
IoTSEAR: A System for Enforcing Access Control
Rules with the IoT

Andreas Put

imec-DistriNet, KU Leuven
Leuven, Belgium

andreas.put@kuleuven.be

Bart De Decker

imec-DistriNet, KU Leuven
Leuven, Belgium

bart.dedecker@kuleuven.be

Abstract—Internet of Things (IoT) environments are composed
of heterogeneous sensors and devices that collect and share
contextual information. This data can improve the accuracy and
usability of access control systems, as authentication and autho-
rization requirements can be specified more precisely. However,
certain security requirements need to be enforced in order to
use such data in access control decision processes. In short,
the data must be authentic, recent, and unforgeable. In this
paper, we present a generic model for context, which takes data-
security into account along with properties about the device, or
context-source. Security-objects, such as message signatures, are
modeled as proofs, which are verifiable, while information about
the context-source, communication channel, and the data itself
is captured as meta-data. This model allows an access control
system to verify the authenticity and trustworthiness of context-
data by (1) checking the presence of a specific proof and verifying
it, and (2) analyzing the associated meta-data. It covers not only
data from IoT sources, but also authorization and identity tokens.
In addition, we present IoTSEAR, a middleware for trustworthy
context-aware access control, which uses this model internally.
Finally, we show performance results of our IoTSEAR prototype,
which show that the overhead is low and that the system is usable
even on commodity hardware.

Keywords–Access Control, Security, Internet of Things

I. INTRODUCTION

The rapid advancement of computing technologies has
led to the paradigm shift from static device configurations
to dynamic ubiquitous environments. Such a shift brings with
it opportunities and challenges. On the one hand, users demand
access to software services or information resources in an
anytime, anywhere fashion. On the other hand, access to
such services or resources needs to be carefully controlled,
due to the additional security challenges and threats coming
with dynamically changing environments. Consider a home-
care setting in which IoT technologies enable the elderly
and patients recovering from invasive treatments to stay in
their own home instead of a healthcare facility. In such
an environment, automation capabilities can facilitate the
homeowner’s day-to-day activities, while caregivers provide
routine care to the inhabitant. The home is equipped with a
smart lock, which automatically opens to the caregiver if (1)
the patient is present in the home, (2) the health care provider
authenticates the caregiver when she scans her NFC badge,
and (3) the visit was scheduled. The home is equipped with an
access control server, which accesses patient’s presence status
through a presence detector. Furthermore, the healthcare facility

operates a federated access control service through which an
(authenticated) identity is obtained using the output from an
NFC terminal, which is integrated in the smart lock. Finally
this identity is used to verify whether the visit is scheduled.

The access controller is required to combine different types
of contextual information, whose properties and origin are
completely different. The calendar service could authenticate
itself with an SSL certificate, and the information it provides
can be signed, while the presence detector sends its information
over a Bluetooth channel without additional security controls.

Using context information empowers access control sys-
tems with extra capabilities and flexibility. However, it also
opens up new attack vectors. Therefore, the following issues
have to be addressed: (1) identifying the context information
and associated context sources that satisfy a set of security
requirements for it to be used in the access control decision
process; (2) defining policies to specify context-aware access
permissions; (3) enforcing these access control policies.

In order to address the first issue, we have developed a
generic model for context, taking into account the device,
or context-source, that produces the context information and
the environment it was collected in. In addition, abstractions
in this model encapsulate both context generated from IoT
environments, and by (third party) access control systems, such
as authorization tokens and identity assertions. System designers
are able to translate security requirements to a set of conditions
on properties of this model. Examples of such requirements are:
the context must originate from a trusted device (authenticity
+ integrity), the connection must be end-to-end secured, or the
context must be explicitly linked to a specific person.

The second issue defines the requirement for a context-
aware access-control policy language. IoTSEAR supports the
PACCo policy language [1] by default. However, it can be
extended so support other policy languages as well.

To address the third issue, we propose IoTSEAR, a context-
aware access control middleware designed for IoT applications.
The IoTSEAR middleware framework is designed with the same
design principles in mind as the Priman framework [2]. Priman
provides application developers with secure and privacy-friendly
authentication mechanisms in a developer-friendly manner.
It offers a generic, easy to use API with simple, intuitive
concepts by isolating the security- and technology-specific
details into configuration policies. This separation of concerns
between application developers and security experts furthermore

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet

increases the manageability of systems, as service providers are
able to modify authentication mechanisms at run-time, without
requiring application code modifications. As IoTSEAR’s design
follows these principles, its implementation should result in
a usable (from a developer’s point of view), configurable
(from a service provider’s point of view), and extensible
middleware. Moreover, while Priman is an authentication
framework, IoTSEAR is a general access control middleware.
It includes support for context-aware authorization, distributed
authorization schemes and authentication schemes.

