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Abstract—Graphical user interfaces (GUI) in modern software
are increasingly required to adapt themselves to various situations
and users, rendering their development more complex. To handle
complexity, we present in this paper three design patterns,
Monitor, Proxy router and Adaptive component, as solutions to
the gradual implementation of adaptive behavior in GUI and
general component-based software. Rather than proposing new
adaptation mechanisms, we aim at formalizing a basic structure
for progressive addition of different mechanisms throughout the
development cycle. To do so, previous work on the subject
of design patterns oriented toward adaptation is explored and
concepts related to similar concerns are extracted and generalized
in the new patterns. These patterns are implemented in a
reference Python library called AdaptivePy, which is used to
provide practical examples of their applications. Also, a GUI
application case study is presented and compared to a functionally
equivalent ad hoc implementation. We observe that separation of
concerns is promoted by the patterns and testability potential
is improved. Moreover, adaptation of widgets can be previewed
within a graphical editor. This approach is closer to the standard
workflow for GUI development, which is not possible with the
ad hoc solution. Because the patterns suit any components-based
software, they can be applied together or individually in different
applications to solve specific adaptation challenges.

Keywords–adaptive; design pattern; graphical user interface;
context; library.

I. INTRODUCTION

Modern software application developers face many chal-
lenges, but one recurring challenge is to build their software
in such a way that it can be used on different platforms, by
different types of persons and in a variety of contexts. While
an application has a some specific purpose, there are many
ways to provide the service it offers such that all users are
satisfied.

An example of this principle in our daily lives is a bank.
While its core business is to keep their customers’ money safe
and make it grow, they offer a variety of packages to suit
different types of customers. A bank also interacts with its
customers differently depending on their knowledge regarding
the financial market.

Implementing such adaptive behavior in software applica-
tions remains a challenge. As applications become increasingly
complex and distributed, many implement adaptation in an ad
hoc manner and recurrent solutions have rarely been formal-
ized. One area of modern applications where adaptation re-
quirements have flourished is graphical user interfaces (GUI).
Because they are generally engineered using a descriptive
language and oriented toward specific platforms, it is hard to
produce a single GUI, which automatically adapts itself to its
multiple usage contexts [1].

Many researchers have proposed models and frameworks
to implement adaptive behavior in a generic manner for
components-based software [2]–[5]. These solutions typically
require significant effort to modify an existing software archi-
tecture and make specific technological choices and assump-
tions. They are limited both in terms of gradual integration
to the software and in portability, for a framework usually
targets a certain application domain (e.g., distributed client-
server systems). As a more portable approach, we propose to
use design patterns for formalizing structures of components
that can be easily composed to produce specialized adaptive
mechanisms. While some work has been done to propose
design patterns for the implementation of common adaptive
mechanisms [6]–[9], the present work aims at generalizing
widespread concepts used in these patterns. In doing so, their
integration in existing software is expected to be easier and
more predictable.

As a proof-of-concept, a reference implementation of the
design patterns has been done as a Python library called
AdaptivePy. An application was built as a case study using the
library to validate the gains provided by the patterns compared
to an ad hoc solution. Special attention was paid to the
compatibility to modern GUI design workflow. In fact, rather
than create a specialized toolkit or create a custom designer
tool that would include the design patterns’ artifacts, the Qt
cross-platform toolkit along with the Qt Designer graphical
editor were used. The application workflow is presented and
compared to original methods and advantages are highlighted.
We expect that through the case study, the patterns’ usage and
advantages will be clearer and offer hints on how to structure
an adaptive GUI.

This paper is an extended version of a conference paper
published in the proceedings of Adaptive 2017 held in Athens,
Greece [1]. We extend on the previous paper by providing a
more in-depth description of the patterns and by providing
additional examples as practical demonstrations of how to
apply the patterns using AdaptivePy. Also, more specialized
challenges related to the design of adaptive applications are
identified and solved with minimal code examples

The remainder of this paper is organized as follows. Funda-
mental concepts of software adaptation extracted from previous
work are described in Section II. The design patterns inspired
from the concepts are presented in Section III. AdaptivePy is
presented and followed by practical example usages in Section
IV. The prototype application with adaptive GUI is presented
in Section V and an analysis of the gains procured by the use
of the proposed design patterns are presented in Section VI.
The paper concludes with Section VII and some future work
is discussed.
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II. CONCEPTS OF SOFTWARE ADAPTATION

This section presents major concepts of adaptation from
related work classified in three concerns: data monitoring,
adaptation schemes and adaptation strategies.

A. Adaptation Data Monitoring
The context of a software refers to the environment in

which it is executed. Example contextual data are the geo-
graphical position, light intensity, temperature, but also the
computing platform on which an application is executed. A
computing platform can be composed of many parts such as
hardware components, operating system, computing capability
and, in the case of GUI, user-interface toolkit [10].

Contextual data on which customization control rely, re-
ferred to as adaptation data in this paper, can come from
various sources, both internal (for “self-aware” applications)
and external (for “self-situated” or “context-aware” applica-
tions) [11]. Given these two types of adaptation data, we
consider a system fully adaptable if it can both be customized
based on internal and external adaptation data. If the system is
autonomous in the control of both matter, then it is considered
fully adaptive. The level of adaptivity and adaptability can
provide more or less control over customization and flexibility
of adaptation. Each application use case can benefit from a
certain level of both [12]. A challenge is therefore to make
it easy to implement and change the level of adaptivity and
adaptability wanted for any application feature throughout the
development process.

The acquisition of contextual data to be used as adaptation
data is part of a primitive level, which is necessary for other
more complex adaptation capabilities to be implemented [13].
Contextual data is usually acquired by a monitoring entity
(sensors/probes/monitors) responsible for quantizing properties
of the physical world or internal state of an application [8],
[14]–[18]. Multiple simple sensors can be composed to form a
complex sensor, which provides higher-level contextual data
(Sensor Factory pattern [18]). Internal contextual data can
be acquired simply by using a component’s interface, but
when the interface does not provide the necessary methods,
introspection can be used (Reflective Monitoring [18]). When
a variety of adaptation data is monitored, it provides a modeled
view of the software context, which may be shared within a
group of components. Some event-based mechanism with reg-
istry entities can be used to propagate adaptation data to inter-
ested components (Content-based Routing [18]). Quantization
can be done on multiple abstraction levels and thresholds can
be used to trigger adaptation events (Adaptation Detector [18]).
This is then used to proactively alert some external adaptation
mechanism to perform a selection of the most appropriate
components and check if no system constraints are violated.

A system using external data for adaptation would be
considered self-situated while one using internal data would
be considered self-aware [11]. Self-situated systems are also
referred to as context-aware, where context is the operational
environment [19]. Context-aware will be used in this paper
rather than self-situated to emphasize the distinction between
self (internal) and context (external) as categories of adaptation
data.

Self-awareness is a basic requirement for self-adaptivity
since it is through a representation of itself that a system

can deduce how it satisfies given constraints and modify itself
to improve their satisfaction. Self-awareness can be achieved
through self-monitoring of a system’s components by software
entities as it is the case for autonomic managers in the MAPE-
K model [11].

