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Abstract— Many recent studies have shown that a large 

percentage of bridges in many parts of the world have a low 

safety rating. The national bridge inventory database contains 

data on more than 600,000 bridges, where each bridge has 116 

parameters. Current safety inspections require bridge 

inspectors to manually inspect each bridge every few years. 

Manpower and budget constraints limit such inspections from 

being performed more frequently. More efficient approaches 

need to be developed to improve the process of bridge 

inspection and increase the overall safety of bridges and civil 

infrastructures.  In this study, we propose a correlation 

network model to analyze and visualize the big data associated 

with more than 600,000 bridges in the national bridge 

inventory database. We use correlation networks based on 

various safety parameters, then apply the Markov clustering 

algorithm to analyze a sub-set of 9,546 steel-stringer/multi-

beam or girder bridges. We use the produced clusters to 

propose a different maintenance schedule based on the bridges 

that show a higher chance of becoming deficient. Results show 

that of the top five clusters of bridges, three need to be serviced 

more frequently. We recommend that their inspection 

frequency be reduced to 12 months instead of 24 months. 

Keywords— Correlation Networks; Markov Clustering 

Algorithm; Structural Health Monitoring; National Bridge 

Inventory database; Inspection Frequency.  

 

I. INTRODUCTION 

Every year, the U.S. Federal Highway Administration 

(FHWA) records the data of more than 600,000 bridges, 

with a total of up to 116 parameters in the National Bridge 

Inventory (NBI) database [1][2]. Detailed descriptions of 

these parameters can be found in the coding guide [3] 

developed by FHWA. This is a big data and the authors 

divided some of the parameters associated with these 

bridges as internal, external, and outcome parameters. For 

example, the overall fitness rating/safety rating is an 

outcome rating/parameter of a bridge and is well reflected 

by the sufficiency rating (SR). The SR ranges between 0 and 

1000. The higher the rating, the better the bridge condition 

is. The Deck Rating (DR), Structural Evaluation Rating (or 

Structural Condition Rating (SCR)), and Average Daily 

Traffic (ADT) are some of the internal parameters that 

affect the outcome rating, such as, the SR. The DR ranges 

from 0 to 9 and is used to rate the condition of the bridge. 

The higher the rating, the better the bridge condition is. SCR 

is calculated based on ADT and other condition ratings and 

represents the overall structural fitness of the bridge as 

given in the FHWA coding guide [3]. Ownership (OW) 

indicates the owner of the bridge responsible for its 

maintenance, and Inspection Frequency (IF) is an interval 

usually given in months to indicate how frequently the 

bridge gets inspected. The latter two are some of the 

external parameters. Structural Deficiency (SD) is a status 

assigned to each bridge to indicate whether the bridge is 

structurally sound or not.  

Structural Health Monitoring (SHM) involves 

implementing a damage detection and characterization 

strategy for engineering structures [4]. Current safety 

inspections using traditional SHM mechanisms require 

bridge inspectors to manually inspect each bridge every few 

years. Most of the bridges in the NBI database are assigned 

a safety inspection frequency of 24 months [27]. However, 

the 24 months’ inspection frequency may not be suitable for 

bridges that require immediate or more frequent attention 

due to their age or design standards. Manpower and budget 

constraints limit inspecting the bridges more frequently. 

Clearly, more efficient approaches need to be developed to 

improve the process of bridge inspection and increase the 

overall safety of bridges and civil infrastructures. As a 

result, we developed a correlation network model (CNM), 

based on SR rating values of the bridges for 25 years (i.e., 

from 1992 to 2016) in our earlier conference paper 

submitted [1]. The main idea behind this work is to use 

population analysis to assess the health level of each bridge 

and predict potential health hazards of bridges before they 

happen. Population analysis means that analyzing different 

things based on some particular context. Our main 

hypothesis is that bridges with similar health fitness ratings 

are included in a common group/cluster in the CNM and 

have similar behavioral patterns as discussed in our 

conference paper [1]. As an extension, we further analyzed 

these individual clusters and assigned updated inspection 

frequencies based on their structural health and verified 

what ratings are being affected by ADT.  

Our method takes a population of 9,546 steel-

stringer/multi-beam or girder design bridges across three 

states of the USA, such as, California, Iowa, and Nebraska, 

which come from three different climatic regions [9] of the 

country as shown in Figure 1. The reason for selecting 

bridges from different climatic regions is to study whether 

temperatures play any significant role on the bridges’ health 

in these states.  
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Initially, we created a correlation network of bridges 

based on their outcome rating, such as, SR, and then applied 

the Markov Clustering (MCL) algorithm [10] to produce 

clusters of bridges. The top 5 clusters were considered for 

further analysis to see what internal or external parameters 

enriched to each cluster. In addition, the last 25 years’ 

ADTs were considered to determine their effect on SR and 

other ratings. The correlations between ADT and other input 

parameters were also calculated to see what input 

parameters significantly impacted by ADT in a given 

cluster. Finally, we visualized the clusters of bridges with 

respect to their structural deficiency. 