This work presents two main contributions:

• A generic model for context in an IoT-based access
control setting. This model also encapsulates infor-
mation related to data-security and data-origin, with
which a third party is able to verify the authenticity
and trustworthiness of the context information.

• The architecture, prototype implementation, and bench-
marks of IoTSEAR, a system for enforcing access
control rules in IoT environments.

This paper is structured as follows: Section II contains
an overview of the related work, after which the generic
model for context is explained in Section III. Furthermore,
Section IV details the IoTSEAR middleware, which is discussed
and evaluated in Section V.

II. RELATED WORK

Automation is a central goal in many IoT ecosystems [3].
Several existing solutions [4] rely on cloud infrastructure to
specify and enforce policies. Another cloud-based approach
that defines intents and scopes on which these intents will
have an effect is described in [5]. Besides academic initiatives,
commercial solutions, like Google Cloud IoT [6], Home
Assistant [7] and OpenRemote [8] offer intuitive cloud-based
support to create automation rules. Similar to access control
systems, a set of policy rules consisting of a set of conditions
that must be fulfilled to trigger one or more actions are specified
and enforced. However, the heterogeneity of IoT devices and
the fact that many devices have low capabilities open new
attack vectors [9]–[11]. An extensive access control framework
to manage access to devices, however, is still missing [12].

Attribute-based access control (ABAC) [13] is a general
purpose access control model which allows access rights to
be constrained based on the attributes of subjects, objects,
actions and the environment. In an ABAC policy, a logical
expression consisting of attribute information is defined as a
conditional rule. The applicability of such a policy to a request
is determined by matching the attributes in the request and the
environment to the attributes in the policy. The application of
ABAC to the IoT has seen much interest in the last decade [14].
However, the potentially large amount of attributes required to
establish dynamic policies is a challenge.

Capability-based access control (CapBAC) [15] defines a
capability as a self contained key or token, that references a
target object or resource along with an associated set of access
rights. This allows for fine-grained, flexible access control, as
holding such a token access to only those resources that are
necessary for the holder’s legitimate purpose. CapBAC has
seen much interest in the IoT-sphere [16]–[19]. However, to
our knowledge, no system exists that combines support for (1)
attributes, capabilities and context in authorization, (2) dynamic

verification controls for the used context, and (3) support
for authentication into a complete access control middleware.
IoTSEAR accomplishes this by building on previous work [1],
[2], and with our context model (Section III), as all objects are
internally handled as generic context structures.

PACCo [1] is a system that focuses on the secure and
privacy-friendly collection of contextual information, after
which capability tokens can be issued. Furthermore, a protocol
is proposed in which personal verifiable context can be verified
in a privacy-friendly, unlinkable, manner. This type of context
allows a third party to cryptographically verify the authenticity
and ownership of certain contextual information (i.e. the
information is authentic and it belongs to the subject that
makes the access request). The PACCo policy language, is a
context-aware policy language which focuses on expressing
rich context-based requirements and also considers the security
requirements that appropriate context sources must adhere to.
This policy language is used as the default policy language for
the IoTSEAR implementation, in large part due to its capability
to express such security constraints. However, the IoTSEAR
architecture allows to support other policy languages as well.

III. A GENERIC MODEL FOR CONTEXTUAL INFORMATION

In order to uniformly reason about different types of
contextual information and their security properties, a generic
model for context in access control is proposed in this section.

A. Context in access control
Abowd et al. [20] specifies a broad definition of context:

“Any information that can be used to characterize
the situation of an entity. This entity is a person,
place, or object considered relevant to the interaction
between a user and an application, including the user
and applications themselves.”