A recurrent problem shared by any monitoring system is
the need for agreement between components, which perceive
different contexts, e.g., when there is no centralized coordi-
nation controller. To be tackled, this problem needs a form
of structure for synchronization and sharing of data. Another
major challenge is the inherent complexity of managing, re-
questing and using adaptation data. Testability of components
requiring certain adaptation data is finally undermined since
each different value potentially lead to a different behavior of
the component and every other depending on it. There is a need
to explicitly evaluate expected ranges of monitored adaptation
data and prevent contextual view mismatch between interacting
components.

B. Adaptation Schemes in Components
Four main types of adaptation concerns or objectives have

been proposed by Hinchey and Sterritt [11]: self-configuration,
self-healing, self-optimization and self-protection. Different
qualities a system must have to enable these objectives are to
be self-aware, self-situated, self-monitored and self-adjusted.
While some concrete solutions have been proposed for self-
optimization and self-healing [20], our main concern for
the design of GUI is self-configuration. We synthesize two
prominent types of adaptation schemes for self-configuration
used in components-based software engineering: component
substitution and parametric adaptation.

a) Component substitution: The underlying principle
of component substitution is to replace a component by a
functionally equivalent one with regard to a certain set of
features. This can also be done by adding an indirection
level to the dispatching of requests and forwarding them to
the appropriate component. The first pattern applying this
concept is probably the Virtual Component pattern by Corsaro,
Schmidt, Klefstad, et al. [6]. It is similar to the adaptive
component proposed by Chen, Hiltunen, and Schlichting [21],
but adds the principle of dynamic (un)loading of substitution
candidates. In both cases, an abstract proxy is used to dispatch
requests to a concrete component, which is kept hidden from
the client. This approach is also used by Menasce, Sousa,
Malek, et al. [22], who proposed architectural patterns to
improve quality of service on a by-request dispatch to one
or many components. To maintain the software in a valid state
before, during and after the substitution, many techniques have
been proposed, such as transiting a component to a quiescent
state [23], [24] and buffering requests [25]. State transfer
between components can be used when possible, otherwise
the computing job must be restarted [21], [24]. An application
of this principle in GUI could be to replace a checkbox by a
switch. This is seen in touch-enabled GUI where a mouse or
a touch panel can be used as a pointing device.

b) Parametric adaptation: Rather than substituting a
whole component by a more appropriate one, parametric
adaptation relates to how a component can adapt itself to
be more appropriate to a situation. This is usually done by
tuning knobs, configurable units in a component (e.g., variables
used in a computation). Knobs can be exposed in a tunability
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interface [2] for use by external control components, either
included by design or automatically generated at the meta-
programming level (e.g., with special language constructs, such
as annotations [13]). An example of this adaptation pattern
is how different implementations of an algorithm are chosen
based on their respective tradeoffs between quality metrics
(performance, precision, resources usage, etc.). The tunability
domain of each knob is explicit and may vary over time.
For example, if a new algorithm is discovered in the middle
of a large computing job, an adaptation mechanism that is
kept aware of the knob’s possible values is able to switch
to it if it judges that it will perform better overall [26]. The
difference between parametrization and customization through
an application’s business logic is subtle and can be subjective
to a certain point. Many applications apply customization
on the basis of information we consider as adaptation data.
One major difference that can be identified is that when a
component is customized, the knowledge of what can be
customized is not shared explicitly to other components as
an adaptation space. This adaptation space is the domain of
customization that can safely be applied.

A current problem is that these two types of adaptation,
component substitution and parametrization, are rarely if at
all used cooperatively. A software might be adaptive in that
it reconfigures its architecture by swapping components, but
the concrete components remain unchanged and the adaptation
knowledge is centralized, often in the form of rule-based
constraints, which are limited in reusability and reside at a
higher abstraction level than the individual components. On
the other hand, when a component uses data to adapt its
behavior, this knowledge is hidden as implementation detail
and the limits of its adaptation space are unknown to other
parts of the system. The difficulty to acquire and interpret
this knowledge is a limitation of both approaches that can be
tackled by including it in a basic structure of adaptive compo-
nent. Furthermore, the ability to reason about how adaptivity
constrains and impacts components is a key information which
can be used by adaptation mechanisms. Making this knowledge
both explicit and accessible is therefore desirable.

C. Adaptation Strategies

No single adaptation strategy is universal for all software.
Most past work has been done on applying component substi-
tution using various strategies. For example, many researchers
have explored rule-based constraints along with an optimiza-
tion engine to devise architectural reconfiguration plans [2],
[16]. This popular approach has tainted proposed frameworks
that tend to be limited to this strategy only. An important
principle is that strategies are separate from the component’s
implementation and can be easily changed. In fact, it is
desirable to externalize adaptation strategies in order to be able
to easily develop, modify and test them separately. Ramirez [8]
calls this class of design patterns “decision-making”, since they
relate to when and how adaptation is performed. Because these
design patterns are concrete adaptation strategies, their artifacts
are mainly related to specific strategies (e.g., inference engines,
rules, satisfaction evaluation functions). The approach of this
class of patterns is typically related to rule-based constraints
solving, but a more general goal is to select which plan or
components from a set to reconfigure the system with.

III. DESIGN PATTERNS

This section presents design patterns that realize the con-
cepts presented in Section II with some improvements. When
used together, we believe they provide the sought structure
for adaptive software. Unified modeling language (UML)
diagrams are used to show the structure of the patterns in a
standardized way.

A. Monitor Pattern
Classification: Monitor and analyze.
Intent: A monitor provides a value for one type of adaptation
data to interested entities.
Motivation: There is a need to quantize raw contextual data as
parameters of adaptation data with explicitly defined domain
and in specialized modules decoupled from the rest of the
application. Adaptation data needs to be reasoned about in
arbitrarily high abstraction level and be proactive in the adap-
tation detection process. Agreement for monitored data should
be implied by design in order to allow for safe information
sharing among interacting components.
Structure: Fig. 1 shows the structure of the monitor pattern
as a UML diagram.

+observed_update(observable, value)

Observer

+register_monitor(parameter, monitor)
+unregister_monitor(parameter)
+observed_update(observable, value, kwargs)
+subscribe(subscriber, parameter)
+unsubscribe(subscriber, parameter)
+snapshot(parameters = None)

MonitorEventManager

+value()
+possible_values()

Monitor

#set_latest_value(value)
+latest_value()
+start()
+stop()
+register(observer)
+unregister(observer)
+update()

DynamicMonitor

+register(observer)
+unregister(observer)
+notifyObservers(value)

Observable

+possible_values()

Parameter

+updated_monitored_value(parameter, old_value, new_value)

ParameterValueSubscriber

<<depends>>

Figure 1. Monitor pattern UML diagram

Participants:
• Parameter: A parameter is one type of adaptation

data as defined in Section II-A. Its possible values
domain is explicitly defined and forms a state space.
Many range types can be used to model a parameter’s
domain.

• (Static) Monitor: Provides a stateless (further referred
to as “static”) means of acquiring a value within
a subset of a certain parameter’s domain. Formally,
ΩM ⊆ ΩP for possible values Ω of monitor M and
parameter P . A monitor can be an aggregation of other
static monitors, but not of dynamic monitors.

• Dynamic monitor: Additionally to providing a value
for a parameter, schedules the acquisition of the value
and alerts an observer that a new value has been
acquired. Some form of polling or interrupt-based
thread awakening needs to be employed along with
a previous value to know if the value has changed
compared to the latest value, in which case an event
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notification is triggered to interested entities. This
makes it inherently stateful. Like a static monitor, it
can be an aggregation of other monitors. The particu-
larity is that it can aggregate both static and dynamic
monitors.