As it was already mentioned above, this paper is an 

extension of our conference paper [1] and here we have 

conducted and added some other experimental results such 

as the effect of ADT on various ratings of the bridges, and 

assigning different inspection frequencies to the bridges in 

the top 5 clusters. The remainder of this paper is organized 

as follows. Section II gives the background of this research, 

where different studies on monitoring bridge health and 

inspection frequencies are introduced.  This section also 

describes the importance of correlation networks in this 

study and how correlation networks are used in other 

domains and ends with a brief introduction of how 

correlation networks are used in monitoring the structural 

health of civil infrastructures. Section II also presents some 

of the key concepts used for creating correlation networks 

and clusters. Section III describes the methodology used to 

develop correlation networks and clusters. Section IV 

presents the experimental results of this study. The final 

section presents the conclusions and future 

recommendations.  

 

II.  BACKGROUND 

Several recent research studies have attempted to 

estimate the inspection frequencies of highway bridges, and 

argued that there should be a rationale to set inspection 

frequencies for both aged bridges and new bridges. While 

newer bridges may only require inspection 24 months or 

more, older bridges may need to be inspected more often. 

Similarly, these studies also argued that inspection 

frequencies may be rationale when considering different 

structural condition ratings, design standards and risk 

factors and proposed an assessment procedure to create 

inspection intervals for steel bridges with fracture critical 

members [6]. Some authors have estimated inspection 

frequencies using life-cycle cost analysis for Stay-Cable 

replacement design [8]. The Bayesian network model used 

in [17] demonstrates the predictive and diagnostic 

capabilities of the model to estimate the load ratings of 

prestressed concrete bridges and is useful for bridge 

management. Deterioration models were also developed for 

Nebraska state bridges using input parameters of the bridges 

to estimate the deterioration of various condition ratings [5]. 

Similar studies were done in [24] for developing various 

deterioration curves using historical data of condition 

ratings of New York state bridges. A neural network with a 

novel data organization scheme and voting process used in 

[28] shows that it can identify damages in bridges with 86% 

accuracy. Studies also compared various distribution 

methods to estimating the inspection intervals of bridges 

using statistical analysis and showed that the Weibull 

distribution is likely the best fit for historical data of 

condition ratings [7]. 

 

 
Figure 1. Map of nine USA climate regions ( image courtesy : NOAA) [9]. 
 

However, all the studies done to date to estimate 

inspection intervals focused only on individual elements 

such as deck rating or superstructure rating. Hence, there is 

a need to estimate inspection intervals based on overall 

fitness ratings such as SR. If the given set of bridges are 

clustered based on correlations of historical or time-series 

data of SR, then individual clusters can be analyzed further 

to see what parameters are enriched for a cluster of bridges 

and accordingly the bridge owners may focus on those 

critical ratings/parameters, and update IF. For example, if a 

cluster is enriched mostly with structurally deficient bridges, 

then we can modify the IF of that cluster of bridges to a less 

than 24 months’ interval. Similarly, if a cluster of bridge is 

enriched with structurally good bridges, then we can update 

the IF to more than 24 months. 

 

A. Why to utilize a Correlation Network Model? 

As the NBI database has data on more than 600,000 

bridges, there is a need for powerful and efficient big data 

tools. CNM is such a powerful big data tool that can predict 

the structural health of civil infrastructures [1][19]. The key 

idea behind this work is to use population analysis to assess 

the health level of each bridge and predict potential health 

hazards of bridges before they happen. In the population 

analysis, we compare different clusters or groups of bridges 

with respect to a particular parameter, based on its 

enrichment. Our main hypothesis is that the bridges with 

similar health fitness ratings are included in a common 

cluster in the CNM and have similar behavioral pattern as 

shown in [1]. Analyzing these individual clusters will allow 

us to assign different inspection frequencies based on their 

deterioration patterns, and structural health.  

 
B. Correlation networks in other disciplines 

The ability to show generalization, visualization, and 

analysis capabilities made the correlation-based network 

152

International Journal on Advances in Intelligent Systems, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/intelligent_systems/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



analysis become a powerful analysis tool in biological 

studies and in various other disciplines [13]. Correlation 

network analysis was employed in studying biological 

systems to find the plant growth and biomass in Arabidopsis 

thaliana Recombinant Inbred Lines (RIL) and introgression 

lines (IL) [14][15]. 

 

Figure 2. Correlation network representation with bridges. 

 
Figure 3. Structural elements of a bridge [22]. 

 

It was also successfully applied to evaluate the effect of 

hypoxia on tumor cell biochemistry [16]. Correlation 

networks are useful to measure the changes in temporal 

datasets and study the cluster enrichment by a few Gene 

Ontology (GO) terms [18]. 