IoT environments produce a wide variety of information that
is useful to take into account when making access control
decisions. Some examples are: the current location of a subject,
the proximity of a subject to a sensor or even to a specific
person, the current time, etc. For access control systems, three
context origins are clearly distinguishable:

a) IoT Device: The situation of an entity or environment
is measured by, and accessible through IoT devices. For
example, networked sensors and smart devices.

b) System state: The access controller’s internal state
is an important source of context, such as the current session
information, connection type, internal database and clock.

c) Third party/Cloud Service: The information about a
particular entity can be provided by a third party, such as a cloud
service or a database. This information is often signed by the
provider, and/or it is obtained through a secure, authenticated
connection. Certificates, identity and authorization tokens are
produced by these sources.

When access control systems consider not only system state
information, but also information originating from sensors
and third party services, they can enforce more context-
rich policies. However, the context information that does not
originate from the system itself should not be treated as
trustworthy, but as potentially faulty or even dangerous. Indeed,
the external context source (i.e. the sensor or third party) can

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet

-type : string

-value : byte[]

Attribute
-type : string

-value : byte[]

AttributeMetaData

-identifier : string

Source

-type : string

-value : byte[]

SourceMetaData

-identifier : String

Subject

-proof : AuthenticityProof

Entity

-sources : Source[]

Environment

-type : string

-proofOrigin : Source

Proof

OwnershipProof AuthenticityProof

IntegrityProof

IoTDevice

AuthorizationServer

IdentityProvider

CloudService

Proxy

1 0..1 1 *

1

*

1

0..1

1*

Figure 1. Model for context: the core element is Attribute, while Source, and Proof complete the set of the three most important elements.

be compromised, spoofed, or the context information could
be forged or replayed. Therefore, it is essential that context is
validated before it is used in critical application functions. Such
validation strategies can range from simple input validation
and error correction to integrity and authenticity validation,
depending on the use case.

B. Context Model
In order to uniformly reason about different types of

contextual information, their security requirements and the
validation thereof, a generic model for contextual information
is proposed. This model defines the concept of “contextual
information” as an Attribute. This element has a variety of
(optional) associated elements, that are dependent on the manner
of context collection, or the environment in which the context is
collected. Different validation strategies are possible depending
on the availability of certain optional elements. The generic
model for context is illustrated in Fig. 1.

Attribute: The core of the model is the Attribute element,
which has a value and an type field. The value represents the
raw output from the attribute’s Source. This can range from a
sensor-reading to an identity assertion or an authorization token.
The type determines the actual type of the attribute, which also
implies the encoding. The Attribute is the model’s core, all
other elements are optional. Attributes can have associated
AttributeMetaData elements. This element also has a type
and value fields. Examples of AttributeMetaData are: the
time when the attribute is collected, the accuracy of a sensor
reading, or other information related to the Attribute.

The Attribute is related to a Subject, which is either an
Entity, or an Environment. Each distinct subject has a unique
identifier. An Environment is characterized by the set of
sources that are active in this particular environment. Entities
represent people (or their personal device). An Entity contains
a proof field, which is used to verify the authenticy of the
Subject’s identifier (see Proof paragraph below).

Source: A Source is either an IoTDevice (sensor, actuator,
smart device), but it can also be a Proxy, CloudService Autho-
rizationServer, or an IdentityProvider. A Proxy acts similar to
network proxy for a set of IoT devices (i.e. an Environment).
Every source is uniquely identified by its identifier field.
Similar to the Attribute element, the Source can have associated
SourceMetaData. Examples are: the source’s owner, operator,
location, software version, device attestation status, etc.

Proof: The model supports three Proof kinds: Ownership-
Proof, AuthenticityProof and IntegrityProof. Each proof has a
type field, which has a similar function to the attribute’s type.
A Proof has a proofOrigin field, which verifiably links it
to its source. In addition, Proxies are able to add proofs and
meta-data to the context structures that it relays. However, this
depends on the scenario and system configuration.

Attributes that are used to establish an authenticated
identity (e.g. [id=‘Alice’, location=‘room123’]) must contain
an OwnershipProof, which links an Attribute to a specific
Entity in a verifiable manner. For example, proving ownership
of a certificate (and the attributes it contains) is done by
proving knowledge of the certificate’s private key, i.e. by
signing a nonce. Note that a protocol for capable IoT devices
(e.g., smartphone, proxy device) to create ownership proofs of
contextual information is detailed in [1]. An AuthenticityProof
allows to verify whether a specific source produced an attribute
(e.g., a message signature). Finally, the IntegrityProof shows
that the attribute value has not been modified or corrupted. Note
that both Ownership- and AuthenticityProof are IntegrityProofs.

