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Abstract—In this paper, a new method to automate the tuning 

process of PID controllers is presented. The designed method, 

based on genetic algorithms, tunes PID systems that control the 

QoS requirements in Long-Reach PONs. This new tuning 

technique has been compared with the manual Ziegler-Nichols 

frequency response method. The simulation results have 

demonstrated that the new technique efficiently automates the 

tuning process, which leads to a reduction in the tuning time 

and a higher accuracy. 

Keywords- Proportional-Integral-Derivative (PID); Passive 

Optical Network (PON); tuning process; Dynamic Bandwidth 

Allocation (DBA); Class of Service (CoS); Service Level 

Agreement (SLA); bandwidth guarantees; delay guarantees. 

I.  INTRODUCTION 

Passive Optical Networks (PONs) and Long-Reach 
Passive Optical Networks (LR-PONs) are the most 
preferable networks infrastructures in the today’s access 
deployment [1]. In fact, the number of PON subscribers in 
Asia Pacific remains 80 million subscribers by the end of 
2012, whereas in America this number is 11 million and in 
Europe near 16 million users [2]. However, in Europe, 41.5 
million households are expected to be biber access 
subscribers by means of PON infrastructures at end of 2017. 
On the other hand, current access networks have to deal with 
different kind of users which contract a Service Level 
Agreement (SLA) with a provider and different kind of Class 
of Services (CoS) with different priorities. Therefore, users 
are guaranteed some network requirements, typically related 
to a minimum bandwidth level or a maximum delay for high 
priority CoS. Consequently, it is highly necessary that 
Dynamic Bandwidth Allocation (DBA) algorithms cover one 
or both premises. Even more, it is quite suitable that 
algorithms comply with the network requirements by means 
of a real time and automatic readjustment. Some algorithms 
take into account both objectives in a very efficient way [3]-
[6]. Hence, one typical way to guarantee bandwidth or delay 
bounds to different priority subscribers is using fixed weights 
assigned to each ONU according to its SLA. Hence, ONUs 
that belong to a higher priority SLA, are assigned a larger 
weight, so they are given more bandwidth [7][8]. However, 
fixed factors do not adapt the PON performance to different 
traffic patterns or network conditions, so if service providers 
do not properly adjust the initial weights, the network should 
automatically evolve to the requirements established by the 

service provider. Thus, it is essential that the network 
becomes independent of the initial weights or conditions. 
Therefore, algorithms based on Proportional-Integral-
Derivative (PID) controllers are able to robustly and 
efficiently manage the allocated bandwidth to comply with 
different guaranteed bandwidth levels [5] or maximum delay 
requirements [6]. Indeed, these algorithms based on PID 
controllers have demonstrated better performance than other 
existing algorithms that control these network parameters 
(bandwidth, delay) in PON networks [5][6]. This kind of 
controllers is extensively used due to its simple structure, 
robustness and good performance [9][10]. In connection with 
this type of control, PIDs require a tuning process in order to 
achieve a reliable response according to the established 
objectives. However, in contrast to previous existing 
algorithms based on PIDs to control network parameters in 
PON infrastructures [5][6], which use the well-known 
Ziegler-Nichols frequency response method, we propose to 
tune the PID controller using a Genetic Algorithm (GA). 
Although, the Ziegler-Nichols frequency response method is 
a very widespread technique, it is a manual method based on 
experiments. Thus, this manual nature may convert it into a 
very time-consuming and tedious technique. Contrary, the 
use of GA allows an automatic and fine tuning process, with 
less tuning time and better accuracy than manual techniques.  

Therefore, in this paper a GA is developed to tune the 
PIDs of the previous developed algorithms [5] and [6] to 
automatize the tuning process and to improve their 
performance when controlling the bandwidth and the delay 
network parameters. The rest of this paper is organized as 
follows. Section II describes the genetic algorithms 
developed to auto-tune PID controllers to control network 
parameters in LR-PONs. Section III presents the simulation 
results and the discussion. Section IV addresses the 
conclusions of the paper. 

