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Abstract—Mobile application development is characterized by a
higher market volatility and shorter development cycles than
traditional desktop application development. Developing mobile
applications in large enterprise contexts (mobile enterprise ap-
plications) requires additional effort to adapt to new circum-
stances, since complex processes, user roles and enterprise-
specific guidelines need to be taken into account. This effort
can be reduced by reusing artifacts from other projects, such
as source code, wireframes, documentation, screen designs or
requirement specifications. We propose a recommendation system
based on user stories in order to make artifacts accessible
without requiring users to formulate an explicit search query. We
present a prototype implementing this approach using standard
methods and tools from information retrieval and evaluate it
using different components of user stories as well as taking into
account varying user story quality. The results show that using
only user story text for calculating recommendations is the most
promising approach and that user story quality does not affect
the efficiency of recommendations.

Keywords–Mobile Enterprise Applications; User Stories; Rec-
ommendation Systems; Pattern Inventories.

I. INTRODUCTION
The market for mobile applications (mobile apps) is char-

acterized by the high volatility of platforms, devices and
requirements. Hence, mobile app development projects require
a shorter development cycle than traditional desktop applica-
tions. Consumer application development has been adapted to
these circumstances by using agile methods and prototyping to
accelerate app development. In the context of mobile enterprise
applications (MEA), these adaptions require additional effort.
Enterprise-specific guidelines, business processes and complex
user roles need to be taken into account, which slows down
the development process.

We proposed to approach this problem by building a
repository with artifacts from past MEA-projects in the same
enterprise and using this repository to accelerate and simplify
the development process [1]. Project artifacts are screen de-
signs, source code, requirements and technical documentation
as well as all other documents created during the development
process. Being able to reuse parts of these artifacts, using
them for inspiration or for getting familiar with similar projects
could help speeding up development.

In order to access the artifact repository efficiently, a
method for user-friendly navigation of artifacts is required.
Short, user-centered descriptions of usage scenarios called
User Stories are common in requirements documentation in
mobile app development. Since all other artifacts are in some

way related to a user story, we consider user stories to be a
reasonable starting point for navigating an artifact repository.
Showing artifacts related to similar user stories to a user of the
artifact repository should provide her with possible solutions
to her problem. The solutions derive from best practices that
had been used in previous projects that are similar to the one at
hand. This can be realized through a recommendation system
for project artifacts.

In this paper, we present a first step towards this recommen-
dation system. When relating user stories to artifacts of similar
user stories, the similarity computation between user stories
is an important task. We present an approach for a recom-
mendation system for user stories using standard information
retrieval techniques and a prototypical implementation. We
also evaluate in how far this approach fits the recommendation
of user stories, which parts of user stories are relevant to
the recommendation computation and how user story quality
influences the accuracy of recommendations.

The remainder of this work is structured as follows: Section
II describes the context of our research. Related work and its
relation to our results are discussed in Section III. Section IV
presents the architecture of a user story recommendation proto-
type. We discuss the evaluation methodology, the corpus used
and two experiments to assess our prototype and approach in
Section V. Section VI presents the results of the experiments.
Implications from the results and potential shortcomings of our
experiments are presented in Section VII. A conclusion and an
outlook to future work is given in Section VIII.

II. BACKGROUND
According to Flora et al. [2] mobile apps are ”... compact

programs developed to work on smartphones, tablets, and fea-
ture phones.” Thus, an important characteristic of this type of
software is that it has to be adapted to the specific requirements
of mobile devices, mobile networks and mobile usage contexts.
Besides this more technical perspective, the term mobile app
has a specific meaning from the user perspective as well. It
represents a bit of software that can be obtained from a distri-
bution platform, i.e., an app store, and installed at the device
by the user herself. Based on these characteristics, a more
comprehensive definition of mobile apps can be given: Mobile
apps are application software to run on mobile and network-
connected devices, such as smartphones, to solve user-specific
problems. They are provided by distribution platforms and
consist of programs and data installed by the end user as an
important element of handset personalization.
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The origins of mobile apps are to be found in the consumer
domain and closely related with the introduction of Apple’s
App Store in 2008. Since then, especially smaller enterprises
have entered this emerging market and tried to exploit the
business opportunities provided by the new app ecosystem.
Even today, the app developer market is dominated by small
companies. A global app developer report by Inmobi [3] from
2016 revealed that only eight percent of the participating firms
had more than 20 employees. This suggests that most of
the app development is carried out in small groups enabling
a very direct communication amongst involved employees
and characterized by short communication channels. As a
result, app development tools and processes are often aligned
to the requirements of lean or startup-like companies with
agile and flexible structures, but they are less tailored for
collaborative work environments within the complex structures
and processes of large enterprises with a very high division of
work and responsibilities.