C. Instances of the context-model
To illustrate the flexibility of the generic model for context,

it is applied to two distinct context types, which are extracted
from the scenario illustrated in the introduction: (1) a sim-
ple Bluetooth beacon reading (presence context), and (2) a
SAML [21] identity assertion (authenticated identity).

type = attribute:type:array:deviceID

value = [..., 00:1B:44:11:3A:B7, ...]

deviceID : Attribute

value = 1583246897

type = att-data:ts

timestamp :

AttributeMetaData

identifier = mySmarthome:gateway

gateway : Proxy
sources = [gateway, bt-beacon]

identifier = mySmarthome

env : Environment

gateway-signature :

AuthenticityProof type = dev-data:net-sec

value = BLE-SM1L2

net-sec : SourceMetaData

identifier = mySmarthome:proximity

bt-beacon : IoTDevice

Figure 2. The context model applied to a proximity sensor reading

Fig. 2 shows the modeled context from a proximity
sensor (e.g., a Bluetooth beacon). All types and identifiers,
and their implications (value-encoding, device configuration,
supported Attribute- and Source-MetaData types) are known
to the system. In this example, the deviceID attribute has
a timestamp as meta data, while the associated source

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet

(bt-beacon) has associated meta data detailing the wireless
network security properties: BLE-SM1L2, or Bluetooth Low
Energy, security mode 1 level 2, meaning ‘unauthenticated
pairing with encryption’. The environment in which the attribute
is collected (env) is a room consisting of bt-beacon and
gateway, a device which acts as a proxy to bt-beacon.

type = samlAttribute:subject

value = Alice

saml-UID : Attribute

type = samlAttribute:subject:role

value = caretaker

saml-role : Attributetype = att:type:samlToken

value = <samlp:Response ...

saml-token : Attribute

type = att-data:ts

value = 1583246600

timestamp : AttributeMetaData

type = saml:AuthnContextClassRef

value = NFCBadge

authnContext : AttributeMetaData

type = att-data:expiration-ts

value = 1593561600

not-after : AttributeMetaData

identifier = https://idp.my-healthcare.com

healthcare-IDP : IdentityProvider
proof = saml-signature

identifier = Alice

subject : Entity

proofOrigin = healthcare-IDP

type = xmldsig#rsa-sha1

saml-signature :

AuthenticityProof

Figure 3. The context model applied to a SAML identity assertion

Fig. 3 shows the modeled context from a SAML
response, received from a third party identity provider
(healthcare-IDP). The value of the main attribute,
saml-token, is the full content of the SAML response.
This response asserts the values of two identity-attributes:
‘subject=Alice’ and ‘role=caretaker’. The meta data attributes
(timestamp, not-after, authnContext) are extracted
from the raw SAML response, as is the saml-signature,
which is modeled as an AuthenticityProof.

IV. IOTSEAR
The IoTSEAR middleware has two main responsibilities:

managing contextual information and enforcing context aware
access control rules.

A. Context management

Gathering context information is done by accessing IoT sen-
sors, cloud services, and processing identity- and authorization-
tokens. When IoTSEAR receives context data, it creates a
context structure that conforms to the context model using
the received data itself and known information about the envi-
ronment, its devices and network properties. Fig. 4 illustrates
three different ways of context collection. The middleware
can process third party objects from a cloud service, identity
provider (IDP) or authorization server (AS). Furthermore, part
of the middleware can run on capable IoT devices, such as a
smartphone. The IoTSEAR software running on these devices
will read the sensor data and construct a context structure
conforming to the model. Depending on the configuration,
verification proofs are added to this structure. Proxy devices
function similarly: they access the sensor readings, create the
context structure, and (optionally) add a verification proof.
Additionally, devices running the full middleware can act as a
Proxy in addition to Identity Provider and Authorization Server.

Context DB is the database containing all context structures.
Note that most types of contextual information have a limited
lifetime. Hence, this database is regularly pruned of old context
structures. The second database, Environment DB, contains
information from which the SourceMetaData is constructed.
Moreover, this database is initialized with all required verifica-
tion objects: certificates, shared keys, and trust-relationships.

Access Controller

Context DB

D

Phone

Cloud Service/
IDP / AS

GPS sensor
read sensor / add
ownership proof

(DEV)

Environment
Information

D

process context

Sensor1

Proxy Gateway

read sensor /
add authenticity

proof (GW)
Sensor2

Policy Enforcement

Figure 4. Context processing for three distinct sources.