• Monitor event manager: Registry entity that allows
for a client component to subscribe to a parameter and
be alerted when a new value is acquired. Similarly, a
dynamic monitor can be registered within the manager
and provide a value to any subscriber of the corre-
sponding parameter. In such manager, monitors and
parameters are related by a one-to-one relationship; a
given parameter can only be monitored by a single
monitor.

• Observable/Observer: See Gang of Four observer
pattern [27]. Used for monitor registering mechanism.

• Parameter value subscriber: Provides a means to
be notified when a new value of a parameter it has
subscribed to has been acquired.

Behavior: An adaptation data type can be formalized as a
parameter in terms of the quantized values the system expects
to use. A static monitor provides a means to concretely
quantize raw contextual data from a sensor or introspection to
a value within a defined domain expected by the system. The
quantization can be done using fixed or variable thresholds.
A dynamic monitor adds scheduling behavior, which allows
to provide a value based on accumulated data over time
and apply filtering. The monitor event manager is alerted by
monitors and dispatches the new value to related subscribers.
The dependency regarding subscribers is with the parameters
for which they requested to be notified, but actual monitoring
is done separately.
Consequences: As monitors are hierarchically built, higher-
level abstraction information can be provided. This pattern
allows the analysis step of a MAPE-K loop [15] to be done
through hierarchical construction of monitors: a parameter can
define high-level domain values that are provided by a monitor
composed from lower-level ones and components can use this
to simplify their adaptation strategies. High-level adaptivity
logic is reusable in that parameters are abstract and can easily
be shared among projects. Monitors can be chained such that
only the concrete data acquisition has to be redone between
projects, keeping scheduling and filtering as reusable entities.
Constraints: To assure agreement between interacting compo-
nents, it is necessary for adaptive components which depend
on a common parameter to also subscribe to the same monitor
event manager. These components are therefore part of the
same monitoring group. This can be checked statically or be
assumed by contract. The need for a one-to-one relationship
between a monitor and a parameter within a monitoring group
is based on this agreement requirement. A monitoring group
can be thought of as a single entity that cannot have duplicate
or contradicting attributes, e.g., it cannot be at two positions at
once. In this example, an attribute is a parameter and a monitor
is the entity providing the value for this attribute.
Related patterns: Sensor factory, reflective monitoring,
content-based routing, adaptation detector [8], information
sharing, observer [27].

B. Proxy Router Pattern
Classification: Plan and execute.
Intent: A proxy router allows to route calls of a proxy
to a component chosen among a set of candidates using a
designated strategy.
Motivation: When implementing component substitution, a
way to clearly separate concerns relating to the adaptation
logic (choice of substitution candidate) and the execution of
substitution (replacing a component or forwarding calls to it)
are difficult to implement in an extensible way. The proxy
pattern [27] allows to forward calls to a designated instance,
but does not specify how control of the routing process should
be implemented. Candidate components need to be specified in
a way that does not necessitate immediate loading or instan-
tiation and that is mutable (to allow runtime discovery). To
maximize reusability, strategies should be devised externally.
Structure: Fig. 2 shows the structure of the proxy router
pattern as a UML diagram.

+candidates()
+proxy()
+route(target)
+choose_route()

ProxyRouter +delegate()
+update_delegate()

Proxy

+proxy()

InternalProxyRouter

+proxy()

ExternalProxyRouter

+choose_route(candidates)

ChooseRouteStrategy DelegateComponent

+create(args)

CandidateFactory

<<uses>>

Figure 2. Proxy router pattern UML diagram

Participants:
• Proxy: Gang of Four [27] proxy pattern, with the

exception that the interface is not necessarily speci-
fied (e.g., forwarding to introspected methods). It is
responsible for making sure no calls are lost when a
new delegate is set.

• Delegate component: Concrete component that is
proxied. It must be specified as part of the proxy
router’s candidates set.

• Proxy router: Keeps a set of component candidates
and allows to control the routing of the calls a proxy
receives to the appropriate candidate chosen by some
strategy. The proxy router is responsible for ensuring
any state transfer and initialization of candidate in-
stances.

• Candidate factory: Gang of Four [27] factory pattern
for a candidate. Used as part of candidates definition.
Can do local loading/unloading for external candi-
dates.

• Choose route strategy: Concrete strategy to choose
which candidate among a set to use, based on Gang of
Four [27] strategy pattern. It uses accessible informa-
tion from the application, candidates (e.g., adaptation
space, descriptor, static methods) or any inference
engine available to make a choice.

• External/Internal proxy router: Depending on the
use, a proxy router can use an external proxy (as
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a member) or internally be a proxy (through inheri-
tance). To allow for both schemes, a means to acquire
the proxy is provided and returns either the member
object (external) or a reference to the proxy router
itself (internal).

Behavior: A set of candidates is either statically specified
or discovered at runtime (e.g., looking for libraries providing
candidates). The proxy router is then initialized by choosing
a candidate using the strategy and controls the proxy to set
an instance of the chosen candidate as active delegate. At any
time, a new candidate can be chosen and set as active delegate
of the proxy.
Consequences: The proxy router pattern allows for flexible
and extensible specification of component substitution. The
strategies to choose a candidate to route to can be reused in any
project with consistent information acquisition infrastructure,
such as the one provided by the monitor pattern. Candidates
need not be specified statically and control related to routing
can be done both internally and externally.
Constraints: Strategies might rely on certain project specific
information that is not portable. Separating specific from
generally applicable strategies and composing them should
help with this constraint.
Related patterns: Adaptive component [21], virtual com-
ponent [6], master-slave [28], component insertion/removal,
server reconfiguration [8], proxy [27].

C. Adaptive Component Pattern
Classification: Analyze and plan.
Intent: Use monitored adaptation data to control parametric
adaptation and component substitution by making adaptation
spaces explicit.
Motivation: A basic structure is needed to easily add adaptive
behavior in the form of parametrization or substitution. Com-
ponents need a way to explicitly provide means for adaptation
strategies to reason about their adaptation space in order to
formulate plans. This information should be external to a
base component if the adaptation is to be added gradually.
Most importantly, an adaptive component must behave like
any non-adaptive component and be used among them without
side effects on the rest of the system. Complementarily to
monitors, which provide values within a domain explicitly
defined by a parameter, components require a certain domain
of values they support and are expected, by contract, to adapt
themselves to (parametrically or by substitution). This domain
is an adaptation space that can be reasoned about to devise
efficient adaptation strategies.
Participants:

• Adaptive: An adaptive component that defines means
for acquiring the adaptation space. It can be used
as a subscriber to a parameter value provider. The
adaptation space is a dictionary of parameters with a
set of values it supports. To acquire monitored values,
it has a reference to one and only parameter value
provider. It can therefore subscribe to a parameter
and receive updates when a new value is detected,
triggering parametric adaptation when needed. If an
unexpected value (outside its adaptation space) is
received, an exception can be raised and some higher-
level adaptation mechanism can be fired (e.g., substi-
tute the component for another one).

• Monitor event manager: Parameter value provider
realized with the monitor pattern (see Section III-A).