However, large enterprises will not be able to evade the
growing external demand for mobile apps. They need to adapt
and adopt development tools and processes from the consumer
segment to their own requirements and needs. For example,
large enterprises need to find ways to prevent duplicate work
across the entire enterprise and stimulate collaboration and
knowledge sharing across teams when shifting to a more
decentralized software development approach with agile and
independent teams.

Besides the external challenges mentioned above, mobile
apps are becoming more and more important for the corporate
environment from the internal enterprise perspective. This
trend is often discussed in the context of a consumerization of
IT. As a result, Andriole [4] observes ”... a reverse technology-
adoption life cycle at work: employees bring experience with
consumer technologies to the workplace and pressure their
companies to adopt new technologies (with which many cor-
porate technology managers might be only barely familiar)”.
This also has an impact on the processes and technologies
used in enterprises by generating a shift towards the adoption
of more consumer-driven approaches [5].

To sum up, large enterprises need to develop frameworks of
processes and tools adapted to both, providing the flexibility of
lean and consumer-driven approaches (coming from the con-
sumer segment and smaller firms) by taking into account the
high complexity of organizational structures within the context
of large corporations. With this regard, the contribution of this
paper is the evaluation of a user story based recommendation
system as an element of a prototyping framework for MEA
design in large enterprises. Our approach is based on the
analysis of user stories linked to artifacts of MEA projects in
a enterprise-wide repository. An identification of similar user
stories could not only lead to reusable project artifacts but also
foster cross-project communication and cooperation (e.g., by
identifying the User Experience designer or developer of exist-
ing artifacts derived from completed projects) or help reducing
uncertainty by providing reference points or estimates based
on the learnings of completed projects (e.g., cost estimates for
screen designs or software components). Before we provide
an overview on the related work in this field, we will close
this section with a brief discussion and conceptualization of
the core elements of our approach.

A. Mobile Enterprise Applications
An exact definition of the term mobile enterprise app

(MEA) is still missing [6] and it is used here in a wider sense.
We are using the term to refer to any mobile app developed
or deployed in the context of (large) enterprises and thus
not only to mobile front-ends for existing enterprise software
applications (EAS).

Mobile enterprise applications are often categorized by
target groups into business-to-customer (B2C), business-to-
business (B2B), and business-to-employee (B2E) [7], [6]. All
the three types of MEA are in the scope of our study, as the
challenges described before do not depend too much on the
intended target group or user, but more on the organizational
characteristics of the enterprise managing the app development
process (by internal organizational units or subcontracting
external suppliers).

B. Artifact and Repositories
The idea of an artifact repository is inspired by some

longer-established concepts of (1) the usage of patterns in
software engineering and human-computer interface design
[8], (2) the asset reuse as promoted by the product-line
approach[9], and (3) the design science research approach to
evaluate artifacts for relevance and rigor in a systematical and
iterative way [10]. As mentioned before, artifacts can comprise
technical as well as non-technical aspects. The artifacts itself
can be linked to organizational information or other details rel-
evant for the development process (e.g., responsible developer
or development costs).

A repository of all project-relevant information provides
the underlying data for further analysis. The repository can
be a common knowledge base within a project management
software used for MEA development (e.g., Jira). In this respect,
one of our main research objectives is to provide an approach
to identify reusable project artifacts within this knowledge base
to facilitate mobile app prototyping and development in large
enterprises.

