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Abstract—We model the autonomous path planning problem as
a three-objective minimization problem with the constraint of
collision free. We optimize the three objectives of distance, time,
and traffic congestion, measured by the inverse of road network
congestion index, with Non-dominated Sorting Genetic Algorithm
II (NSGA-II) using real time traffic information on the road.
In order to reduce the domino effect of congestion, we propose
a novel technique to improve our optimization algorithm with
road point clustering using Speed Performance Index (SPI) based
similarity measurement. Our experiment shows that NSGA-II
with clustering produces more congestion smart solutions than
NSGA-II without clustering.

Keywords–Internet of Things. Autonomous Path Planning.
Collision Free. Multi-Objective Optimization. NSGA-II. Traffic
Clustering. Affinity Propagation.

I. INTRODUCTION

Long Term Path planning for an autonomous vehicle is
a complex task. Autonomous planning algorithms should be
efficient and, most importantly, avoid traffic collisions. The
efficiency of the algorithm is usually measured by the travel
time and/or travel distance [1] under dynamic real time traffic
conditions on the road network. With the importance of re-
ducing greenhouse emission, being traffic aware and choosing
less congested paths have become important objectives as well
[2]. The traffic on the road adds some constrains in route
planning. Depending on the real time traffic condition, the
shortest path may not be the fastest route, or the “greenest”
route (least congestion), or the safest route (collision-free).
While this paper does not consider the steps for an autonomous
vehicle after the initial long term path planning, such as short
term maneuvers and decision making, we argue that it is
important to generate more than one path at the path planning
stage to provide the decision making process with alternative
paths for different preferences of the sometimes conflicting
objectives. Therefore, we model our autonomous path planning
task as a multi-objective optimization problem [3]. The multi-
objective optimization problem is to solve the minimization
or maximization of N conflicting objective functions fi(x)
for i ∈ [1, N ], simultaneously, subject to equality constraint
function gj(x) = 0 for j ∈ [1,M ] and inequality constraint
function hk(x) ≤ 0 for l ∈ [1,K], where the decision
vectors x = (x1, x2, ...xn)

T belongs to the nonempty feasible
region S ⊂ Rn [4] [5]. Solution x1 dominates x2 if two
conditions are satisfied: 1) ∀i ∈ [1, N ]: fi(x1) ≤ fi(x2), and
2) ∃j ∈ [1, N ]: fi(x1) < fi(x2). Solution x1 is also called
the non-dominated solution. The goal of the multi-objective

optimization problem can also be modeled as finding the
Pareto front that has the set of all non-dominated solutions.
Multi-objective optimization problems are often NP-hard [5].
Therefore, exact or deterministic algorithms are infeasible.

A road network can be modeled as a planar graph, where
the nodes represent road points, and edges represent road
segments. This graph may be considered as static or dynamic
(time-dependent), and as deterministic or stochastic with re-
spect to different aspects of the network. We consider our road
network as dynamic and stochastic taking into consideration
the effect of real-time traffic that changes over time. Evolution-
ary algorithms, based on natural and biological systems, have
been adapted to solve dynamic optimization problems. Genetic
algorithms is one such common evolutionary algorithm. Evolu-
tionary meta-heuristics have applications in difficult real-world
optimization problems that possess non-linearity, discreteness,
large data sizes, uncertainties in computation of objectives and
constraints, and so on [5] [6] .

We model the autonomous path planning problem as a
three-objective minimization problem: that is, minimization of
distance, time, and traffic congestion, with collision avoidance
as the constraint. We consider one of the most applicable
evolutionary algorithms, Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II) [7] in this paper. We further improve our
optimization algorithm using real time traffic information on
the road. The road network exhibits both spatial and temporal
locality. Spatial because a congested road affects other roads
within its neighbourhood and temporal because the traffic
spreads over a period of time. This creates a domino effect
on the road network. We propose an innovative technique
to solve the route planning problem on this traffic network.
We propose to cluster road points based on traffic conditions
and integrate the clusters with the multi-objective optimization
algorithm to reduce the domino effect of congestion. The paper
is organized as follows. Section II discusses the related work
in multi-objective path planning using NSGA-II and traffic
clustering. Section III provides the formal problem statement,
objectives and assumptions. Section IV explains the workings
of our algorithm. Section V shows our experiment result
and analysis, including visualization of the pareto front and
alternative routes. Finally, Section VI concludes the paper with
a summary and thoughts for future work.