II. GENETIC ALGORITHMS TO AUTO-TUNING PID 

CONTROLLERS TO CONTROL NETWOK PARAMETERS 

A. Genetic algorithm to tune a PID to control the bandwith 

allocation in PONs 

A PID controller is designed to keep the value of a 
variable close to a desired value [11]. Therefore, the PID 
calculates the error, defined as the difference between the 
current value of the variable and its reference value. 
According to this committed error (e[n]), it calculates the  
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Figure 1.  Block diagram of the proposed PID controler tuned with a GA to ensure guranteed bandwidth levels to differnet priority profiles. 

control signal u[n] following (1), which is the equation that 
models the PID in the discrete time. It is composed by three 
terms, the proportional term manages the current error, the 
integral one regards the accumulation of past errors, and the 
derivative term makes a prediction of future errors [11].  
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The first proposed algorithm, called Genetic Algorithm 
Service level agreement PID (GA-SPID), keeps the mean 

allocated bandwidth of each ONU ( )ionu

allocB close to its 

guaranteed bandwidth, which depends on its contracted 

SLA ( ).isla onu

guaranteeB


 GA-SPID assigns bandwidth to each 

Optical Network Unit (ONU) at every cycle, ionu

allocB , using a 

polling policy with a limited scheme, defined as 

 , max ,i i ionu onu onu

alloc demandB Minimum B B where ionu

demandB  is the 

bandwidth demanded by ONU i in one cycle (in bytes). To 
include the control of the PID in the bandwidth allocation 

( ),ionu

allocB  the term max
ionu

B is updated by adding the control 

signal. Therefore, the maximum bandwidth allowed to each 

ONU, max ,ionu
B  is dynamically updated depending on the 

committed error, that is, the difference between the mean 
allocated bandwidth and the required bandwidth 

[ ] .i isla onu onu

guarantee alloce n B B


  In case that one ONU demands less 

bandwidth than its guarantee value, the PID only offers its 
demand because the remaining bandwidth up to its 
guarantee level will be unused by the ONU and the EPON 
performance could become inefficient. Finally, the system 
includes a delimiter which reduces the maximums 
proportionally to the ones calculated by the controller, to fit 
in the maximum cycle time of the Ethernet PON (EPON) 
standard (2 ms). Fig. 1 shows the block diagram of the 
proposed PID for the bandwidth assignment (GA-SPID).  

On the other hand, the parameters Kp, Ti and Td  of (1) 
have to be tuned so that the control system will be stable 
and meet the established objectives. Among the existing 
techniques, the frequency response method proposed by 
Ziegler-Nichols [9][11] has become an easy and very high 
spread technique, especially when a mathematical model is 
not available, as in our system. It gives simple and 
experimental rules by only considering the proportional 

response ( , 0i dT T   ) and then the gain is increased until 

the process begins to oscillate. When this happens, the gain 
is defined as the ultimate gain (Ku) and the oscilation period 

is defined as the ultimate period (Tu). With both variables, it 
is possible to obtain Kp, Ti and Td following a simple 
relation [11]. This method has been previously used in [5] to 
tune the PID for the bandwidth allocation process in a PON 
network. However, it can be noticed that it is a manual 
technique that sometimes may become a time-consuming 
and laborious method if the selected values are quite far of 
the suitable ones. Therefore, we propose an automatic 
method based on genetic algorithms to select the tuning 
parameters in a very efficient way. This method, as well as 
the Ziegler-Nichols method, is an offline tuning method, 
carried out just before the PON activates the PID which 
controls the network parameters. Indeed, genetic algorithms, 
which are efficient searching techniques used to optmize 
parameters and processes,  have been included in the tuning 
process of PID controllers in many fields. In the literature, 
there are some proposals in different chemical and industrial 
applications [12][13]. In the Telecom field, it could be found 
one genetic algorithm that tunes a PID controller with the 
aim to improve the network utilization [14]. 

In order to design the novel tuning method, the main 
steps of genetic algorithms were followed. The first step 
regards the definition of the chromosome. In our system, 
each chromosome consists of the three tuning parameters 
(Kp, Ti, Td) coded in a binary chain (16 bits per parameter), 
since this type of codification improves the efficiency of the 
genetic algorithm for this application [12]-[14] (Fig. 2).  

 

Figure 2.  Appearance of a chormosome of the tuning parameters 

After that, a random initial population is created. For the 
specific application of tuning a PID, the number of 
individuals that compose the population may become 
critical due to the strong dependence between the population 
size and the tuning time. Indeed, a low population size leads 
to a fast evolution of the algorithm towards the optimum 
tuning values. The next step consists of evaluating the 
fitness of each member of the population. Since the 
objective of the algorithm is to minimize the error between 
the desired output and the one obtained, to calculate the 
fitness of one specific individual, an objective function 
based on the committed error of the PID using this 
individual (Kp, Ti, Td), during m iterations of the PID has 
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been used. Specifically, the objective function for one 
individual is defined according to (2), where Nonus is the 
number of ONUs in the PON and ei[m] is the error 
committed by ONU i in the m iteration of the PID. 

