantees the anonymity of a recipient. We
have discussions in Section VI.

II. PRELIMINARIES

This section first describes notations in I/O-automaton
theory [7]. Then, we explain the notion of anonymity and
its I/O-automaton-based formalization.

A. I/O-automaton
I/O-Automaton X has a set of actions sig(X), a set

of states states(X), a set of initial states start(X) ⊂
states(X) and a set of transitions trans(X) ⊂ states(X)×
sig(X) × states(X). We use in(X), out(X) and int(X)
as sets of input, output and internal actions, respectively;
that is, sig(X) = in(X) ∪ out(X) ∪ int(X). We assume
that in(X), out(X) and int(X) are disjoint. We define
ext(X) = out(X) ∪ in(X) whose element is called an
external action. For simplicity, this paper only deals with
I/O-automaton X satisfying in(X) = ∅; that is, we assume
that ext(X) = out(X).

To formalize anonymity, this paper employs a family of
actor action sets act(X) with the following conditions:

•
⋃

A∈act(X) A ⊂ ext(X)
• A and A′ are disjoint for any distinct A,A′ ∈ act(X).
Transition (s, a, s′) ∈ trans(X) is written as s

a→X s′;
we also write s →X s′ if a is internal. We define a relation
→→X as the reflexive transitive closure of →X . For any
a ∈ sig(X) and s, s′ ∈ states(X), we write s

a⇒X s′

for s→→Xs1
a→X s2 →→Xs′ with some s1, s2 ∈ states(X)

if a is external, or for s→→Xs′ if a is internal. For any
s0 ∈ start(X) and transition sequence α = s0

a1→X

s1
a2→X · · · an→X sn, the trace of α is the sub-sequence of

a1a2 · · · an consisting of all the external actions. In addition,
we write traces(X) for the entire set of X’s traces.

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

B. Basic notion of anonymity
We explain the basic notion of anonymity with the fol-

lowing example.
Example 1 (Donating anonymously): There are two peo-

ple, Alice and Bob, and we assume that only one of them has
made an anonymous donation. Alice was going to contribute
$5, while Bob was going to contribute $10.

I/O-automaton D1 in Fig. 1 describes the above situation.
Actions $5 and $10 of D1 are external actions to represent
a donation. I/O-automaton D1 has an initial state, and
only one of I’m(Alice) or I’m(Bob) is possible at
the initial state. Here, I’m(Alice) and I’m(Bob) are
special actions that specify the donor. For convenience, we
call I’m(Alice) and I’m(Bob) actor actions. We can
see that D1 is anonymous if an adversary who observed all
the occurrences of the non-actor actions cannot determine
which actor action of D1 occurred.

Q1: Suppose an adversary observed that $5 was posted.
Can the adversary deduce who is the donor?

In D1, action $5 can occur only when actor action
I’m(Alice) occurs. Thus, the adversary can deduce that
Alice made a donation. That is, D1 is not anonymous.

One reason for D1 not being anonymous is that an ad-
versary can know how much money was posted. To discuss
this aspect, the next question is considered.

Q2: A donation was posted in an envelope. Is this
donation anonymous?

We consider an operation to replace external actions $5
and $10 of D1 with a fresh external action env, and the
resulting automaton is called D2 (see Fig. 1). This operation
hides information on how much money was posted, so
we can see that this operation formalizes the encryption
of messages. With D2, an adversary who can detect the
occurrence of env cannot deduce which actor action is
possible. Hence, D2 is anonymous.

There are cases where we can establish the anonymity by
encrypting messages. But, there are cases where we cannot
establish the anonymity even though all the messages are
encrypted. To explain this, our final question is introduced.

Q3: Bob was going to post $10 in two envelopes each
containing $5. Is this donation anonymous?

Figure 1 also shows I/O-automaton D3, which describes the
above setup. In this case, an adversary can determine the
identity of a donor by counting the number of time that
env occurs. Therefore, D3 is not anonymous. This example
shows that a system might not be anonymous even though all
the messages are encrypted. Hence, to establish anonymity,
we should deal with patterns of communication such as
the number of messages or the existence/nonexistence of
a message.

C. Formalization of anonymity
If an eavesdropper cannot distinguish the trace set of

system X and that of X’s “anonymized” version, then we

can see that X is anonymous. The anonymized system is
formalized as follows.