C. Recommendations
Based on a definition proposed by the organizers of the

2009 ACM International Conference on Recommender Sys-
tems (as cited in Robillard et al. [11]) recommendation systems
for software engineering (RSSEs) are ”... software tools that
can assist developers with a wide range of activities, from
reusing code to writing effective bug reports.” According to
this conceptuality, our aim is to evaluate an approach to
identify similar project artifacts based on a sample repository.
These similarities can then be used to provide a recommen-
dation to UX designers or developers to consider aspects of
existing artifacts for reuse or facilitate knowledge transfer
across development teams.

However, one problem not mentioned before is the high
complexity of MEA implementations, e.g., due to interfaces
to back-end systems within the enterprise IT infrastructure.
Some artifacts (e.g., login screens) might be characterized by
a high level of similarity, but an incompatible implementation.
This is why – as a first step – we decided to abstract
from more implementation-oriented artifacts and defined an
approach based on user stories.

D. User Stories
In the context of software engineering, requirements spec-

ify necessary functions and features of software. In traditional
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software engineering, requirements are recorded in text docu-
ments that are difficult to grasp completely. In agile software
development, user stories are user centered requirements ex-
pressed in one sentence, as described by Cohn [12].

A user story typically consists of three components: (1) a
role, (2) a desire and (3) a benefit. While the role expresses,
which kind of person wants the requirement, the desire and
benefit describe the feature itself, for example: As a user
I want to mark and select favorites in order to receive
information about my daily bus and train connections as fast
as possible. Each user story is associated with acceptance
criteria that specify required properties for the implementation
of the requirement described by the user story, for example:
The favorites should be ordered alphabetically. Furthermore,
Wake [13] defined the INVEST criteria for good user stories.
According to his model, a user story should be independent
from other user stories, negotiable, valuable with a benefit
for the user that is clearly identifiable, estimable regarding its
cost, small and testable or verifiable. These guidelines enable
developers to easily write user stories that are meaningful on
the one hand and comparable on the other hand. Creating user
stories complying these criteria is a common practise in agile
development.

III. RELATED WORK
Regarding the general question of how enterprises should

develop MEAs, according to [14] and [15], many enterprises
still lack experience concerning their development. While there
are no established process models for MEA development,
first research approaches can be found in related literature.
Dugerdil [16] presents an approach for transforming enter-
prise applications to mobile applications. An instrumentation
framework that tries to ease the maintenance of MEAs is
proposed in [17]. The management perspective of this problem
is also represented in literature. Badami [18] examines this
aspect from an organizational viewpoint and proposes the
concentration of MEA development into ”Mobile Centers of
Excellence” that focus on competences of mobile experts
inside enterprises.

Mobile app prototyping is supported by various tools.
Existing prototyping tools (Kony, Verivo, Akula, SAP Mobile
Platform) allow rapid prototyping. However, they can not
always be used in the context of MEA, since they are focused
on predefined use cases or the integration of existing enterprise
products.

No processes or tools that specifically support the devel-
opment of MEAs can be found in literature or in practice.
Key questions that need to be answered are how an approach
can take into account the specifics of MEAs and how time
and effort for development can be decreased. Our approach is
to reuse artifacts from existing MEA projects and to utilize
recommendation systems in order to relate artifacts in pattern
repositories and ease artifact reuse.

Leveraging information from user stories to recommend
related artifacts has not been addressed in the literature until
2016 [19]. User stories are often stored in issue management
systems that are normally used for bug tracking. Issues as used
in issue management share some similarities with user stories.
Both usually contain a short description formulated from a
user perspective and are related to artifacts that are created
to implement the changes required by the issue respectively
the user story. A significant difference is that bug descriptions

often contain a more technical language and provide less
information about why a change is important and what the
reason is for a change from an application domain perspective.
While user stories have not been in the focus of scientific
work regarding artifact recommendation, bug reports from
issue management systems have been studied to support issue
triage and issue-based project navigation.