II. RELATED WORK

Chitra and Subbaraj [8] use NSGA to minimize cost
and delay of the dynamic shortest path routing problem in
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computer networks. The authors show that the pareto approach
generates more diverse pareto optimal solutions than the single
objective weighting factor method based on Genetic Algorithm
(GA). NSGA-II is an improvement of the NSGA algorithm
in terms of diversity preservation and speed. In [9], timeli-
ness reliability and travel expense are considered as the two
objectives in path planning on a stochastic time-dependent
transportation network. A route between an origin-destination
pair is encoded as a variable-length chromosome in the NSGA-
II to find the pareto-optimal routes. A road network, consisting
of main streets in Beijing is considered as the case study. The
selection of the route from the resulting pareto-front is said
to be dependent to the travelers’ decision based on their risk-
sensitivity and cost-sensitivity.

Rauniyar et al. [10] formulate the pollution-routing prob-
lem with two objectives, minimization of fuel consumption
(CO2 emissions), and minimization of total distance to be
traversed by multiple vehicles. The authors incorporate a
new paradigm of evolutionary algorithm, called multi-factorial
optimization, into NSGA-II and show better performance and
faster convergence than the traditional NSGA-II framework.
In [11], we study 4-objective dynamic path planning using
NSGA-II based on real road network and real traffic data from
Aarhus, Denmark. Our 4 objectives include Total vehicular
Emission Cost (TEC), travel time, number of turns, and dis-
tance. Our experiments produced a diverse set of solutions for
this problem and provided the user the flexibility of selecting
a path based on their preferences of the four objectives.
However, this framework does not consider the collision avoid-
ance constraint. It also does not include clustering the traffic
network first before searching for the routes in the network.

We further notice that in the literature of multi-objective
path planning on dynamic and stochastic road networks, the
focus has been on the total cost of individual road segments
that are part of the paths. Few works have extended the con-
sideration of node-node relationship that exists naturally on a
dynamic road network, that is, the temporal and spatial domino
effects of traffic congestion. One approach of understanding
this node-node relationship is through traffic clustering. Wang
et al. [12] developed a distributed traffic clustering system
based on affinity propagation algorithm [13] using Internet of
Things (IoT) technologies and sensors around road points, that
dynamically collects and analyzes the traffic flow data using
concepts from network theory, in particular maximum flow and
shortest path algorithms.

In this paper, we will first improve the traffic cluster-
ing in [12] with Speed Performance Index (SPI) [14] based
similarity instead of flow based similarity. Then, we will
integrate the traffic clustering into the multi-objective path
planning to improve the overall solution quality of the path
planning algorithm. To our best knowledge, there are few
works in improving the accuracy of multi-objective dynamic
path planning with clustering. In the literature, clustering has
been employed to reduce the complexity of multi-objective
problems. In [15], clustering of objectives is used to reduce the
dimension of the optimization problem. In [16], density based
clustering is used to classify regions into clusters to improve
the efficiency and reliability of coverage path planning method
for autonomous heterogeneous Unmanned Aerial Vehicles
(UAVs). The contributions of this paper are as follows:

1) We improve the multi-objective dynamic path plan-

ning algorithm in [11] with a new objective for traffic
congestion minimization and collision free constraint.

2) We improve the traffic clustering in [12] with SPI
[14] based similarity instead of flow based similarity.

3) We propose an innovative technique to integrate the
clusters with the multi-objective optimization algo-
rithm to improve route planning.

III. OBJECTIVES

A road network is modeled as a directed graph G = (V,E),
where V is the set of nodes, and E is the set of edges. A link
from node vi ∈ V to node vj ∈ V is shown by eij ∈ E. A
loop-free path is represented as a linked list of nodes, with
the source node S as the head and the destination node T as
the tail of the linked list, with no node appearing more than
once. The constrained multi-objective path planning problem
is a minimization problem that finds a set of solutions with the
minimum travel time, minimum distance and minimum traffic
congestion, with the constraint of avoiding collisions based on
real-time sensor data.