Definition 1: Let X be an I/O-automaton. We define I/O-
automaton anonym(X) as follows:

• states(anonym(X)) = states(X),
• start(anonym(X)) = start(X),
• ext(anonym(X)) = ext(X),
• int(anonym(X)) = int(X),
• act(anonym(X)) = act(X),
• trans(anonym(X)) = trans(X)

∪ {(s1, a, s2) | (s1, a′, s2) ∈ trans(X)
∧ A ∈ act(X) ∧ a′ ∈ A ∧ a ∈ A}.

Definition 2: I/O-automaton X is trace anonymous if
traces(anonym(X)) = traces(X) holds.
For I/O-automata D1, D2 and D3 in Fig. 1, we can see that






traces(anonym(D1)))= traces(D1)
traces(anonym(D2)) = traces(D2)
traces(anonym(D3)))= traces(D3)

if we define act(D1), act(D2) and act(D3) as act(D1) =
act(D2) = act(D3) = {{I’m(Alice),I’m(Bob)}}.
This follows Section II-B’s result.

A simulation-based proof method for trace anonymity was
introduced in [4].

Definition 3 ([4]): Assume X is an I/O-automaton. An
anonymous simulation as of X is a binary relation on
states(X) that satisfies the following conditions:

1) as(s, s) holds for any initial state s ∈ start(X);
2) For any states s1, s2, s′1 ∈ states(X) and action

a ∈ sig(X), as(s1, s′1) and s1
a→X s2 implies the

following:
a) If a ∈ A for some A ∈ act(X) holds, for all

a′ ∈ A there is a state s′2 such that as(s2, s′2)
and s′1

a′

⇒X s′2;
b) If a)∈

⋃
A∈act(X) A, there is a state s′2 such that

as(s2, s′2) and s′1
a⇒X s′2.

Intuitively, for any states s1, s2 ∈ states(X) and anonymous
simulation as, as(s1, s2) iff s1 and s2 are indistinguishable
to an observer. The trace anonymity of an automaton can be
proved by finding an anonymous simulation.

Theorem 1 ([4]): If automaton X has an anonymous sim-
ulation, X is trace anonymous. !

III. CROWDS AND ITS FORMALIZATION

In this section, an overview of Crowds is described, and
we formalize Crowds with an I/O-automaton.

A. Overview of Crowds

Crowds consists of a collection of agents that can com-
municate with each other (see Fig. 2). To set up a com-
munication path to a website, agents employ the following
protocol:

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

D1 D2

D3

Figure 1. Formalizing Anonymous Donation

Figure 2. Crowds

The protocol of Crowds! "
phase 1 An initiator agent first generates a new

request;

phase 2 If an agent i has a request, then the agent
chooses another agent j randomly and
forwards the request to j. By forwarding
a request, agents i and j establish a link
with regard to the request;

phase 3 After the request has been forwarded
several times, some agent establishes a
connection to a website.# $

After making a communication path with the above protocol,
the initiator agent connects to a website. We assume that
an observer (i.e. an eavesdropper) can observe a connection
from a final agent to a website but the observer cannot
observe a connection among Crowds agents.

This paper introduces a spy process, which is a computer
virus that can read a message from the memory of a Crowds
agent and broadcast the message to the public. We say a
Crowds agent is ‘corrupt’ if the agent has a spy process.
That is, a corrupt Crowds agent can:

• forward a request to another Crowds agent;

• establish a connection to a website; and
• reveal from which agent a request comes.
We say the Crowds system is anonymous if an observer

cannot know which agent is the initiator agent. If there is no
spy process then the Crowds system is clearly anonymous.
However, it is not trivial in case of allowing spy processes.

B. Formalizing Crowds with IOA
Automaton crowds in Fig. 3 is a formal specification for

Crowds. This is written in IOA, which is an I/O-automaton-
based formal specification language. An IOA specification
has three portions:

• signature declares sorts and actions;
• states declares variables and initial values;
• transitions defines the body of actions, where

each action consists of a precondition (pre-part) and
an effect (eff-part).