In issue triage, systems find duplicates for bug reports.
In this way, systems can automatically mark a bug report
as a duplicate, minimizing the effort required to manually
managing bug reporting systems. An approach by Runeson
et al. [20] proposes using information retrieval techniques to
detect duplicate bug reports. This approach has been combined
with considering other artifacts like execution information
[21]. Anvik and Murphy [22] have presented a framework for
supporting developers building project-specific recommenda-
tion systems that help with assigning bugs to developers and
linking them to project components. The framework allows
the combination of several techniques for the construction of
recommendation systems. Approaches from issue triage are
primarily focused on bug reports and removing duplicates.
Recommending useful solutions to similar issues, like in our
case, is not considered.

Issue-based project navigation uses recommendation sys-
tems to support the navigation of projects. Hipikat [23] is a
system that gathers information from mailing lists, documents
and bug reports to ease the navigation of a source code
repository. No quantitative evaluation of this approach exists
and the applicability to other domains than issue management
is not clear. Nevertheless, an evaluation of our similar approach
to user-story-based recommendation systems seems promising.

Work in this direction has been conducted by Pirzadeh et
al. [19]. Their approach recommends source code files based
on user-story-similarity using standard information retrieval
technologies. Connections between issues and source code are
discovered based on tagged issue ids in commit messages of
a version control system. While an evaluation shows a good
performance of recommending source code artifacts in terms of
precision, accuracy and specificity, it is not evaluated whether
these results are actually caused by user story similarity.
Relevant recommendations could also be a consequence of
the general importance of some artifacts. Further aspects that
are not investigated are which parts of the user stories should
actually be used for the recommendation computation and how
user story quality affects the recommendations.

In practice, plugins for the issue management system Atlas-
sian JIRA that use information retrieval techniques to find simi-
lar issues exist [24]. These Plugins focus on duplicate detection
and are not tailored to user story similarity. Also, they do
not provide an API to programmatically access recommended
similar issues and lack an evaluation. Especially no evaluation
of the performance regarding the similarity computation and
recommendation for user stories exists.

After reviewing the presented literature, we can conclude
that several research questions have not been addressed in the
literature: It is unclear to which degree textual user story sim-
ilarity can be leveraged for getting useful recommendations.
It has also not been studied, which parts of user stories are
relevant to computing similarities and how user story quality
affects the performance of the recommendation systems.
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Figure 1. Prototype Architecture.

IV. PROTOTYPE

To support the construction of an artifact repository, a
basis for a recommendation system has been implemented.
The recommendation system will later interlink existing ar-
tifacts from several projects and different domains (e.g., user
stories, source code, requirements, technical and organizational
documentation) to help those involved in the software project.
The foundation for our system that supports the interlinking
of artifacts in general is a recommendation system for user
stories. Given a user story as an input, the first iteration of the
system will output the most similar and therefore relevant user
stories. Later, several kinds of artifacts will be regarded.

To compute the similarity between user stories, we use
standard procedures from information retrieval [25], in partic-
ular the vector space model (VSM), a representation of text
documents, and term frequency-inverse document frequency
(TF-IDF), a weighting method for terms in search queries and
documents. First, all user stories are preprocessed. The docu-
ments are tokenized into collections of terms. All stopwords
(e.g., “the”, “it”) are removed. Of the remaining terms, only
a stemmed form is stored. User stories are represented in the
vector space model (VSM), a common feature representation
for natural language documents. In the VSM, each vector
component refers to the term frequency of a term in the
document.

To find similar user stories to a story, the text of the
story is used as a query. The terms are weighted using TF-
IDF term-weighting, which is calculated by multiplying the
term frequency with the inverse document frequency of a
term. The inverse document frequency is log N

∣t∣ , where N

is the number of all documents (here user stories) and ∣t∣ is
the number of occurrences for a term in all documents. The
query vector and all user story vectors are compared using
the cosine similarity (i.e., the cosine of the angle between
two vectors is used as the similarity measure). This process is
implemented by Apache Lucene that uses several optimization
strategies to improve the search performance. More details
regarding these optimizations can be found in the Apache
Lucene documentation [26].