Figure 5. Context aware authentication and authorization

During Policy Enforcement, the middleware analyses the
set of applicable policies. The necessary context structures are
retrieved from Context DB. Absent context structures can be
created at run-time by accessing the appropriate sources, after
which all information is known to enforce the policies.

B. Context aware Authentication and Authorization
The typical IoTSEAR transaction is divided in four stages

(see Fig. 5). The system has access to a set of context structures,
represented in the figure by the ‘context cloud’. The first stage
starts when the system receives a request from a user. An
appropriate authentication policy is selected based on the user’s
claimed identity. Here, the system can determine that stronger
authentication is appropriate (e.g., two factor authentication), or
that a more relaxed authentication is suitable, using predefined
rules specified in policies. Note that the request itself also
produces contextual information (i.e. session info), which can
be used in the next steps, or subsequent transactions.

Biometric context and identity objects from third parties
can be involved in the authentication phase. Afterwards, the
system will produce a new Authentication token. These two
steps can be skipped in case the user already authenticated, or
authentication/identification is not necessary.

The authorization policy selection occurs analogous to
the authentication policy selection. After the desired policies
have been selected, their conditions are evaluated. The actions
associated with those policies whose condition is satisfied are
allowed or denied, according to the policy effect. Finally, when
approved, an authorization token is created.

C. Architecture
The high-level architecture of the access control middleware

is shown in Fig. 6. Applications interact with the middleware

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet

by inserting a policy enforcement point (PEP) in their code.
This is a code block in which a a policy decision request is sent
to the middleware, or more specifically, to a policy decision
point (PDP). The PDP can be located on a different device or
network. The request contains information, such as the type
of event (e.g., an access request, an authentication request,
etc.) and the (claimed) identity of the subject. The high-level
architecture of IoTSEAR is divided in three main components:

a) Abstraction layer: In this layer, the abstractions
and APIs used by developers are defined. In addition, the
mechanisms with which the plugins are loaded, initialized and
configured are implemented in this layer.

b) Plugin Layer: This layer encapsulates the plugins and
extensions that are available. These plugins contain the actual
functionality implementations of the IoTSEAR middleware.

c) Middleware Configuration: This component contains
the environment-specific configurations, and the middleware
configuration settings. Policy mappings enable the middleware
to load the correct plug-ins with identifiers found in the policies.

The main APIs for application developers are located in
the abstraction layer. This layer defines the interfaces to which
each plugin must comply. The Context Model component is also
located in this layer. Next, the API, abstractions and plug-in
managers for a PDP, Policy Engine and Policy Repository are
defined in this layer. These three components are responsible for
policy selection and authorization. The Authentication Engine,
on the other hand, is responsible for loading and executing the
correct authentication plugin.

The Plugin-layer contains the plugins that are active
in the system. The Crypto primitives component contains
implementations for cryptographic operations, such as the
different encryption, hashing and signature algorithms that
are required to perform authentication, and to verify context
structure. The PDP implemenations component contains, as the
name suggests, implementations for different PDPs. Different
PDPs (e.g., LocalPDP, TlsPDP, ...”) support different commu-
nication methods (e.g., through a local or a TLS socket). The
Policy Rules component contains the implementation of every
condition and matching function in the policy language (see [1]).
Hence, extending the policy language can be accomplished by
defining a new plugin. Using the same strategy, it is also
possible to support a completely different policy language. The
authentication protocols component contains the extensions
that execute a specific authentication protocol. This component,
together with the Authentication Engine originates from the
Priman Framework [2] (with minor adaptations).

V. DISCUSSION AND PRACTICAL EVALUATION

This section entails a discussion on how contextual security
requirements are enforced by IoTSEAR in addition to a
performance analysis of the middleware.

A. Enforcing security requirements
In order to enforce security requirements on context used in

access control decisions, the PACCo policy language [1] allows
policy conditions to be labeled with a security attribute. This
security attribute corresponds to a set of security requirements
to which the used context must comply.

One possible security attribute configuration is inspired by
the Eurosmart Security Assurance levels [22]:

Context Model PDP Policy Engine Policy
Repository

Authentication
Engine

Crypto Primitives PDP Impl. Policy Rules Repository
Impl.