• Parameter value subscriber: Provides a means to
be notified when a new value of a parameter it has
subscribed to has been acquired (see Section III-A).

• Proxy router: Proxy router pattern (see Section III-B)
• Adaptive proxy router: Adaptive version of a proxy

router allowing to drive the routing process (substitu-
tion) using monitored data.

Structure: Fig. 3 shows the structure of the adaptive compo-
nent pattern as a UML diagram.

+adaptation_space()
+parameter_value_provider()
+updated_monitored_value(parameter, old_value, new_value)

Adaptive

+candidates()
+proxy()
+route(target)
+choose_route()

ProxyRouter

AdaptiveProxyRouter

+register_monitor(parameter, monitor)
+unregister_monitor(parameter)
+observed_update(observable, value, kwargs)
+subscribe(subscriber, parameter)
+unsubscribe(subscriber, parameter)
+snapshot(parameters = None)

MonitorEventManager

+updated_monitored_value(parameter, old_value, new_value)

ParameterValueSubscriber

Figure 3. Adaptive component pattern UML diagram

Behavior: A component to be made adaptive can inherit the
adaptive interface or a specific decorator can be created if
the component’s code should remain unchanged. The adaptive
implementation defines what base adaptation space it will
support. For example, in GUI implementations, this could be
the availability of a toolkit or the type of input medium used
(e.g., touch screen, mouse/keyboard, pen). Then, knobs can
be defined within the component and used as variables to
compute, for example, its size or lay outing specifications.
Tuning can be done when an updated parameter value is
received. For substitution, the process is the same, but uses
the AdaptiveProxyRouter interface. Specific strategies can be
created, using as many generic filters as possible (e.g., filter
out candidates with adaptation space not overlapping with a
snapshot of the current state).
Consequences: Because of the explicit declaration of adapta-
tion space, strategies can be reasoned about how a component
can behave in a situation. For example, a strategy can use
the fact that a component’s space is too specific or too
wide. A significant advantage is that this can be previewed
and tested by mocking the corresponding monitors (assuming
that the designer’s device has the adequate dependencies).
Any component can be made adaptive and does not require
modifications to other components. Even a parameter value
provider can become gradually more complex. It could initially
be based on a configuration file, which is essentially static
during the application’s execution, and be replaced by a more
elaborate one when needed. Because of the support for both
parametric adaptation and component substitution, the basic
structure proposed in this pattern is suitable for virtually any
adaptive mechanism based on monitored data and components
adaptation spaces.
Constraints: Like stated in Section III-A, interacting adap-
tive components must subscribe to the same parameter value
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provider to assure consistency in decision-making processes.
While arbitrarily large hierarchies of adaptive components
can be composed, there is an inherent overhead induced in
the adaptation and routing process. Because a component
subscribing to some parameter value provider such as the
monitor event manager has no guarantee that this parameter
is being actively monitored, adaptive components need to
define a default behavior or immediately request a snapshot
of the current state. If exceptions are used for non-monitored
parameters (no value in the snapshot), their handling should
be carefully done based on how monitors are registered (e.g.,
if monitors are concurrently registered as components are
created). To minimize this effect, it is preferable to register
monitors prior to creating any adaptive component.
Related patterns: Monitor (III-A), proxy router (III-B), adap-
tive component [21], virtual component [6].

IV. PATTERNS REALIZED

This section aims at providing a more practical foundation
for the usage of the patterns presented in Section III. An
overview of AdaptivePy, a library implementing the patterns,
is first presented. Then, minimal use cases for the patterns
are provided and implemented using AdaptivePy. These should
demonstrate how the common problems identified are solved
by the patterns and practically put in place. Finally, an intro-
duction to the use of the patterns for GUI implementations
with AdaptivePy and Qt is presented.

A. AdaptivePy
AdaptivePy implements artifacts from all three design

patterns described in this paper. The library is freely available
from the PyPi repository (https://pypi.python.org)
under the name “adaptivepy” and is distributed under LiLiQ-
P v1.1 license. The Python language was chosen because it
is reflective, dynamically typed and many toolkit bindings
are freely available. Beyond the patterns, AdaptivePy provides
some useful implementations:

• Enumerated and discrete-value parameters
• Monitor event manager with a global instance as

default provider for adaptive components
• Polling (pushed values) and pull dynamic monitor as

decorators over static monitors
• Fixed (always provides the same value) and random

static monitors
• Methods for operations on adaptation space (exten-

sion, union, filter)
• Strategy for choosing the most restricted component

with narrowest adaptation space for a set of parameters
• Automatic computation of aggregated adaptation

space for substitution candidates of a proxy router

While AdaptivePy is a fully working implementation of
the patterns presented in this paper, it is possible to make
different choices to realize the artifacts. For example, the
MonitorEventManager artifact presented in the Monitor pattern
could be realized as multiple managers, which coordinate
the view on the environment and the propagation of the
monitored values. Because the main objective in this paper is to
demonstrate the technique for a single-host GUI, a centralized
MonitorEventManager was deemed more appropriate.

One area in which special care must be taken when
implementing the patterns is to minimize the work necessary
to expand the amount of monitors and components. Since a
complex system is expected to be composed from hundreds,
if not thousands of components, the work necessary to add
a new parameter, monitor or strategy must be kept minimal.
This challenge is greatly mitigated by the use of a dynamic
language like Python, where it is possible to compose classes
at runtime.

It is necessary to mention that the aim of AdaptivePy
is primarily demonstrative in the sense that it illustrates the
applicability of the patterns presented in this paper. While
crucial to the success of adaptation in any given applica-
tion, the end-user’s perception of increased usability due to
adaptation is not the purpose of AdaptivePy. In fact, the
effect of adaptation is expected to greatly vary from one
application to the other, depending on what is adapted and
when it is triggered. AdaptivePy, and consequently the patterns
presented in this paper, aim at counteracting the complexity of
implementing different adaptation strategies and structures in a
gradual manner. Having each concern changeable and testable
as separately as possible is then expected to provide the
best end-user perceived usability with maximal predictability
and minimal development effort through prototyping and A/B
testing.

For each of the three patterns presented in this paper, a
small example using AdaptivePy is given and explained.

B. Monitor Pattern
As presented in Section III-A, the Monitor pattern is

concerned with acquisition and analysis of adaptation data.
To express the environment in terms of contextual data, there
is a need to model the environment into data of known range.
This quantization is done on some raw data, which could
be coming from an hardware sensor, network data provider
or any process executing on the host machine (including the
monitoring application itself).

An important aspect of the modeling of the environment
is that raw data can be further refined into higher-level data
through the cascading of monitors. For example, a hardware
sensor could provide temperature data ranging from −50◦ to
50◦C at 0.5◦ intervals. A higher-level modeling of this data
could be to classify the values into an enumeration of three
temperature levels: { Cold, Normal, Hot }. Table I shows a
possible classification of the temperature levels as provided
by the hardware sensor.

The artifact from the Monitor pattern that allows to provide
a range of possible values is the parameter. The state space of
the hardware sensor provided data is discrete, expressed as
a range with step [−50, 50[: 0.5◦C. The state space of the
temperature level is an enumeration with three unique values.
These parameters can be monitored by static monitors since
they are stateless, assuming the hardware sensor can be queried

TABLE I. Suggested Classification of Temperature Levels

Level Range
Cold [−50, 18[

Normal [−18, 30[
Hot [30, 50[
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Figure 4. Realization of a temperature monitoring architecture

at any given time. By using this temperature sensor monitor, a
second monitor could realize the classification algorithm based
on the predefined thresholds presented in Table I. This monitor
is considered complex because it relies on other monitors.