A. Objective 1: Distance
The distance of a path is calculated using (1)

f1(Distance) =
∑
e

le,∀e (1)

where le is the length of edge e on a path. le is calculated
based on the static road network once a path is determined.

B. Objective 2: Time
The total time on a path is given by (2)

f2(Time) =
∑
e

te∀e (2)

where e is an edge on a path, and te is the total time the
vehicle travels on the edge. te is recorded by the simulator
based on real-time vehicle dynamics.

C. Objective 3: Inverse of Road Congestion Index
Road Segment Congestion Index is a measure introduced

by He et al. [14]. In [14], the SPI Rv is expressed in
(3), where v represents average vehicle speed in km/h, and
Vmax represents speed limit on the road segment in km/h. To
normalize SPI, speeding is not considered in this equation, and
Rv is in the range of [0, 100].

Rv =

{
min(v,Vmax)

Vmax
× 100 if vehicle count > 0

100 otherwise
(3)

The traffic state level is considered

• heavy congestion if Rv ∈ [0, 25]

• mild congestion if Rv ∈ (25, 50]

• smooth if Rv ∈ (50, 75]

• very smooth if Rv ∈ (75, 100]

The Road Segment Congestion Index, Ri, is calculated in (4)
and (5), where Rv represents the average of SPI, RNC denotes
the proportion of non-congestion state, i.e., when the SPI is
in the range of (50, 100], tNC denotes the duration of non-
congestion state in minutes, and Tt denotes the length of the
observation period in minutes. The value of Ri is in the range
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of [0, 1]. The smaller the value of Ri, the more congested a
road segment is.

Ri =
Rv

100
×RNC (4)

RNC =
tNC

Tt
(5)

The road network congestion index, R is then expressed in
(6), where Li is the length of road segment in km. Similarity,
R ∈ [0, 1], and the smaller the value of R, the more congested
a road network is. For our minimization problem, we want to
find the minimal values of R−1 for the least congested paths
using (7). Theoretically, it is possible for R to be 0, meaning
that every road segment on a path is congested. However, this
scenario rarely happens in reality. As shown in Figure 1, at the
rush hour of 7:30 a.m., only a few disconnected road segments
were color coded as red, representing high congestion status.
Even if a path has R as 0 and therefore infinite value for R−1,
this path will be deemed a bad solution and abandoned by the
optimization algorithm.

R =

∑
i

RiLi∑
i

Li
(6)

f3(R
−1) =

∑
e
Le∑

e
ReLe

∀e (7)

D. Constraints
The minimization optimization of the three objectives is

subject to the following constraints:

e ∈ G,∀e ∈ P (8)

count(v) = 1,∀v ∈ P (9)

g(e) =
∑
e

CollisionCounte = 0,∀e ∈ P (10)

where the first constraint (8) ensures that a path P is valid,
that is, all its edges belong to the road network G, the second
constraint (9) ensures that a path P is loop free by making sure
any node in P appears exactly once, and the third constraint
(10) ensures that the collision count on the entire path is zero.

IV. SOLUTION METHODOLOGY

A. Affinity Propagation Clustering
Clustering is a preprocessing step for the multi-objective

path finding. Our clustering algorithm is based on the dis-
tributed, message-passing Affinity Propagation clustering pro-
posed by [12]. We further improve the clustering algorithm
with SPI based similarity instead of flow based similarity.

First, we generate a node based SPI using algorithm 1.
Then we calculate pairwise similarity based on SPI at nodes

using algorithm 2. The similarity is based on the assumption
that if the target node j is congested, then the similarity
between source node i and j is related to the most congested
node on the shortest path from i to j. In addition, the closer i
and j are spatially, the more likely they are similar.