Authentication
Protocols

PEP1 PEP2 PEP

App Logic App Logic

Policy Mappings

MW
Configuration

Env.
configuration

Figure 6. IoTSEAR Architecture

Basic: Minimize the basic risks of incidents.
Substantial: Minimize the known risks, and the risk of incidents
carried out by actors with limited skills and resources.
High: Minimize the risk of state-of-the-art attacks carried out
by actors with significant skills and resources.

These descriptions must be translated to a set of require-
ments on properties of a context structure. For example, basic
can require that the context Source is trusted, i.e. the Source
identifier is in a list of trusted sources

The level substantial can require the usage of a secure
network, and an authenticity proof in addition to the basic
requirements. Network information can be accessed through
the SourceMetaData. A whitelist of allowed network types must
be known, analogous to the list of trusted device identifiers.
This is also the case for the whitelist of allowed proof types.

The level high can require that the software of the context
source has no known bugs, that device attestation has been
recently performed, in addition to the substantial requirements.
The new requirements, however, require the used whitelists to
be regularly updated.

The IoTSEAR middleware allows the definition and en-
forcement of custom security requirements. This requires a
new plug-in to be created for each custom security attribute.
Every plug-in implements a single method, which has one
parameter, the context structure, and returns a boolean. Note
that all elements in the model are accessible through the context
structure. The security-attribute plugins are loaded based on
the name of the security attribute in a policy, and checked
by calling the single implemented method provided with the
appropriate context structure as argument.

B. Practical evaluation
The IoTSEAR prototype is implemented in Java, and was

tested on a machine with a 2,3 GHz Intel Core i5 processor and
16GB RAM. All test have been performed 100 times, and the
(in memory) ContextDB contains 100 000 context structures.
We show the average values in milliseconds (standard deviation
is noted between parentheses).

The first test measures the processing of a context structure.
Consider a worst case scenario, in which a SAML token is
processed. Our test token contained 7KB of XML data, which is
parsed and verified (SHA265 with RSA2048). Next, the context

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet

TABLE I. PERFORMANCE RESULTS BASED ON THE AMOUNT OF
POLICIES AND VERIFIED CONTEXT STRUCTURES (CS).

policies / CS Abs. Layer CS Verif. Evaluation Total

10 / 1 1 (0) 16 (3) 4 (0) 21
40 / 1 1 (0) 67 (5) 7 (0) 75

100 / 1 2 (1) 180 (9) 11 (0) 193

10 / 10 2 (0) 198 (11) 16 (1) 216
40 / 10 4 (2) 760 (32) 54 (3) 818

100 / 10 7 (3) 1902 (93) 143 (9) 2052

structure is created and serialized using Google’s protocol
buffer [23]. This whole process takes 34 ms (6).

Table I shows the evaluation times for sets of simple and
complex policies. The first policies that are evaluated are
simple and pose two constraints: “subject=randomID” and
“role=manager”, which are evaluated using one SAML context
structure. Next, complex policies are evaluated, which have
additional constraints and require 10 context structures to
evaluate. For both the simple and complex policies, the used
context must adhere to the high security level. Using the
example from Section V-A, this requires (for each CS) four
SourceMetaData values to be matched to a whitelist, timestamp
verification, and the verification of one AuthenticityProof
(SHA265 with RSA2048 signature). The overhead introduced
by the Abstraction Layer is minimal, while the verification
of the context structures (CS) requires the most time. This is
mainly due to the signature verification, which occurs 1000
times (100 x 10 structure) in the heaviest test. The amount of
context structures to verify (and their verification requirements)
have a large impact, but optimizations such as multi-threaded
or ahead-of-time CS verification are possible.

Consider the scenario from the introduction, where a
caregiver is given access to a patient’s home if (1) the patient is
present, (2) the health care provider authenticated the caregiver
when she scans her badge, and (3) the visit was scheduled. Only
one policy is evaluated, as it can be uniquely targeted by the
access request (subject=caregiver-id, action=door:open). The
healthcare-IDP is consulted at run-time, and has a response-
time of 1 second. Taking this into account, it takes 1052 ms
(4) to make this access control decision (of which 1021 is used
to request and verify the context from the healthcare-IDP).

VI. CONCLUSIONS

This paper presented a generic model for context and
described IoTSEAR, a middleware for context-aware access
control. IoTSEAR uses the current context to select the most
appropriate authentication and authorization policies. In doing
so, the dynamic adaptation of the access control mechanism
is facilitated. Furthermore, the security requirements of the
used context can be precisely tailored to any given application,
and are automatically enforced by the middleware. Finally, our
performance tests showed that the overhead is limited, and that
the middleware is suitable for commodity hardware.