A refinement to this monitoring structure is to filter the
monitored data. In fact, the hardware sensor’s raw data might
provide subsequent values oscillating between two quantized
levels. A smoothing monitor could then be realize to ad-
dress this issue. A simple moving average filter could be
implemented and provide an average of the past M values.
Another approach would be to provide the temperature level,
which represents most of the past M samples. In all cases,
because some state is necessary (previous values), the monitor
is considered dynamic rather than static. An implication of
being a dynamic monitor is that time affects its output value. At
any time, a latest value can be queried and used in a snapshot
of the system’s current contextual state.

Fig. 4 provides a summarized view of the monitoring
architecture as described previously. AdaptivePy allows to im-
plement this architecture with minimal effort. Listing 1 shows
how to declare the identified parameters using AdaptivePy.
Similarly, Listing 2 shows how to declare the monitors using
AdaptivePy and the threshold values from Table I.

We see from Listing 1 that parameters can be defined to
represent adaptation data as state spaces in a trivial way. These
parameters are then used in Listing 2 to define the possible
values that can be provided by the monitors. We see that the
monitors provide all the possible values of their correspond-
ing parameter. This means that, at runtime, the application
can encounter every state of the modeled environment. In
this example, we see the cascading feature of the monitors
to further refine contextual data into high level adaptation
data. The TempSensorMonitor acquires raw sensor data, quan-
tized into a discrete range. Then, the TempQuantizerMonitor
turns this discrete state space into a higher level enumerated

state space. Finally, the TempLvlSmoothingMonitor applies the
most_common function to the last five values to smooth vari-
ations. A feature of this last monitor is that it is not stateless,
which prevents it from being used by other static monitors.
It is therefore turned into a DynamicMonitor using a default
implementation that is pull-based. This default implementation
is realized using the instance decorator PullDynamicMoni-
torDecorator. A pull-based dynamic monitor uses an external
scheduling mechanism to perform updates during the lifetime
of the application. It is omitted for simplicity in this example.
However, it could trivially be implemented as a button the user
has to push or as a polling mechanism using a timer which
triggers an update at regular intervals.

RawTemperature = D i s c r e t e P a r a m e t e r ( −50.0 , 5 0 . 0 , 0 . 5 )

c l a s s T e m p e r a t u r e L e v e l ( En u me r a t e d Pa r a me t e r ) :
low = 0
medium = 1
h igh = 2

Listing 1. Parameter declaration using AdaptivePy

c l a s s TempSensorMoni tor ( Moni to r ) :
def v a l u e ( s e l f ) :

# Query t h e hardware s e n s o r
def p o s s i b l e _ v a l u e s ( s e l f ) :

re turn RawTemperature . p o s s i b l e _ v a l u e s ( )

c l a s s TempQuant i ze rMoni to r ( Moni to r ) :
def v a l u e ( s e l f ) :

v a l u e = T e m p e r a t u r e S e n s o r M o n i t o r ( ) . v a l u e ( )
i f −50 <= v a l u e < 1 8 :

re turn T e m p e r a t u r e L e v e l . Cold
e l i f 18 <= v a l u e < 3 0 :

re turn T e m p e r a t u r e L e v e l . Normal
e l s e # 30 <= v a l u e < 50

re turn T e m p e r a t u r e L e v e l . Hot
def p o s s i b l e _ v a l u e s ( s e l f ) :

re turn T e m p e r a t u r e L e v e l . p o s s i b l e _ v a l u e s ( )

c l a s s TempLvlSmoothingMonitor ( Moni to r ) :
def _ _ i n i t _ _ ( s e l f ) :

s e l f . _ l a s t _ f i v e _ v a l u e s =
[ T e m p e r a t u r e L e v e l . Cold ] ∗ 5

s e l f . _ c u r r e n t _ i n d e x = 0
def v a l u e ( s e l f ) :

v a l u e = TempQuant ize rMoni to r ( ) . v a l u e ( )
s e l f . _ l a s t _ f i v e _ v a l u e s [ s e l f . _ c u r r e n t _ i n d e x ]

= v a l u e
s e l f . _ c u r r e n t _ i n d e x += 1
s e l f . _ s e t _ l a t e s t _ v a l u e (

most_common ( s e l f . _ l a s t _ f i v e _ v a l u e s ) )
def p o s s i b l e _ v a l u e s ( s e l f ) :

re turn T e m p e r a t u r e L e v e l . p o s s i b l e _ v a l u e s ( )

TempLvlSmoothingDynamicMonitor = \
P u l l D y n a m i c M o n i t o r D e c o r a t o r (

TempLvlSmoothingMonitor ( ) )

Listing 2. Monitor definition using AdaptivePy

C. Proxy Router Pattern

A proxy router, as presented in Section III-B, is a com-
ponent that acts as a proxy and can be controller to route to
different delegates. The group corresponding to the possible
delegates is called the substitution candidates of the proxy
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router. An important element to the maintainability of an ap-
plications is the possibility to change parts related to a concern
without affecting others. The Proxy Router pattern favorises
decoupling of the code related to choosing the appropriate
substitution delegate at an appropriate time and how to realize
the substitution itself. Because strategies are highly dependent
on specific application domains, they are expected to vary from
one application to the other. However, the way components
substitution can be implemented is mostly independent from
the application domain.

A major challenge which transcends application domains
is how to determine when adaptation should take place.
In GUI, frequent changes in the layout of controls might
destabilize users who have learned the position of certain
controls. However, a GUI can improve responsiveness and
better accommodate various types of users by adapting to
their needs. For each scenario, specific strategies for these
choices might be implemented and tested. One example of
such strategy is to prevent applying adaptation when the user
is using the application or a specific feature. By modeling a
“busy” state for the user, it is possible to create a strategy that is
aware of this state and provides the same substitution candidate
as before until the user is not busy anymore. Similarly to
monitors, one could cascade various routing strategies to create
a more complex strategy.

A benefit of cascading strategies is that it allows to create
generic strategies that rely on domain agnostic adaptation data
such as the busy state discussed previously. Also, it is possible
to control the timing of adaptation and computational load
through filtering. Using the Proxy Router pattern, it is possible
to realize multiple strategies and apply them to a common
structure which is reusable across applications.

Assuming a parameter “Busy” with an enumerated state
space of {yes, no} and a monitor “BusyMonitor” that provides
all of the parameter’s possible values, one can implement
the cascading of strategies with AdaptivePy as shown in
Listing 3. The proxy router MyProxyRouter is a trivial proxy
router with two substitution candidates: Candidate1 and Can-
didate2. It uses the InternalProxyRouter scheme (see Sec-
tion III-B), which implements the router through inheritance.
In AdaptivePy, the implementation of the proxy redirects
calls to the __getattr__ method to the delegate object’s
__getattr__, which makes the object behave as if it truly
is the delegate. MyProxyRouter uses an externally defined
strategy for routing that is represented as MyStrategy and
instantiated in MyProxyRouter’s constructor.