A state of automaton crowds is a tuple of values pc,
mesIsAt, mesIsFrom and corrp. These values are as
follows:

• pc is a program counter of the Crowds system. The
value of pc ranges over:

– init: Crowds agents waiting for a new request
created,

– shuffle: Crowds agents making a communica-
tion path, and

– terminate: a communication path to a website
established;

• mesIsAt is an ID of an agent that has a request;
• mesIsFrom is an ID of an agent that had a request in

the previous step;
• corrp is an array of Boolean values. If corrp[i]

is true, then agent i is corrupt.
Automaton crowds has four actions start(i),

pass(i, j), out(i) and reveal(i, j). Specifi-
cally, these actions are as follows:

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

automaton crowds
signature
output start(i:ID)
internal pass(i:ID, j:ID)
output out(i:ID)
output reveal(i:ID, j:ID)

states
pc: PC := init,
mesIsAt: ID,
mesIsFrom: ID,
corrp: Array[ID, Bool]

transitions
output start(i) % actor action

pre pc = init
eff pc := shuffle;

mesIsAt := i;
mesIsFrom := i

internal pass(i, j)
pre pc = shuffle /\ i = mesIsAt
eff mesIsFrom := i;

mesIsAt := j

output out(i)
pre pc = shuffle /\ i = mesIsAt
eff pc := terminate

output reveal(i, j)
pre pc = shuffle

/\ i = mesIsFrom
/\ j = mesIsAt
/\ corrp[j]

eff do nothing

Figure 3. IOA specification for Crowds

• start(i) is an actor action, which represents that
agent i creates a new request;

• pass(i, j) represents that a request is forwarded
from agent i to agent j. This action is introduced
as internal, since we assume that the observer cannot
observe a connection between Crowds agents;

• out(i) represents that a final agent i establishes a
connection to the website. Since a connection to a
website is observable, out(i) is defined as an external
action.

• reveal(i, j) is an action for a spy process.
We can see that actions start(i), pass(i, j) and
out(i) formalize phases 1, 2 and 3 of the Crowds protocol,
respectively.

IV. THEOREM-PROVING ANONYMITY OF CROWDS

This section shows that crowds is trace anonymous. In
this proof, a theorem proving tool is employed.

A. Translating IOA into first-order logic
Larch [2] is a theorem prover based on first-order predi-

cate logic. I/O-automaton crowds is translated into Larch’s
language by IOA-Toolkit [1]. For example, the following is
the result of translation with regard to action start(i):

enabled(s, start(i)) <=> (s.pc = init)
effect(s, start(i)).pc = shuffle
effect(s, start(i)).mesIsAt = i
effect(s, start(i)).mesIsFrom = i
effect(s, start(i)).corrp = s.corrp

where
• s.α is the value of α at state s;
• enabled(s, a) is true iff action a is executable at

state s; and
• effect(s, a) is the successor state of s for action
a.

The first formula is for a precondition of action start(i),
and four equations are for a state change by start(i).

B. Computer-assisted anonymity proof for Crowds
Below is a binary relation over states(crowds):

as(s, s’)
<=> (s.pc = s’.pc

/\ (s.corrp[s.mesIsAt]
<=> s’.corrp[s’.mesIsAt])).

This means that states s and s’ are indistinguishable to an
observer iff:

• s.pc and s’.pc are the same; and
• A corrupt agent has a request at state s iff a corrupt

agent has a request at state s’.
We prove that as is an anonymous simulation. At first,

the condition 1 of Definition 3 is proved. Specifically, we
prove the following:

% --- Initial state condition
start(s:States[crowds]) => as(s, s)

where start(s) is true iff state s is an initial state. We
can easily prove this with the Larch prover.

Then, the step correspondence for actions pass(i, j),
out(i) and reveal(i, j) is proved; that is, we prove
condition 2-b in Definition 3. It suffices to show
% --- step correspondence condition
% --- for internal action pass(i, j)
(reachable(s1)
/\ reachable(s1’)
/\ as(s1, s1’)
/\ enabled(s1, a)
/\ effect(s1, a) = s2
/\ ˜anonymp(a)
/\ internal(a))
=> (\E s2’:States[crowds] (\E a’:Actions[crowds]

(as(s2, s2’)
/\ enabled(s1’, a’)
/\ effect(s1’, a’) = s2’
/\ internal(a’))))

and
% --- step correspondence condition
% --- for output actions (except start(i))
(reachable(s1)

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

/\ reachable(s1’)
/\ as(s1, s1’)
/\ enabled(s1, a)
/\ effect(s1, a) = s2
/\ ˜anonymp(a)
/\ output(a))
=> (\E s2’:States[crowds]