REFERENCES

[1] A. Put and B. De Decker, “Attribute-based privacy-friendly access
control with context,” in International Conference on E-Business and
Telecommunications. Springer, 2016, pp. 291–315.

[2] A. Put, I. Dacosta, M. Milutinovic, and B. De Decker, “Priman: facili-
tating the development of secure and privacy-preserving applications,”
in IFIP International Information Security Conference. Springer, 2014,
pp. 403–416.

[3] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE communi-
cations surveys & tutorials, vol. 16, no. 1, 2013, pp. 414–454.

[4] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of
commercial frameworks for the internet of things,” in 2015 IEEE 20th
Conference on Emerging Technologies & Factory Automation (ETFA).
IEEE, 2015, pp. 1–8.

[5] S. Nastic, S. Sehic, M. Vögler, H.-L. Truong, and S. Dustdar, “Patricia–a
novel programming model for iot applications on cloud platforms,” in
2013 IEEE 6th International Conference on Service-Oriented Computing
and Applications. IEEE, 2013, pp. 53–60.

[6] Google cloud iot. Accessed on 06-10-2020. [Online]. Available:
https://cloud.google.com/solutions/iot/

[7] Home assistant. Accessed on 06-10-2020. [Online]. Available:
https://www.home-assistant.io/

[8] Openremote. Accessed on 06-10-2020. [Online]. Available:
https://openremote.io/

[9] R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,”
Computer, no. 9, 2011, pp. 51–58.

[10] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the
internet of things: perspectives and challenges,” Wireless Networks,
vol. 20, no. 8, 2014, pp. 2481–2501.

[11] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wagner,
“Smart locks: Lessons for securing commodity internet of things devices,”
in Proceedings of the 11th ACM on Asia conference on computer and
communications security. ACM, 2016, pp. 461–472.

[12] M. Hossain, R. Hasan, and A. Skjellum, “Securing the internet of things:
A meta-study of challenges, approaches, and open problems,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
Workshops (ICDCSW). IEEE, 2017, pp. 220–225.

[13] E. Yuan and J. Tong, “Attributed based access control (abac) for web
services,” in IEEE International Conference on Web Services (ICWS’05).
IEEE, 2005.

[14] A. Ouaddah, H. Mousannif, A. A. Elkalam, and A. A. Ouahman, “Access
control in the internet of things: Big challenges and new opportunities,”
Computer Networks, vol. 112, 2017, pp. 237–262.

[15] L. Gong et al., “A secure identity-based capability system.” in IEEE
symposium on security and privacy, 1989, pp. 56–63.

[16] F. Malamateniou, M. Themistocleous, A. Prentza, D. Papakonstantinou,
and G. Vassilacopoulos, “A context-aware, capability-based, role-centric
access control model for iomt,” in International Conference on Wireless
Mobile Communication and Healthcare. Springer, 2016, pp. 125–131.

[17] D. Hussein, E. Bertin, and V. Frey, “A community-driven access
control approach in distributed iot environments,” IEEE Communications
Magazine, vol. 55, no. 3, 2017, pp. 146–153.

[18] D. Hussein, E. Bertin, and V. Frey, “A community-driven access
control approach in distributed iot environments,” IEEE Communications
Magazine, vol. 55, no. 3, 2017, pp. 146–153.

[19] S. Pal, M. Hitchens, V. Varadharajan, and T. Rabehaja, “Policy-based
access control for constrained healthcare resources in the context of the
internet of things,” Journal of Network and Computer Applications, vol.
139, 2019, pp. 57–74.

[20] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in International symposium on handheld and ubiquitous
computing. Springer, 1999, pp. 304–307.

[21] S. Cantor, J. Kemp, N. R. Philpott, and E. Maler, “Assertions and
protocols for the oasis security assertion markup language,” OASIS
Standard (March 2005), 2005, pp. 1–86.

[22] Eurosmart iot certification scheme. Accessed on 06-10-
2020. [Online]. Available: https://www.eurosmart.com/eurosmart-iot-
certification-scheme/

[23] Protocol buffers. Accessed on 06-10-2020. [Online]. Available:
https://developers.google.com/protocol-buffers/

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-796-2

INTERNET 2020 : The Twelfth International Conference on Evolving Internet