An interesting feature of BusyFilterStrategy is that it is an
adaptive strategy. Being adaptive, it has access to the “Busy”
state which is being monitored by “BusyMonitor”, in this case
registered to the global monitor event manager. It acquires
the “Busy” state through a local snapshot, that is a structure
regrouping all the states the component is aware of. It does
so in the choose method and then decides whether the value
of the chosen candidate should be updated by querying the
cascaded strategy or not.

By breaking down strategies into reusable sub-strategies
that can be cascaded, the maintenance and extensibility of an
application can be improved. Because it is possible to modify
strategies individually and to cascade them as high level blocks
in the proxy router, the lack of reusability in strategies is

mitigated. Also, the challenge of determining when to adapt
can be solved in steps rather than all at once. By gradually
adding strategic elements to the proxy router as a common
structure, components of an application that were not adaptive
can acquire adaptive behavior as substitution candidates and
strategies are developed rather than by refactoring the structure
each time.

c l a s s MyProxyRouter ( A d a p t i v e I n t e r n a l P r o x y R o u t e r ) :
@classmethod
def c a n d i d a t e s ( c l s , a r g u m e n t s _ p r o v i d e r =None ) :

re turn { C a n d i d a t e 1 : lambda : C a n d i d a t e 1 ( ) ,
C a n d i d a t 2 : lambda : C a n d i d a t 2 ( ) }

def _ _ i n i t _ _ ( s e l f ) :
super ( ) . _ _ i n i t _ _ ( )
s e l f . _ b u s y _ f i l t e r = B u s y F i l t e r S t r a t e g y ( )
s e l f . _ s p e c i f i c _ s t r a t e g y = MySt ra tegy ( )

def c h o o s e _ r o u t e ( s e l f ) :
re turn s e l f . _ b u s y _ f i l t e r . choose ( lambda :

s e l f . _ s p e c i f i c _ s t r a t e g y . c h o o s e _ r o u t e (
s e l f . c a n d i d a t e s ( ) ) )

@Adapta t ionSpace ( { Busy : Busy . p o s s i b l e _ v a l u e s ( ) } )
c l a s s B u s y F i l t e r S t r a t e g y ( A d a p t i v e ) :

def _ _ i n i t _ _ ( s e l f ) :
super ( ) . _ _ i n i t _ _ ( )
s e l f . _ c a n d i d a t e = None

def choose ( s e l f , c a s c a d e _ s t r a t e g y ) :
b u s y _ s t a t e = s e l f . l o c a l _ s n a p s h o t ( ) . g e t ( Busy )
a d a p t = s e l f . _ v a l u e i s None or \

b u s y _ s t a t e == Busy . no
i f a d a p t :

s e l f . _ c a n d i d a t e = c a s c a d e _ s t r a t e g y ( )
re turn s e l f . _ c a n d i d a t e

Listing 3. Proxy router with filter strategy definition using AdaptivePy

D. Adaptive Component Pattern
Section IV-C contained an example of an adaptive compo-

nent in the form of an adaptive strategy. In fact, the require-
ments to become adaptive are minimal: define an adaptation
space and join and monitoring group by subscribing to a single
parameter value provider. From that point on, a component
is alerted when state changes within its adaptation space are
detected. Also, it can request a local snapshot of the states
corresponding to the parameters in its adaptation space. Using
these values, it can apply parametric adaptation and, if it is a
proxy router, component substitution.

Using the Adaptive Component pattern, it is possible
to transform a previously non-adaptive component into an
adaptive one. AdaptivePy utilizes the Python class decorators
semantic to inject an adaptation space to any class. Then, by
inheriting from the Adaptive class, a component can join a
specific a parameter value provider by specifying it in the
Adaptive constructor. This parameter value provider is realized
using the MonitorEventManager from the Monitor pattern. It
can then subscribe to any of the parameters in its adaptation
space.

The declaration of a simple adaptive component is
presented in Listing 4. Reusing the monitors from Sec-
tion IV-B, the adaptive component TempAdaptiveCompo-
nent uses the temperature to adapt parametrically in the
updated_monitored_value method. We see that, con-
trarily to the other examples, the adaptation space does
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from a d a p t i v e p y . s t a t e _ s p a c e . e n u m e r a t e d _ s t a t e _ s p a c e
import E n u m e r a t e d S t a t e S p a c e as Ess

@Adapta t ionSpace ( { T e m p e r a t u r e L e v e l :
Ess ( { T e m p e r a t u r e L e v e l . Low ,

T e m p e r a t u r e L e v e l . Normal } ) } )
c l a s s TempAdaptiveComponent ( A d a p t i v e ) :

def _ _ i n i t _ _ ( s e l f ,
p a r a m e t e r _ v a l u e _ p r o v i d e r =None ) :
super ( ) . _ _ i n i t _ _ ( p a r a m e t e r _ v a l u e _ p r o v i d e r )
s e l f . _ s u b s c r i b e _ t o _ a l l _ p a r a m e t e r s ( )

def u p d a t e d _ m o n i t o r e d _ v a l u e ( s e l f , p a r a m e t e r ,
o l d _ v a l u e , new_value ) :
# Implemen t p a r a m e t r i c a d a p t a t i o n
i f new_value i s T e m p e r a t u r e L e v e l . Low :

. . . # Do s o m e t h i n g
e l s e : # new_value i s Tempera ture . Normal

. . . # Do s o m e t h i n g e l s e

Listing 4. Adaptive component definition using AdaptivePy

not fully cover the parameter’s possible values. Because
it is not supported, the implications of reaching the
TemperatureLevel.Hot state are undefined for this com-
ponent. If an application uses this component and can reach
this state, component substitution should be implemented
to swap this component with another one which supports
the missing states. An advantage of this design is that
a developer can focus on an explicitly defined region of
an application’s adaptation space and ignore other states
in their implementation. This is seen in the implementa-
tion of the updated_monitored_value, where only the
states defined in the adaptation space are handled. In this
way, if the new_value is not TemperatureLevel.Low,
it can only be TemperatureLevel.Normal. This is
the case because the component has no knowledge of
TemperatureLevel.Hot.

By specializing adaptive components, the service they offer
is expected to be better suited at the region of adaptation space
they define. By adding specialized component and adaptive
behavior to non-adaptive components, an application can be
ported to an adaptive form gradually. Also, because the patterns
presented in this paper serve specific concerns, the adaptive
components are not expected to be affected by changes in the
monitoring or their structural arrangement when used for an
application. The latter is possible because of the basic structure
provided by the proxy routers and by the self-contained nature
of components-based software.

E. Patterns applied to GUI
The patterns presented in this paper can be applied to GUI

to create adaptive components as custom widgets and layouts.
The general-use toolkit Qt was chosen for the case study,
therefore this section will focus on Qt implementations. Qt
provides a graphical editor, Qt Designer, for designing the GUI
in a language independent descriptive language. Since this is
the de facto approach, it is also the favored workflow. Note
that this is true for many other toolkits (e.g., Gtk with Glade,
JavaFX with SceneBuilder).

An ad hoc solution would be to add a placeholder widget in
the GUI and replace them at runtime with the adequate compo-
nent. Setting the appropriate control needs to be done entirely
programmatically, along with any customization necessary, in

the window’s class that owns the control. This leads to a lack
of extensibility, a tangling of concerns between the adaptation
concern and the components’ own concern. Moreover, the
approach is not compatible with normal GUI design workflow,
which involves previewing the application in the graphical
editor before adding logic.