0

1 1
[ ]

onusN

i

m ionus

F e m
m N 

                       (2) 

 Therefore, those individuals with the lowest error 
(which are the fittest) have a high probability to be selected 
for the next iteration of the genetic algorithm, in which a 
new generation is created. Once the fitness evaluation of 
each individual is finished, the genetic algorithm checks the 
stop criterion. If the criterion is not satisfied, the algorithm 
repeats the process with the next generation. To generate a 
new population, the genetic algorithm selects individuals 
according to its fitness and it applies the crossover and 
mutation operators. Furthermore, in GA-SPID we have 
considered elitism, which means that the fittest individual in 
each generation is retained unchanged, so that the best 
solution is not lost. If the stop criterion is satisfied, then the 
best individual of the population is used to tune the PID. 
Specifically, the stop criterion selected for our proposal is to 
reach a maximum number of generations, which allow us to 
establish a fixed duration of the tuning process. A flow 
diagram with the steps of the genetic algorithm is shown in 
Fig. 3. 

 

Figure 3.  Flow diagram of the genetic algorithm used to tune the PID 

controller 

B. Genetic algorithm to tune a PID to control the mean 

packet delay of priority services 

The algorithm Genetic Algorithm Delay aware Service 
level agreement PID (GA-DaSPID) is able to control the 

maximum delay of different priority services by modifying 
the maximum bandwidth of each SLA using a simple P 
controller, which is a simplification of the PID controller 
which only considers the proportional term of (1). The block 
diagram of the algorithm is shown in Fig. 4. Since this 
algorithm controls the mean packet delay, the reference 
value is the maximum permitted delay stipulated by the 
service provider for the j classes of service with restrictive 

delay depending on the contracted k SLA ( )k

j

sla

PR . The term 

under control is the instantaneous mean packet delay for 

each j class of service of each k SLA [ ]( )k

j

sla

P nr . In order to 

calculate the instantaneous error (e[n]) of one ONU which 
belongs to the SLA k, it is necessary to carry out the sum of 
every individual committed error in each service j in order to 
guarantee the delay restrictions to each j class of service, that 

is, ( [ ])k k

j j

sla sla

P P

j

e R nr  . On the other hand, to calculate 

the control signal u[n], (1) is applied with only the 
proportional term, since a P controller has demonstrated the 
best performance for this concrete application [6]. To obtain 

the new maximum permitted bandwidth ( max
ionu

B ), the control 

signal u[n] is subtracted from the previous maximum 
permitted bandwidth. In this way, if for example the mean 

packet delays of all j services of ONUi [ ]( )k

j

sla

P nr are higher 

than their maximum packet delay ( )k

j

sla

PR , the error becomes 

negative, so the algorithm increments the maximum 
permitted bandwidth to allow ONUi to decrease its mean 
packet delay so that it can comply with the delay restrictions. 
In contrast, if the mean packet delays of all j services of 

ONUi [ ]( )k

j

sla

P nr are lower than their maximum packet delay

( )k

j

sla

PR the error becomes positive and the P controller 

reduces its maximum allocated bandwidth. As in the 
previous algorithm, the designed P controller is equipped 
with a delimiter (Fig. 4). 

As in GA-SPID, a new method to efficiently tune the P 
controller by using a genetic algorithm is proposed. Since 
the controller only consists of the proportional term, the 
tuning parameters are reduced to Kp. Consequently, the 
chromosome is a binary code of 16 bits that represents only 
this parameter (Kp). Furthermore, the steps of the genetic 
algorithm are the same as those represented in the flow 
diagram of Fig. 3. Finally, the objective function of the 
algorithm is also (2). 