User stories are stored as issues in Atlassian Jira [27], an
issue management system. To allow easy developer access,
our user story recommendation platform is integrated into
Jira using the Jira plugin API. An FMC-Diagram of the
implementation is given in Figure 1. Gray components are
provided by Jira and hence did not need to be implemented.
The User has access to an Issue View that is used to display
and edit issues. Issues are persisted using an Issue Storage
that can be accessed via a Rest API [28]. A Similarity
Server is used to compute recommendations. The server is
separated from Jira to improve the independences between
recommendation generation and representation of user stories.
In this way, other issue management systems as well as other
similarity computation approaches can be used without too
much adaption required. As a part of the server, the Issue
Parser parses the user stories from the Rest API to a Search
Index. A Search Component uses the index to answer requests
from a Similarity Plugin that asks for recommendations for
user stories currently displayed by the Jira Issue View. This
architecture has been implemented as a prototype.

V. EVALUATION
In order to evaluate the performance of the prototype

and the feasibility of the overall approach we conducted two
experiments that focused on different aspects of user story
recommendation.
● Does the usage of different components of user stories

affect the usefulness of the recommendations?
● Does the quality of user stories affect the usefulness

of the recommendations?
Therefore, the first experiment investigated the quality of
recommendations with respect to different components of a
user story that were used as a query on the one hand and as
part of the corpus on the other hand. The second experiment
took into account different levels of user story quality.

A. Corpus
For conducting both experiments, we built a corpus that

consisted of 84 user stories for generating recommendations
and 60 additional user stories to account for noise effects. We
needed different user stories with acceptance criteria, whereas
a part of them should describe the same use case. Thus, we
created two different use cases A - favorites and B - location
for a popular public transport app and made two short video
films of about 20 seconds each that showed typical interactions
of each use case. The two video films were then shown to a
group of German-speaking students. Each student created a
user story and three acceptance criteria per use case, resulting
in 42 user stories for each use case A and B. Since our user
stories described only two different use cases, we added 60
more user stories from an external data set [29] that were
translated into German via a semiautomatic procedure.

If all user stories from the corpus were used as a query
and as a part of the set of documents that was searched, the
first recommendation would always be the user story used as
the query, which would skew the results. To address this issue,
the user stories were randomly separated into a query and a
search corpus set. Only user stories for use cases A and B
were allowed as a part of the query set, since no relevant
recommendations could be generated for user stories from the
external data set. The query set contained 30 user stories,
so it comprised about 25% of the overall document corpus.
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Recommendations were generated only for user stories in the
query set. Only elements of the search corpus set were used
as recommendations.

B. Metric
For each user story, recommendations are calculated based

on textual similarity. A recommendation is regarded as “cor-
rect”, when the recommended user story relates to the same
use case A or B as the query. In the context of this work we
consider a recommendation system the more useful, the higher
the precision of the result is. Precision and recall are standard
metrics for evaluating these kinds of scenarios [30]. Since a
recommendation system will provide the user with only the
first few recommendations, the usage of overall precision and
recall is not an appropriate metric in this case. A metric that
is more useful regarding recommendation systems in our case
is precision at rank [25, p.161]:

PR =
TP

SR

TP is the number of true positives (i.e., recommendations
of the correct use case) and SR a fixed number of search
results. This metric only evaluates the SR best search results.
The two experiments were conducted for each rank from one
to ten. To get an overview of the overall performance, the
average of the precision for each user story was calculated.
We therefore measured the average precision at rank for ranks
one to ten.

C. Experiment 1: User Story Components
For the first experiment we defined several variants of our

data sets: user stories along with their associated acceptance
criteria (USAK), user stories only (US) and acceptance criteria
only (AK). These are the smallest possible variants that are
sensible. Separating the user stories into smaller components
would result in parts of very few words, which would not
allow meaningful processing using IR techniques. Each variant
can be used as a query set on the one hand and as a corpus
set on the other hand. We combined each variant as a query
with each variant as a corpus and therefore conducted the first
experiment nine times with all nine combinations of our data.
Since no acceptance criteria were available for the external data
set, the same artificial acceptance criteria were added to each
of these user stories. Hence, it is less likely to retrieve user
stories as recommendations from the external data set while
the corpus set consists of user stories with acceptance criteria
(USAK) or only acceptance criteria (AK). This would lead to
a better average precision at rank for these cases. Effects of
this shortcoming will be further discussed in Section VII.