By controlling monitors from the Monitor pattern, one can
visualize any adaptation done by components for the given
toolkit. If a different toolkit is to be used (e.g., when porting
an application), the necessary work is to create a candidate
component for a proxy router using the new toolkit and adding
a toolkit parameter value as an adaptive space definition. A
conversion from one description language to the other would
also be needed. As for the structure provided by the Proxy
Router, only the binding to the toolkit’s widget replacing logic
is to be ported. As for the Adaptive component pattern, the
components simply need to support the adequate portion of
the adaptation space, which includes a toolkit parameter if any
adaptation logic is dependent on different toolkit.

In this paper, because Python is used rather than C++
(Qt’s native language), an external plugin for Qt Designer is
necessary to load custom widgets. This is provided by PyQt
as “libpyqt5” for GNU/Linux. Custom widgets are created us-
ing the QPyDesignerCustomWidgetPlugin base class.
Fields can also be added using pyqtProperty and use
the underlying adaptive component’s interface to customize
the component. This is especially useful with proxy router
components since any customization is automatically applied
to any candidate and state transfer can be more easily handled.
It is also possible to use properties to control adaptive behavior
by means of exposed knobs.

V. PROTOTYPE

Adaptivity can help in improving usability in different
ways. One usability principle of graphical user interfaces
is to take into account the user’s cognitive limitations into
consideration for the presentation of controls. For example,
the number of elements in a group one can remember from
short-term memory is used to limit the number of grouped
controls displayed to the user. This number is not confidently
known, but some suggested that chunks of 4± 1 elements can
be accurately remembered using short-term memory, while it
was originally estimated to be averaging around 7±2 [29]. We
draw inspiration from this usability principle in our case-study
prototype application.

The case study application is a special poll designed to
favor polarization. Five yes/no questions are asked to a user
and answered by selecting the most appropriate response
among a list of options. The possible options provided include
yes, no, mostly yes, mostly no and 50/50. To favor polarization,
statistics from the previous answers are used to restrict the
range of options provided to the user. If the polarization is
judged insufficient because of mixed responses (low polariza-
tion), fewer options are provided. On the contrary, if virtually
all users have answered yes (high polarization), more options
in between will be given. The workflow of the application is to
start the “quiz” using a Start button, choose appropriate options
and send the form using a Submit button. If some options
remain unselected, a prompt alerting the user is shown and
the form can be submitted again once all options are selected.
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The adaptation used is a form of alternative elements
[30]. This provides a form of “plastic” GUI in that it adapts
itself, but retains its usability [31]. The GUI is made plastic
by replacing control widgets displaying the available options
at runtime, conserving the option selection feature in any
resulting interface. To minimize the visual overload, some
widgets are more appropriate than others to display them,
while some cannot display certain amounts of options. A
checkbox can handle two options with a single control. Radio
buttons could handle many options, but to follow the usability
guideline of congnitive limitation, we could use it to display up
to four options at a time. Finally, a combo box can handle many
options, but it does not display all the options on the window
unless it is clicked. For our usage, it is a better choice for
five and more options. Of course, radio buttons can hold more
options and the combo box less, but the amounts suggested
represent the ranges they better suit the usability principle.
Because many other variables need to be taken into account
and affect the usability, the ranges can be chosen by a designer
and further refined through user testing, which means they
must be easy to edit.

Polarization levels act as adaptation data to drive adapta-
tion. An appropriate solution would allow to design the GUI
within Qt Designer and to preview of the adaptation directly,
rather than having to add the business logic beforehand. It
would also allow for gradual addition and modification of con-
trol widget types without necessitating changes in unaffected
modules.

The toolkit used for this application is Qt 5 through the
PyQt5 wrapper library. It is a cross-platform toolkit library,
which provides implementations of widgets like checkboxes,
combo boxes are radio buttons groups. The concrete work
is therefore limited to implementing how these components
can replace each other at the appropriate time and how they
are included in a main user interface. We are therefore more
interested in the underlying structure of adaptation within the
application than specific adaptation strategies and their user-
perceived effectiveness. Once an appropriate structure is in
place, we expect these can be more easily devised, tested and
improved.

VI. COMPARING AD HOC AND ADAPTIVEPY

The windows shown on Fig. 5 are the resulted GUI for the
application in all three polarization states. Because this case
study’s focus is on GUI, the monitoring of past responses was
simulated and a random monitor is used instead. This monitor
updates its value by means of a polling dynamic monitor every
second, allowing to easily observe adaptation.

To emphasize the differences between the ad hoc solution
and the one using patterns, adapters for each three control
widgets (checkbox, radiobox and combobox) were created and
are used in both applications. They all implement a common
interface OptionsSelector, which defines common oper-
ations on the controls such as set_text for the question
labelling and set_options that takes pairs of text and
corresponding value for averaging past answers. The goal is to
compare the implementation of adaptation rather than adding
new type of adaptation, thus the same control abstraction
approach was used for controls in both cases.

Figure 5. Adaptive case study application “Polarized Poll”
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Figure 6. Simplified UML diagram of ad hoc implementation of case study
application

A. Ad hoc Application
A simplified UML diagram of the ad hoc implementation

is shown on Fig. 6. The chosen approach is to add placeholder
widgets in QuizMainWindow which will be substituted by
an appropriate component instance at runtime: CheckboxQt,
ComboboxQt or RadioboxQt. A polarization level defined in
the enum Polarization is bound to each of these types. A timer
within QuizMainWindow polls the polarization value and calls
set_options_selector_components with the appro-
priate type. Adaptation control, along with any customization
necessary, is entirely done in QuizMainWindow.

Fig. 7 shows Qt Designer as the main window is created
for the ad hoc implementation. Notice that because placeholder
components are blank, no feedback is given to the designer.
It is therefore not possible to test the controls or set the
question label. This makes the approach incompatible with
the usual GUI design workflow, which involves previewing
the application in the graphical editor before adding business
logic.

When analyzing the ad hoc code, it is obvious that separa-
tion of concerns is not respected since the option selection
logic is tangled to its owner element, the main window.
Concerns such as scheduling for recomputing polarization and
component substitution are mixed with GUI setup and handling
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Figure 7. Qt Designer using plain widgets as placeholder for ad hoc
implementation

of the business flow. This leads to a lack of extensibility, a
tangling of concerns and limits unit testing of components.
A method is used to select which control component to use
based on the polarization, but this solution remains inflexible.
The knowledge of adaptation is hidden and cannot be used to
devise portable strategies.

One of our goals is to gradually add adaptation mechanisms
to GUI implementations, but this is difficult since modification
of important classes will add risk of introducing defects. Also,
there is no easy way to work on adaptation mechanisms sepa-
rately from the application. In fact, we cannot separately test
the adaptation logic and integrate it after. Another limitation,
in this case specific to GUI, is that all settings specific to the
widgets (e.g., question labels) cannot be set from the graphical
editor. This is a strong deviation from the usual GUI workflow.
Generally, the lack of cohesion induced by the inadequate
separation of concerns is a sign of low code quality. Because
no adaptation mechanism can easily be introduced, modified
and reused in other projects, the ad hoc implementation works
for its specific application case, but is subject to major efforts
in refactoring when requirements and features will be added
throughout its development cycle.