(enabled(s1’,
pass(s1’.mesIsAt,

s1.mesIsFrom))
/\ enabled(effect(s1’,

pass(s1’.mesIsAt,
s1.mesIsFrom)),

pass(s1.mesIsFrom, s1.mesIsAt))
/\ effect(effect(

effect(s1’, pass(s1’.mesIsAt,
s1.mesIsFrom)),

pass(s1.mesIsFrom,
s1.mesIsAt)), a)

= s2’
/\ as(s2, s2’)))

where
• reachable(s) is true iff state s is reachable from

an initial state;
• anonym(a) is true iff a is an actor action;
• internal(a) is true iff a is an internal action; and
• output(a) is true iff a is an output action.
Finally, we prove the step correspondence for actor action

start(i). It suffices to show
% --- step correspondence condition
% --- for actor action start(i)
(reachable(s1)
/\ reachable(s1’)
/\ as(s1, s1’)
/\ enabled(s1, a)
/\ effect(s1, a) = s2
/\ a = start(i))
=> (\A i’:ID (\E s’:States[crowds]

(\E i’’:ID (\E s2’:States[crowds]
(enabled(s1’, start(i’))
/\ effect(s1’, start(i’)) = s’
/\ enabled(s’, pass(i’, i’’))
/\ effect(s’, pass(i’, i’’)) = s2’
/\ as(s2, s2’))))))

and this is to prove condition 2-a in Definition 3.
All the conditions in this section can be proved with the

Larch theorem prover. Consequently, from Theorem 1, we
obtain the following result.

Theorem 2: crowds is trace anonymous. !
V. FORMALIZING 3-MODE CROWDS

Kono et al. introduced an extension [5][6] of Crowds
that guarantees recipient’s anonymity as well as sender’s
anonymity. In Crowds, an agent can either:

1) forward a request to another agent; or
2) establish a connection to a website.

We call the former action mode 1, and the latter is called
mode 2. In the extended version, a Crowds agent has another
mode, called mode 3, where an agent (say, i) can change
the destination of a request temporarily; the new destination
is i. By this change, the proper destination is hidden.

automaton crowds3mode
signature
output start(i:ID, j:ID)
internal pass(i:ID, j:ID)
internal loop(i:ID, j:ID)
internal out(i:ID)
output reveal(i:ID, j:ID)

states
pc: PC := init,
mesIsAt: ID,
mesIsFrom: ID,
mesIsTo: ID,
corrp: Array[ID, Bool],
lst: Array[ID, List[ID]]

:= constant(empty)

transitions
output start(i, j)

pre pc = init
eff pc := shuffle;

mesIsAt := i;
mesIsFrom := i;
mesIsTo := j

internal pass(i, j)
pre pc = shuffle /\ i = mesIsAt
eff mesIsFrom := i;

mesIsAt := j

internal loop(i, j)
pre pc = shuffle

/\ i = mesIsAt
/\ lst[i] = empty

eff lst[i] := mesIsTo -| empty;
mesIsTo := i;
mesIsFrom := i;
mesIsAt := j

output reveal(i, j)
pre pc = shuffle

/\ i = mesIsFrom
/\ j = mesIsAt
/\ corrp[j]

eff do nothing

internal out(i)
pre pc = shuffle

/\ i = mesIsAt
/\ i = mesIsTo

eff if lst[i] = empty then
pc := terminate

else
mesIsTo := head(lst[i]);
lst[i] := empty

fi

Figure 4. Formalization of Crowds with 3 modes

I/O-automaton crowds3mode in Fig. 4, which is a
modified version of crowds, formalizes this extension. For
crowds3mode, we introduced new variables:

• mesIsTo: ID of the destination of a request, and
• lst: list of an ID.

Variable lst is to store a destination of request and it is used
when a Crowds agent changes the destination. For mode 3,
automaton crowds3mode has action loop(i, j), and

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

actions start and out are modified.
Verifying the anonymity of crowds3mode with a theo-

rem prover is an interesting future work.

VI. DISCUSSIONS

This section discusses the strength of an adversary and a
probabilistic aspect of anonymity.

A. Introducing too strong adversaries cannot establish
anonymity

In crowds, transition s1
start(i)→ s2 by initiator i

can be simulated by an initiator j’s transition sequence

s1
start(j)→ p

pass(j, i)→ q
pass(i, i)→ s2.