D. Experiment 2: User Story Quality
A second experiment was conducted to evaluate if user

story quality affects the effectiveness of a text-similarity based
recommendation system. For this purpose we categorized the
user stories into three quality groups.

First, the quality of all user stories was rated based on a
five point scale. We defined five quality criteria and assigned
one point to the user story for each criterion that was satisfied:
(1) The user story had to have exactly one role. (2) The user
story had to express exactly one desire. (3) The user story
had to have exactly one benefit. (4) The user story had to be
written in only one sentence. (5) The user story’s benefit had
to be verifiable, as defined by the INVEST-criteria.

Then the user stories (written by students and from the ex-
ternal data source) were categorized into three quality classes:
User stories with five points were assigned to quality class
1, user stories with four points were assigned to quality class
2 and user stories with three or less points were assigned to
quality class 3, resulting in class 1 comprising 95 user stories,
while classes 2 and 3 contained 26 respectively 23 user stories.

To evaluate the effect of user story quality on recommen-
dations, datasets with different user story quality were needed.
Using the previously described categories, the data was split
into three sets: (1) user stories of all quality classes, (2) user
stories of quality classes 1 and 2, (3) user stories of only the
high quality class 1. For each of these sets, the precision at
all ranks from one to ten was calculated. For this experiment,
only the combination of user story parts from experiment 1
with the best results regarding precision was used.

VI. RESULTS
We implemented a small evaluation application that ini-

tiates the recommendation-process, gathers user story rec-
ommendations, automatically calculates the average precision
at rank by evaluating class labels (e.g., corresponding use
case) according to the approach presented in Section V and
stores results in a CSV file. The results of the experiments
performed using this application are discussed in the following
subsections.

A. Experiment 1: User Story Components
The results from the first experiment are shown in Figure

2. Each data series represents one combination of corpus and
query sets, whereas the first part of the data series label denotes
the query set and the second part denotes the corpus type (e.g.,
AK/US represents queries that contain only acceptance criteria
and a corpus consisting of user stories without acceptance
criteria).

The data series can be split into two categories: (1) Experi-
ments where user story text is used as query and corpus and (2)
experiments where either the query or the corpus consists only
of acceptance criteria. With one exception (USAK/USAK at
rank 1), members of the first category in general have a higher
average precision than members of the second. For readability
purposes, only representatives of these categories with highest
and lowest average precision at rank in the respective group
are shown in the data series. Note that AK/US and AK/AK are
representatives with lowest average precision for their group
at different ranks. Therefore two data series are displayed as
lower bounds for the second category. The data series that
are not displayed (USAK/US and US/USAK in the first group;
AK/USAK and US/AK in the second group) are always between
the upper and lower bounds of their respective groups.

The combination using only user stories (US/US) shows
the highest average precision. The precision for rank 1 is 1.0
and drops to 0.88 when considering the first 10 recommen-
dations. The data series of the combined user stories along
with acceptance criteria (USAK/USAK) has a lower precision
that ranges between 0.71 and 0.79. The data shows that the
precision differs widely between these combinations.

In the category of the experiments where either the query or
the corpus consists of acceptance criteria only, the combination
USAK/AK showed the highest precision at rank that ranged
from 0.54 to 0.75. The two combinations of AK/US and AK/AK
resulted in the lowest precision varying between 0.58 and 0.63
for AK/US and between 0.53 and 0.65 for AK/AK. However, the
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Figure 2. Evaluation results for combinations of query and corpus data.
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Figure 3. Comparison of results when filtering user story quality.

results show only small differences between all combinations
in this group.

In general, data series that use only user stories either in
the query or the corpus set have a higher average precision
than the data series applying acceptance criteria only in either
query or corpus. The three data series with the lowest average
precision all use only acceptance criteria as queries. Average
precision of these data series is between 0.53 and 0.65 varying
in dependence of the rank, while the average precision of the
data series of the other category varies between 0.71 and 1.0.