Once the similarity is defined, the Affinity Propagation
clustering algorithm works as follows. First, a node i considers

Algorithm 1 Node Speed Performance Index

Require: road graph G, node i, time step t, SPI Matrix S
Ensure: SPIi

1: ine = G.in edges(i)
2: oute = G.out edges(i)
3: ineSPI, outeSPI = 0
4: for i, j, d in ine do
5: ineSPI = ineSPI + S[i, j][t]
6: end for
7: for i, j, d in oute do
8: outeSPI = outSPI + S[i, j][t]
9: end for

10: SPIi = average( ineSPI
len(ine) , outeSPI

len(oute) )

Algorithm 2 Pairwise SPI Similarity

Require: road graph G, origin i, target j, time step t,
SPI Matrix S

Ensure: Sim(i, j)
1: Calculate SPIj
2: p = G.ShortestPath(i, j)
3: minSPI is the smallest SPI on p
{Distance in km}

4: dist = len(p)
5: Sim(i, j) = minSPI

SPIj∗max(dist,1)

itself as a cluster k, then it calculates two local variables
responsibility r(i, k) using (11), and availability a(i, k) using
(12) based on a, r values from other nodes of its commu-
nication range, as well as pair-wise similarity s it calculates
based on the traffic information received from the other nodes.
To compute responsibility r(i, k), the algorithm finds another
data point k

′
that has the highest (maximum) availability and

similarity, and computes the difference in the similarity. In
addition, responsibility r(i, k) represents how well k is the
center of i, so it does not only consider how similar i and k are,
but also considers which one of i and k is more suitable be the
center. Self responsibility r(k, k) could be negative or positive.
If it is negative, it implies that the node is more likely to be
a member of some cluster rather than the center of a cluster.
Finally, node i belongs to the center k that gives maximum
a(i, k) + r(i, k). The message passing Affinity Propagation
clustering algorithm has no central control, does not require
the number of clusters to be given, and runs dynamically unless
terminated deliberately.

r(i, k) = s(i, k)−max
k′ 6=k

(a(i, k′) + s(i, k′)) (11)

a(i, k) =


min(0, r(k, k))−

∑
i′ 6=i,k

max(0, r(i′, k)) if i 6= k∑
i′ 6=i,k

max(0, r(i′, k) if i = k

(12)

B. Multi-objective Path Finding

Once we have cluster ids of each node at time step t, the
NSGA-II multi-objective path finding process in (4) [11] is
executed.
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Algorithm 3 Message Passing Affinity Propagation Traffic
Clustering at Node i

Require: road graph G, time step t
Ensure: cluster id k

1: Initialize availability ai = [0]
2: while not terminated do
3: Compute pair-wise similarity s
4: Collect a from adjacent nodes
5: Calculate ri
6: Broadcast ri
7: Receive r from adjacent nodes
8: Calculate ai
9: Broadcast ai

10: Compute local cluster id k at time t
11: end while

Algorithm 4 NSGAII for Traffic Aware Many-Objective Dy-
namic Route Planning

Require: road graph G, start node s, end node t,
initPopulationSize, generations, crossoverPoints,
tournamentSize, mutationProb

Ensure: paretoFront
{Initialization}

1: population = randomLoopFreePath
(s, t, initPopulationSize)
{Main loop}

2: for generation← 1, generations do
3: population = breedPopulation(population,

crossoverPoints, tournamentSize, mutationProb)
4: scores = scorePopulation(population)
5: population = buildParetoPopulation(population,

scores)
6: end for
{Final Pareto Front}

7: scores = scorePopulation(population)
8: paretoFront = identifyPareto(population,scores)

1) Collision Avoidance: The constraint of collision avoid-
ance is added to the solution selection process of the main
algorithm. Solution x1 constrained-dominate x2 in the follow-
ing three situations [5]:

• solution x1 is feasible and x2 is not.
• x1 and x2 are both infeasible, but x1 has a smaller

constraint violation.
• x1 and x2 are both feasible and solution x1 dominates

solution x2 in the usual sense.

This relaxed selection process allows infeasible but less
constrained parents to be included in the breed process, and
allows for better diversity in the end. At the selection of the
final pareto front, all the infeasible solutions are removed from
the solution set.