B. Application Using AdaptivePy
A simplified UML diagram of the application is shown

on Fig. 8. From it, we see that the polarization is a discrete
parameter and is used by AdaptiveOptionsSelector, specifically
to define its adaptation space based on the ones provided
by its substitution candidates: CheckboxQt, ComboboxQt and
RadioboxQt. Additionally to adaptation by substitution, Ra-
dioboxQt can parametrically adapt to changes of polarization
levels {low, medium}, since they respectively correspond to 2
and 4 options. Its behavior is that the appropriate number of
options is shown depending on the polarization level. Adap-
tiveQuizMainWindow is free of adaptation implementation
details and simply uses the AdaptiveOptionsSelector instances
as a normal OptionsSelector. OptionsSelectorQt is a subclass to
AdaptiveOptionsSelector, which is used as a graphical proxy
to candidate widgets. It also defines properties used in Qt’s
graphical editor Qt Designer, in this case the question label.

Every AdaptiveOptionsSelector instance is made a sub-
scriber to the QuizOptionPolarization parameter at initializa-
tion. They are updated when a change in the monitored value
is detected, i.e., when a monitor detects a value is different
from the previous one. This is because identical subsequent
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Figure 8. Simplified UML diagram of case study application implementation
using AdaptivePy

parameter values are expected by default to lead to the same
state, so they are filtered out. In the case of AdaptiveOp-
tionsSelector, because it is a proxy router, choose_route
is called to determine which substitution candidate to route
to. Prior to using an adaptation strategy to select the most
appropriate candidate, inappropriate ones can be filtered out
using filter_by_adaptation_space. This function,
provided by AdaptivePy, takes a list of candidates along
with a snapshot of the current monitoring state and only
returns those with adaptation space supporting the current
context. Then, a strategy like choose_most_restricted
is used to choose among valid components. If no component
is valid, an exception is raised. With a candidate chosen,
all that remains is configuring the proxy router by calling
the route method with the chosen candidate. This method
must also take care of state transfer between the previous and
new proxied components. This feature is already defined in
the common interface OptionsSelector as state_transfer.
The route method takes care of the state transfer and updates
the proxy (done by the library). Subscription to the polarization
parameter is done at initialization.

Fig. 9 shows Qt Designer as the main window is created
with the AdaptivePy-based implementation. When compared
to Fig. 7, we notice that the designer has a full view of how
the application will look. Moreover, the currently displayed
adaptation can be controlled through the setup of the monitors.
For example, it is possible to replace the random value by
one acquired from a configuration file and trigger adaptation
manually. Also, each question is simply a OptionsSelectorQt
component rather than a placeholder component and the ques-
tion is entered directly from the graphical editor using the label
property (bottom-right). A major advantage is that adaptive
components can be reused in other interfaces because they
are provided as standalone components. The need for easy
edition of adaptation spaces is also addressed by modifying
or overriding the adaptation_space method of adaptive
components.

The main difference compared to the ad hoc implementa-
tion is that no adaptation concern can be found in the owner
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Figure 9. Qt Designer using adaptive components developed with AdaptivePy

class, the main window. An enumerated discrete parameter
with three polarization values (low, medium and high) is
monitored by a polling dynamic monitor decorator over a
random static monitor. To create the adaptive component, an
adaptive proxy router was used as a base with candidates being
the three same control classes as the ad hoc implementation,
but in adaptive form (each having an adaptation space related
to different polarization levels).

To create the custom widget, two classes are necessary: a
dedicated class, which inherits QWidget and its related factory
with metadata used by Qt Designer such as its name, group
and description. A template class was created to ease this step.
The only logic specific to the options selector is related to
additional properties. In this case, a string property for the
question label along with binding to the options selector’s
interface method (getter and setter) is used. The option values
are also set by this class to centralize the customization logic
(this could also have been done using a property). Finally, the
logic regarding the lay outing was implemented as a layout
with a single element: the proxy delegate. When routing, the
QWidget adapter removes the proxy delegate from the layout
and adds the new one provided by the base option selector
class (described previously). No additional modification other
than removing the logic related to the old options selector
implementation was necessary.

The adaptation logic is essentially located in the adaptive
proxy router class: AdaptiveOptionsSelector. Because adapta-
tion is separated from the rest of the business logic, the main
window class can use the adaptive components without the
knowledge of adaptation. The only logic remaining is with
regard to buttons handling (Start and Submit buttons). It is
clear in this implementation that the knowledge of adaptation
space, which was hidden in the ad hoc implementation, is
used to efficiently choose a substitution candidate. More so,
the radiobox is suitable for two to four options and there-
fore covers low and medium polarization through parametric
adaptation. It could then be used instead of the checkbox
if a strategy for choosing the less restricted candidate had
been used or if a malfunction is detected in the checkbox
implementation rendering it inadequate as a candidate. This
parametric adaptation behavior cannot easily be included in

the ad hoc implementation since the knowledge of polarization
is kept at the owner component level. The component would
need to provide a mean through its interface to customize
a component based on polarization, but this would affect all
other components as well.

Self-healing action such as replacing a failing component
can be realized by monitoring the components and including
this logic as a strategy. This is not easily realizable in the ad
hoc implementation. In the prototype, a radio box could safely
replace a checkbox since it parametrically covers its full adap-
tation space, overlapping on {low} polarization. Also, from
this case study, we can see that arbitrarily large hierarchies
of adaptive and non-adaptive components can be built without
tangling code or affecting other components when adding new
adaptive behavior.

VII. CONCLUSION AND FUTURE WORK

Design patterns presented in this paper can be used as a ba-
sic structure to accomplish various levels of adaptation in GUI.
Adaptive components can be used with other modules such as
recommendation engines to provide more or less automation
and proactive adaptation. Monitors can also be extended and
even implemented as adaptive components themselves, relying
on other more primitive monitors. Proxy routers allow to sim-
plify hierarchical development of arbitrarily large sequences
of component substitutions. The patterns form together an
effective approach for the integration of various adaptation
mechanisms and, in the case of GUI, can be used to provide
a more usual workflow than the ad hoc implementation.

AdaptivePy, as a reference library, is an example of the via-
bility of the patterns when used in a concrete implementation.
Although simple examples and a prototype application were
used to observe gains, the solution is applicable to more com-
plex scenarios where multiple parameters, monitoring groups
and large hierarchies of adaptive components. The patterns
are general enough that they can be used for adding adaptive
behavior based on user, environment and platform variations.

Although an analysis of the prototype has been done using
concepts of separation of concerns and quality principles in
Section VI, there is a lack of quantitative metrics directly
aimed at adaptive software. Example of metrics that would be
interesting to automatically acquire are the quality in term of
adaptation space coverage, adaptation complexity for a set of
components sharing a common context and a measure of over-
head in adaptation realization in a large hierarchy. Acquiring
these metrics would allow to easily compare strategies used for
component adaptation and provide guidelines to developers on
which strategy is most appropriate in certain circumstances.

Future work will focus on exploring adaptation quality
metrics such that verification and validation methods can be
used as an objective evaluation of gains. New metrics using
concepts of the design patterns presented in this paper will
therefore be explored. The goal is to better quantify the quality
level of prototypes with regards to adaptation.
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