B. Experiment 2: User Story Quality
The results of the second experiment are shown in Figure

3. The data series Class 1 contains only high quality user
stories of class 1, as described in Section V-D. Class 1 +
2 are medium- and high-quality user stories, while All Classes
refers to user stories of all quality classes.

Average precision values for all data sets are between 0.8
and 1.0. While class 1 user stories show the best results at
ranks 1, 2 and 3, the precision lowers at the following ranks.
The precision with data of all quality classes varies between
1.00 and 0.88 and receives the highest values at ranks 5 and
following. However, the precision values of quality classes 1
and 2 are the lowest at all ranks.

VII. DISCUSSION
The results we received from our experiments provided us

with information about the precision of text-based recommen-

dations for user stories and acceptance criteria. Based on these
results we aim to answer our two research questions:
● Does the usage of different components of user stories

affect the usefulness of recommendations?
● Does the quality of user stories affect the usefulness

of recommendations?

A. Experiment 1
The results from experiment 1 showed that the highest pre-

cision is received using the combination US/US. The precision
of the other combinations is not only lower, but by far lower.
Also, after a decrease from rank 1 to rank 2, the precision
of the US/US combination remains relatively stable. Out of
all remaining combinations, the ones that use user stories in
both the query and the corpus produced the higher precision
values. All combinations that use only acceptance criteria in
the query and/or the corpus show the lowest precision that is
by far lower than the highest received precision.

Based on our results we can therefore answer our first
research question positively. Different components of user
stories do affect the usefulness of recommendations. We dis-
covered that the usage of acceptance criteria deteriorates the
precision of the recommendation system, since these combi-
nations received the lowest precision values. Corresponding
to that, the combination that contained only user stories and
no acceptance criteria led to the highest precision values.
While it is difficult to define limits for the precision of a
recommendation system, we believe the observed precision is
sufficient for recommendation systems in the context of mobile
enterprise application development. We therefore conclude that
using only user story text as a basis for recommendation
computation in this context seems to be the most promising
alternative.

B. Experiment 2
The results from experiment 2 show that the usage of all

quality classes leads to a higher precision from rank 4 onward.
However, at ranks 1, 2 and 3 the usage of only high quality
user stories received the best precision values. Furthermore, it
is especially notable that average precision is lower for user
stories of quality classes 1 and 2 combined than for all kinds
of user stories.

Based on this data, we can not ascertain any impact of user
story quality on recommendation precision and therefore, our
second research question is to be answered negatively.

C. Thread to validity
One weakness of our experimental setup may be the small

number of user stories in our corpus. However, the distribution
of user stories to primarily two use cases compensates this
shortcoming. Although the quality rating of the user stories did
not follow a common model for user story quality, it is based
on the main and most popular user story models. Furthermore,
to our knowledge there is no established model for quality
measurement of user stories on an individual level.

As mentioned in Section V-A, we used data from an
external source that did not contain acceptance criteria. One
could assume that this would distort the results in favor of
the combinations that use acceptance criteria. However, these
combinations gained lower precision than the other combina-
tions, despite the lack of acceptance criteria. Therefore, our
conclusion that the usage of user stories has a positive effect
on precision still holds.
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VIII. CONCLUSION
In this paper we have presented foundation work for an

artifact repository to support the development of MEA. The
foundation is built on a recommendation system for artifacts
based on user-centered requirement specifications called “User
Stories”, in order to allow the user of the artifact repository an
efficient navigation. Standard information retrieval techniques
were used to build the recommendation system. We evaluated
which parts of the user stories should be used for recom-
mendation computation and how user story quality affects the
performance of the system.

Our experiments have shown that the most valuable part
for requirement computation from a user story is the user
story text. Including acceptance criteria into recommenda-
tion computation has a negative impact on recommendation
performance. In our experiment data, we could not find a
positive correlation between user story quality and quality of
recommendations.

As future work, we plan to use our results to extend our
recommendation system that includes development artifacts
from several domains. Collecting and evaluating methods for
connecting different artifact types to user stories will be the
next step to reach this goal. In addition, the artifacts will be
enriched with further information, such as cost and benefit
information or process and workflow data.
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