2) Clustering Incorporation: In order to incorporate the
clustering result into the process, we make an important
assumption: if start node i and j of a directed edge e = i− > j
are in the same traffic cluster at time t, then all the incoming
edges of i are affected by e in terms of traffic, because the
traffic flows in this order: the incoming edges of i− > i− > j.
Based on this assumption, we take the average of all SPI values
of the incoming edges of i and e, and assign the average value

back to these edges. This process is described in the following
algorithm 5.

Algorithm 5 Cluster Average SPI

Require: road graph G, begin node i, end node j, time step t,
SPI matrix S, Cluster matrix C

Ensure: Cluster Average SPI matrix S’
1: if C[i][t] == C[j][t] then
2: ine = G.in edges(i)
3: eid = G.edges.index((i,j))
4: sumSPI = S[eid][t]
5: for a, b, d in ine do
6: eid = G.edges.index((a,b))
7: sumSPI += S[eid][t]
8: end for
9: avgSPI = sumSPI

(1+len(ine))
10: for a, b, d in ine do
11: eid = G.edges.index((a,b))
12: S[eid][t] = avgSPI
13: end for
14: end if

V. EVALUATION AND ANALYSIS OF RESULTS

A. Road Network and Traffic Data
The road network of Aarhus, Denmark [17] is represented

as a graph composed of 136 nodes and 443 edges. In addition
to the topology, the metadata also includes the latitude and
longitude of the nodes, the street name of a node, and the
speed limit and length of an edge. The traffic data includes
sensor data recorded on each edge from February to June 2014,
such as vehicle counts and average speed. The sensor data is
collected every five minutes. Because there is no collision data
available at the data set, we simulated random collision points
using the roulette wheel selection, that is, if a random number
is smaller than the probability calculated using a small constant
p and the road segment congestion index Re, then there is a
collision on the road. In this paper, p = 5. Since Re ∈ [0, 1],
the selection probability is in the range of [5%, 10%]. The
more congested a road segment is, the more likely there is a
collision. In the future work, we will simulate the traffic flow
and collision in the road network simulator SUMO (Simulation
of Urban MObility) [18].

B. Implementation and Parameters
The code of the paper is written in Python 3, with refer-

ences to code snippets from [19]–[21].The experiments are run
on a MacBook Pro with 2.3 GHz Intel Core i5 and 8 GB 2133
MHz LPDDR3.

For our experiments, we consider multi-objective dynamic
path planning from startNode 4320 (city of Hinnerup) to
endNode 4551 (city of Hasselager). We determine experimen-
tally the parameters for NSGA-II as initPopulationSize =
100, generations = 100, crossoverPoints = 5,
tournamentSize = 2, mutationProb = 0.8. For traffic
data, we treat the beginning timestamp 2014-03-01T07:30:00
as timeIdx = 0.

C. Improvement of Traffic Clustering using SPI Based Simi-
larity

We evaluate the cluster quality using the same metrics used
by [12], including Silhouette coefficient [22] and the mean
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TABLE I. RESULT COMPARISON OF FLOW BASED AND SPI BASED
AFFINITY PROPAGATION CLUSTERING