This is essential for the anonymity of crowds. In order to
construct the transition sequence by j, we need the following
two conditions:

1) Action pass is internal;
2) We can construct a transition sequence that does not

contain action reveal.
The first condition guarantees that a communication

packet is invisible to an observer. We can easily see that
system crowds may not be anonymous if this requirement
is not satisfied; that is, if the occurrences of packets are
visible to an observer, then the Crowds system is not anony-
mous. The second condition is with regard to the timing of
attacker’s execution. In this paper’s example, an agent and
its spy process run concurrently, and the spy process may
miss to read the agent’s memory. If we employ a stronger
attacker such that the attacker can execute reveal(j, j)
immediately after the occurrence of start(j), then an
observer knows the identity of the initiator agent.

If an attacker is too strong, we cannot establish the
anonymity of a security protocol. This study employed
an attacker that was modeled with action reveal, and
the anonymity of crowds was confirmed with a theorem-
proving tool.

B. Probabilistic anonymity
This study analyzed Crowds in a nondeterministic set-

ting, since we employed a nondeterministic version of I/O-
automaton and a theorem proving tool. However, it is impor-
tant to deal with probabilities, and Crowds-based protocols
are actually analyzed in a probabilistic setting [5][6][8][10];
the original version of Crowds in [8] has a probabilistic
anonymity called “probable innocence”.

A probabilistic version of anonymous simulation tech-
nique is introduced in [3], and probable innocence is proved
with this technique for the original version of Crowds.
This proof is by induction on the length of execution
sequences, and the proof is done by hand; that is, it is not a
computer-assisted proof. It is an interesting future work to

provide a computer-assisted proof for probable innocence in
a probabilistic setting.

VII. CONCLUSION

This paper presented a computer-assisted anonymity proof
of Crowds. Specifically, to enable us to prove the anonymity,
we described Crowds with an I/O-automaton, and verified
the existence of an anonymous simulation. In this verifica-
tion, a theorem proving tool based on first-order predicate
logic was employed.

This paper also formalized an extended version of
Crowds with an I/O-automaton. The extended version
crowds3mode guarantees the anonymity with regard to the
proper recipient. As future work, we are planning to verify
the anonymity of crowds3mode with a theorem proving
tool.

ACKNOWLEDGMENT

This study is supported by the Grant-in-Aid for Young
Scientists (B), No.23700024, of the Ministry of Education,
Culture, Sports, Science and Technology, Japan.

REFERENCES

[1] A. Bogdanov, Formal verification of simulations between I/O-
automata, Master’s thesis, MIT (2000).

[2] S. J. Garland, J. V. Guttag, J. J. Horning: An overview of
Larch, LNCS 693, pp. 329–348. Springer (1993).

[3] I. Hasuo, Y. Kawabe, H. Sakurada, Probabilistic anomymity
via coalgebraic simulations, Theoretical Computer Science,
Vol. 411, No. 22-24, pp. 2239-2259 (2010).

[4] Y. Kawabe, K. Mano, H. Sakurada, Y. Tsukada: Theorem-
proving anonymity of infinite-state systems, Information Pro-
cessing Letters, vol. 101, no. 1, pp. 46–51 (2007).

[5] K. Kono, Y. Ito, N. Babaguchi: Anonymous communication
system using probabilistic choice of actions and multiple
loopbacks, Proc. Information Assurance and Security (IAS),
pp. 210-215 (2010).

[6] K. Kono, Y. Ito, N. Babaguchi: Anonymous communication
system based on multiple loopbacks, Journal of Information
Assurance and Security, vol. 6, no. 2, pp. 124-131 (2011).

[7] N. A. Lynch: Distributed algorithms, Morgan Kaufmann
Publishers (1996).

[8] M. K. Reiter, A. D. Rubin: Crowds: anonymity for Web
transactions, ACM Trans. on Information and System Secu-
rity, vol. 1, no.1, pp. 66-92 (1998).

[9] S. Schneider, A. Sidiropoulos: CSP and anonymity, Proc.
ESORICS ’96, LNCS 1146, pp. 198–218, Springer (1996).

[10] V. Shmatikov: Probabilistic model checking of an anonymity
system, Journal of Computer Security, vol. 12, no. 3/4, pp.
355-377 (2004).

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

INTERNET 2012 : The Fourth International Conference on Evolving Internet