III. RESULTS AND DISCUSSIONS 

A. Simulation scenario of the LR-PON 

We have designed a LR-EPON network with 16 ONUs 
and one user connected to each ONU using OPNET 
Modeler v.16 [15]. The upstream and downstream 
transmission rates are 1 Gbit/s whereas the transmission rate 
from users to each ONU is 100 Mbit/s. The distance 
between ONUs and the Optical Line Terminal (OLT) is 
100 km. The maximum cycle time according to the EPON 
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Figure 4.  Block diagram of the proposed P controller tuned with a GA to control delay requirements in priority services in PONs 

 
 standard is 2 ms [16]. Traffic follows a Pareto distribution 
with a Hurst parameter H equal to 0.8, with variable packet 
length between 64 and 1500 bytes, plus the 38 bytes of the 
packet headers It has been assumed symmetry in the traffic 
load of every ONU, as in [1][3]-[8]. Furthermore, GA-SPID 
considers three SLAs (SLA0, SLA1, SLA2) with their 
corresponding guaranteed bandwidth levels of 100 Mbps, 75 
Mbps and 50 Mbps, to be controlled by the PID. Regarding 
GA-DaSPID, it takes into account three services, P0 for the 
highest priority traffic (interactive), P1 for the medium 
priority traffic (responsively) and P2 for the non-critical 
traffic (best-effort). P0 assumes the 20% of the total network 
load, and P1 and P2 the 40% of the total load, as in [6].  
Furthermore, it considers three SLAs (SLA0, SLA1, SLA2), 
so each delay-sensitive service (P0, P1) is set a different 
bound delay depending on the priority of the profile. In fact, 
Table I summarizes the delay bounds considered in GA-
DaSPID, which are the same that those proposed by other 
algorithms [4][6]. 

TABLE I.  DELAY BOUNDS FOR EACH CLASS OF SERVICE AND 

SERVICE LEVEL AGREEMENT CONSIDERED IN GA-DASPID 

Class of 

Service 

Delay bound 

value 
Applications 

P0 1.5 ms 
VoIP, videoconference, interactive 

games, Telnet 

P1 

SLA0: 5 ms Voice Messaging 

Web-browsing HTML 
E-mail 

Transaction services 

SLA1: 20 ms 

SLA2: 60 ms 

P2 Not limited Bulk data 

 
The parameters related to the execution of the genetic 

algorithm for both algorithms are specified in Table II. 
These parameters have been selected by running previous 
simulations, and choosing those parameters which allows 
both, a good performance and a short tuning time. To justify 
the selection of these parameters, Fig. 5 represents the mean 
committed error (in bits) of the best individual in each 
generation when considering different population sizes and 
number of iterations in GA-SPID.  As it can be observed, the 
error is reduced as the number of generations increases for 
every combination of population size and number of 
iterations. However, the worst performance is achieved for a 
population of 15 individuals and a number of iterations equal 
to 2. For the remaining combinations, the results are similar. 
Thus, a population of 20 individuals with 2 iterations is 
selected, since it leads to the lowest tuning time. 

 

TABLE II.  MOST IMPORTANT PARAMETERS OF THE GENETIC 

ALGORITHM IN GA-SPID AND GA-DASPID 

Parameters of the genetic algorithm GA-SPID GA-DaSPID 

Selection method Roulette wheel Roulette wheel 

Threshold of  tuning parameters (0,5] (0,5] 

Cross probability 0.9 0.9 

Mutation probability 0.01 0.01 

Elitism yes yes 

Population size 20 individuals 15 individuals 

Stop criteria 10 generations 10 generations 

Iterations of the PID to update fitnesss 2 iterations 5 iterations 

 

 
Figure 5.  Evolution of the mean committed error of the best individual of 

each generation when considering different population sizes and number of 

iterations of the PID in GA-SPID. 

A similar analysis has been carried out in the algorithm 
GA-DaSPID. Thus, Fig 6 represents the committed error (in 
seconds) of the best individual in each generation when 
considering different population sizes and number of 
iterations. It can be seen that the best performance is 
obtained with a population of 15 individuals and a number of 
iterations of the PID equal to 5.  

Finally, in both algorithms the number of generations of 
the stop criterion is fixed to 10, because high number of 
generations increases the tuning time, but the reduction of 
the error (as it can be observed in Fig. 5 and Fig. 6) is not 
remarkably.   
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Figure 6.  Evolution of the mean committed error of the best individual of 

each generation when considering different population sizes and number of 

iterations of the PID in GA-DaSPID. 