Time
Stamp

Flow Based Clustering SPI Based Clustering
Number
of Clus-
ters

Silhouette
coeffi-
cient

Mean
Simi-
larity

Number
of Clus-
ters

Silhouette
coeffi-
cient

Mean
Simi-
larity

2014-03-01
T07:30:00

0 0 0.041 25 0.481 0.710

2014-03-01
T07:35:00

26 0.207 0.313 25 0.480 0.713

2014-03-01
T07:40:00

21 0.174 0.266 25 0.480 0.712

2014-03-01
T07:45:00

22 0.206 0.296 25 0.475 0.710

Figure 1. Traffic Clustering of the road network of Aarhus, Denmark

similarity within all clusters. Silhouette coefficient evaluates
item similarities of inter and intra clusters. Mean similarity
is the average of all pairs of intra-cluster similarity. For both
metrics, higher values indicate higher cluster quality. As shown
in table I, the use of SPI based similarity is very effective in
improving the clustering of the road points. In these four time
stamps, SPI based clustering creates much higher values of
Silhouette coefficient and mean similarity consistently. Figure
1 is a visualization of the road map of Aarhus, Denmark at
7:30 a.m. on 2014-03-01, where the nodes are marked and
color coded with their cluster ids, and the edges are color
coded with road segment congestion index Ri. The color red
means heavy congestion with Ri = 0, and green means very
smooth with Ri = 1. The visualization shows that adjacently
connected road points usually belong to the same cluster, and
these road segments have similar traffic conditions. This is
because the SPI based similarity considers both congestion
conditions and spatial adjacency between two road points.

D. Improvement of Multi-objective Path Planning with Clus-
tering

For the multi-objective path planning, we compare our
NSGA-II with clustering with the same algorithm without in-
corporation of clustering. Table II shows the comparison of A*
[23] shortest path, NSGA-II and NSGA-II with clustering in
terms of the three objectives, one constraint, and an additional
metric called total vehicular emission cost (TEC) [24]. This
metric is used in our previous paper [11] as one objective of
monetized value for vehicular emission. For the convenience of
comparison, we take average of each object for all the pareto

TABLE II. RESULT COMPARISON OF A*, NSGA-II, AND NSGA-II
WITH CLUSTERING

Path
Finding
Algorithm

Number
of
Solutions

Objectives Constraint Other
Metric

Average
Dis-
tance
(KM)

Average
Time
(Min-
utes)

Average
R
Inverse

Average
Colli-
sion

Average
TEC

A* 1 22.825 33.031 1.201 1 0.069
NSGA-II 100 29.769 57.828 1.132 0 0.075
NSGA-
II with
Cluster-
ing

100 31.072 45.457 1.089 0 0.068

Figure 2. MOO with Clustering Pareto Front Visualization

front solutions in three independent executions of the pro-
grams. The single objective A* path has the shortest distance,
but it does not guarantee collision free. It also has higher than
average R−1 compared to the multi-objective approaches. In
comparison, the multi-objective approaches produce a diverse
variety of solutions for the decision making process to choose
from. Between the two multi-objective approaches, we observe
that although the clustering based approach generates longer
paths in average, the travel time and congestion are both more
optimized than the other approach. The lower average value of
TEC also indicates that these solutions are more traffic smart.
Figure 2 is the parallel coordinate visualizations of pareto
front.

Finally, Figure 3 shows three alternative paths found by the
clustering based approach: the path with minimum distance
(blue nodes), the one with minimum time (yellow nodes), the
one with least congestion (green nodes). For comparison, A*
shortest path is also highlighted (red nodes). This visualization
has a limitation that a node belonging to multiple paths only
carries the color of one path following the coloring sequence
mentioned in the previous sentences. For example, if a node
is on both the MOO path of least congestion and the A*
path, it is colored as red. Despite of this limitation, this figure
shows different possibilities of path planning depending on the
preference of the decision making system.

VI. CONCLUSION AND FUTURE WORK

In this paper, we model the autonomous path planning
problem as a three-objective minimization problem with the
constraint of collision free. We show that our NSGA-II based
framework finds a diverse set of alternative solutions for
the decision making system to choose from based on the
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Figure 3. MOO with Clustering Path Examples Visualization

preference of the three objectives: distance, time, and traffic
congestion, instead of one single solution from the A* shortest
path algorithm. We propose a novel approach to integrate
SPI based road point clustering into the multi-objective op-
timization considering the domino effect of congestion. Our
experiment shows that NSGA-II with clustering produces more
congestion smart solutions than NSGA-II without clustering.

As a future work, we would like to extend our work in
three directions:

1) Explore other multi-objective evolutionary algo-
rithms, such as multi-objective Ant Colony Optimiza-
tion (ACO) [25] and MultiObjective Evolutionary
Algorithm based on Decomposition (MOEA/D) [26].

2) Explore traffic prediction techniques such as the
emerging Graph Neural Networks [27].

3) Simulate the traffic flow and collision in the road
network simulator SUMO (Simulation of Urban MO-
bility).
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