B. Simulation study of GA-SPID 

The objective of GA-SPID is to guarantee minimum 
bandwidth levels to different priority profiles using a PID 
controller.  In contrast to SPID [5], designed for the same 
purpose but tuned with the Ziegler-Nichols method, GA-
SPID incorporates a genetic algorithm to automatically tune 
the PID. In order to emphasize the importance of a correct 
tuning process of the PID controller, Fig. 7 and Fig. 8 show 

the real time evolution of max
ionu

B and the mean value of ionu

allocB

for the SLA1 profile, respectively, considering different 
values for the tuning parameters. In particular, we compare 
the genetic algorithm solution, with the Ziegler-Nichols 
solution used in [5] and a random configuration of the 
tuning parameters. As it can be observed in Fig. 7, the 
genetic algorithm obtains more stability in the maximum 
permitted bandwidth than the Ziegler-Nichols or the random 
solution. Besides, Fig. 8 demonstrates the same performance 
for the evolution of the mean allocated bandwidth. In fact, 
the genetic algorithm achieves a more stable response than 
the other two tuning methods when approaching to the 
guaranteed bandwidth of SLA1 profile (75 Mbps).  
Therefore, the importance of optimizing the tuning process 
to design a reliable PID can be stated by observing the bad 
performance of the random tuning parameter in both graphs. 

 
Figure 7.  Real time evolution of the maximum permitted bandwidth for 

the SLA1 profile considering different values for the tuning parameters 

 

Figure 8.  Real time evolution of the mean allocated bandwidth for the 

SLA1 profile considering different values for the tuning parameters 

On the other hand, the Ziegler-Nichols method is 
completely manual, based on visual oscillations of the 
controlled variable for different values of Kp. Therefore, if 
the chosen values are quite far from the suitable ones, the 
tuning process may become very slow. Once a value of Kp is 
selected, the performance when it tunes the PID during a 
regular interval have to be observed. In case fluctuations at 
the end of the interval keep high, another Kp value is 
necessary. In contrast, if fluctuations are low and kept inside 
a maximum and a minimum threshold, the selected value 
can be considered as a good Ku and it can be used to tune the 
PID. Therefore, to compare the tuning process time of the 
genetic algorithm and the Ziegler-Nichols method, we 
propose to automate this last method. This way, we consider 
a random initial value of Kp (between (0,5], as in the genetic 
algorithm) and its performance is observed during 300 
seconds (a good interval to observe a more or less stable 
response). If fluctuations of the mean allocated bandwidth 
keep over the 10% above and below of the guarantee 
bandwidth (that is, the desired value for the variable under 
control), Kp moves to another value in steps of 0.1. Once the 
Kp value reaches the higher value of its interval (in this case 
5),  the following Kp values are obtained from the random 
initial value in descending steps of 0.1 until the end of the 
lower threshold of the interval (in this case 0). The selected 
value of the step affects the tuning time. In fact, if a higher 
precision is needed, the step of 0.1 can be smaller, but it 
implies a higher tuning time. In contrast, if the step value 
increases, it could be difficult to achieve a good tuning 
process. On the other hand, when the oscillations are within 
the margin of 10%, the tuning process is finished. As an 
example, Fig. 9 represents the evolution of the mean 
allocated bandwidth of the SLA2 profile when the initial 
value of Kp is set to 2.7. Moreover, in blue and referred to the 
axis on the right, the variation of the Kp values is represented. 
As it can be observed in the graph, for this initial random 
value of Kp the tuning process last over 10000 s, since this 
value is far from the range of optimal Kp values. Obviously, 
if the initial random value is near that range, the tuning 
process ends more quickly.  
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Figure 9.  Tuning time of the Ziegler-Nichols method for the SLA2 profile 
for a initial Kp of 2.7 

On the contrary, the tuning time in GA-SPID is lower. 
Indeed, the tuning time in this algorithm is given by (3), 
where N is the population size of the genetic algorithm, m is 
the number of iterations of the PID in which each individual 
is tested to obtain its fitness, Tsample is the sample time used 
by the PID controller to obtain each error and NGen is the 
number of generations of the stop criterion.  

               tuning sample GenT N m T N                                   (3) 

Therefore, considering the values of Table II, and with a 
Tsample equal to 1 s (which is a suitable value for GA-SPID), 
the maximum tuning time for GA-SPID is equal to 400 s.  
Hence, the great difference between both algorithms as 
regards the time to tune the PID can be noticed. 
Consequently, the main advantage of GA-SPID is related to 
the automation of the process, which involves a high 
reduction of the processing time. Moreover, thanks to the use 
of a genetic algorithm a more complete evaluation of the 
solution space is carried out, which leads to a more accurate 
tuning. 

C. Simulation study of GA-DaSPID 

The main purpose of GA-DaSPID, as in DaSPID [6], is 
to control the mean packet delay of delay-sensitive 
applications taking into account client differentiation. This 
control is especially critical for high and medium network 
loads, when it is indispensable to efficiently assign the 
available resources so that all users comply with their 
network requirements. However, whereas in DaSPID the 
tuning process is made following the frequency response 
method of Ziegler-Nichols, GA-DaSPID uses a genetic 
algorithm. Therefore, in order to show the performance of 
GA-DaSPID, Fig. 10 and Fig. 11 represent the mean packet 
delay of P1 for SLA1 and SLA2, respectively, for the highest 
network load, that is, ONUs transmitting at 100 Mbit/s. 
Only the performance of this class of service and these two 
user profiles is represented due to the lack of space. 
However, the performance of P0 service for every profile 
and P1 service for the SLA0 profile is similar. 

 

 

Figure 10.  Real time evolution of the mean packet delay of P1 for the SLA1 

profile considering different values for the tuning parameters 

As it can be observed in Fig. 10 and Fig. 11, an optimum 
selection of the tuning parameters is essential to ensure a 
quick evolution of the mean packet delay under the limits 
specified for each profile. In fact, it can be appreciated that 
the not optimized solution is not able to keep the mean 
packet delay under the delay limits even in 800 s. In 
contrast, both Ziegler-Nichols and GA-DaSPID achieve this 
objective in less than 50 s. In this case, the differences 
between Ziegler-Nichols and GA-DaSPID are quite small, 
since the genetic algorithm has proposed a very similar 
solution to the Ziegler-Nichols method to tune the P 
controller.  

 

Figure 11.  Real time evolution of the mean packet delay of P1 for the SLA2 

profile considering different values for the tuning parameters 

Regarding the comparison of the tuning time in both 
algorithms, Fig. 12 shows the results for the automated 
Ziegler-Nichols method to ensure delay limited bounds for 
SLA2 profile when the initial Kp value is equal to 2.1. In this 
case, the allowed range of fluctuations is a 30% above and 
below of the delay bound (60 ms). As it can be noticed, for 
this initial random value, the tuning time is higher than 
11000 s. Obviously, if the initial Kp value is near the optimal 
Kp values, the tuning time will be lower.  
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Figure 12.  Tuning processing time of the Ziegler-Nichols method for the 

SLA2 profile for a initial Kp of 2.1 

In contrast, for the GA-DaSPID algorithm, the tuning 
time is also given by (3). Thus, according to the parameters 
of Table II and with a Tsample time of 10 s (which is the 
optimal value to control the delay [6]), the tuning time in 
GA-DaSPID is 7500 s. Therefore, the main advantage of 
GA-DaSPID is the efficient automation of the tuning 
process, which leads to a lower tuning time, as it happened in 
GA-SPID. 

IV. CONCLUSIONS 

In this paper, the development of a genetic algorithm to 
tune PID controllers that have been designed to efficiently 
provide Quality of Service (QoS) in PON networks has been 
presented. In particular, one PID controller focuses on 
guaranteeing minimum bandwidth levels to different priority 
profiles, whereas the other one aims to provide delay 
requirements to different priority classes of service. In 
contrast to manual tuning techniques, such as the Ziegler-
Nichols frequency response method, the genetic algorithm 
speeds up and automatically adapts the tuning process 
according to the stipulated objectives. 

In order to demonstrate the benefits of this proposal over 
manual techniques, we have compared its performance with 
the Ziegler-Nichols frequency response tuning method. 
Simulation results have shown that the genetic algorithm 
efficiently automates the tuning process. Indeed, for the PID 
controller with bandwidth guarantees, the genetic algorithm 
allows a more stable response than Ziegler-Nichols for the 
mean allocated bandwidth and the maximum permitted 
bandwidth to every SLA. Regarding the P controller, which 
provides delay guarantees, the genetic algorithm achieves 
more stability of the mean packet delay of the high priority 
traffic (P0, P1). Furthermore, another important advantage of 
the genetic algorithm is a significant reduction of the tuning 
time, since, as it has been demonstrated, the Ziegler-Nichols 
method could become extremely time-consuming and quite 
tedious when calculating the tuning parameters. 
Consequently, the implementation of genetic algorithms to 
tune PID controllers provides a more accurate, efficient and 
fast performance than manual techniques, such as the 
Ziegler-Nichols frequency response method. 
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