 

C. Correlation Networks for monitoring structural health  

Researchers in the recent past applied CNM to monitor 

the structural health of civil infrastructures, including 

analyzing safety issues of various bridges using inventory 

ratings and other parameters [19]. The basic advantage of 

using CNM is that the bridges can be clustered together 

based on some similarity and can be visualized as good and 

bad bridges [1][19]. As CNM is a new approach for 

monitoring various civil infrastructures, bridge owners may 

use CNM to display critical bridges and find an efficient 

way to improve the inspection schedules [19]. The 

advantage of this research over [19] is that it considers the 

temporal-data of SRs. Hence, it can accurately predict an 

overall fitness rating behavior of the bridges. So, creating a 

CNM that could deal with temporal-data is one of the 

objectives of this paper. The motivation of this paper is to 

process a CNM that could consider bridges’ overall 

behavior (i.e., SR) over a period of time and analyze highly 

correlated clusters of bridges to predict bridges’ behavior 

and alter the inspection frequencies accordingly. The 

research question of this paper is to determine what ratings 

are affected by ADT for each cluster of bridges in the 

population, if the bridges are clustered using the 

correlations of temporal data of SRs. The research objective 

of this paper is to provide a CNM-based decision support 

System for bridge owners to enable them to find out which 

bridges need to be serviced first and alter the inspection 

frequencies. As a result, we developed a novel CNM that 

considers the temporal data of SRs of the bridges for the last 

25 years (from 1992 to 2016), so as to exactly characterize 

the overall fitness behavior of the bridges over a period of 

time [1] and see what ratings are effected by ADT, and 

update the inspection frequencies. 

 

D. Key concepts used 

The key concepts for this paper are the graph model 

developing the correlation network, and the Markov 

clustering algorithm to obtain the group or clusters of 

bridges. 

 
a) Graph model 

The CNM is basically an undirected and unweighted 

graph-based model. The graph is defined as set of vertices 

and edges, G = (V, E), where V is a set of vertices and E is a 

set of edges. Each vertex (sometimes called nodes) 

represents a bridge/civil infrastructure. Two vertices are 

connected by an edge if and only if their Pearson’s 

correlation coefficient [11] ρ>= 0.90, where ρ is a real 

value, and p-value less than .05. A correlation between any 

two variables is a value between -1 and +1, which expresses 

the strength of linkage or co-occurrence. This strength is 

called Pearson's r or Pearson product-moment correlation 

coefficient if the correlation is between two continuous–

level variables [11][12]. We have used the Pearson’s 

correlation coefficient since the SR data follows normality. 

Figure 2 represents the undirected and unweighted graph 

model with 6 nodes and 6 edges. This paper uses bivariate 

(Pearson’s) correlation analysis to show the relationship 

between any two bridges.  

 

b) Markov Clustering (MCL) 

In any clustering mechanism, the objects are clustered 
together in such a way that the distances among clusters are 
maximized while the distances among the objects are 
minimized [30] as shown in Figure 4. The Markov 
Clustering (MCL) algorithm [10] used in this paper is based 
on the random walks property of the graphs. MCL is a fast 
and efficient algorithm and is designed for undirected and 
unweighted graphs. A random walk in a strongly connected 
cluster usually visits almost all the nodes in the cluster. MCL 
was already applied on various protein-protein interaction 
networks and proved to be extraordinarily robust to graph 
changes and superior in mining complexes from interaction 
networks [29]. The correlation network that we created for 
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bridges or civil infrastructures is also similar to the protein-
protein interaction networks, we employed MCL to mine the 
groups or clusters of bridges that act similarly. 

 

 
Figure 4. Representation of clustering. 

 

 

III. METHODOLOGY 

The following are the four phases of the CNM that we are 

proposing.  

i. Data acquisition and filtering 

ii. Creating a correlation network and applying 

MCL algorithm 

iii. Analyzing various clusters with respect to both 

input parameters, and output parameters, and 

comparing various clusters (population analysis) 

iv. Developing a decision support system 

 

A. Data Acquisition and Filtering 

The highway bridge data is obtained from the NBI 

database. A total of 25 years (1992-2016) of highway bridge 

data from three different states of the USA, i.e., California, 

Iowa, and Nebraska, are considered for this analysis. There 

are 9,546 highway bridges from these three states, and 

which are constructed with “Steel material and having 

Stringer/Multi-beam or Girder design”. These are recorded 

with the numeric 302 in the structure type as given in the 

FHWA coding guide [3].  The bridges are considered in 

such a way that their SR is available throughout these 25 

years. Hence, each bridge has a minimum age of 25 years. 

Inconsistent entries, such as the bridges that are recorded as 

culverts for some years and then non-culverts are removed 

from the consideration as explained in [1]. Our conference 

paper explains the data acquisition and filtering in detail [1].  

 

B. Creating a Correlation Network  

The SR data of the 9,546 bridges is collected as a 

matrix along with their 25 years SRs (i.e., from 1992 to 

2016). This is called an SR matrix, SR matrix, with each 

row (i.e., for each bridge) of the matrix having 25 years’ 

SRs in it as a vector. So, there are 9,546 rows in the matrix, 

A Pearson’s correlation coefficients matrix (say, 

Correlation-matrix) along with the p-values matrix are then 

obtained over the SR matrix. Each of these matrices are of 

size 9,546 by 9,546.  

Each bridge is then assumed as a node (vertex) in the 

graph model, and two nodes are connected by an undirected 

edge if and only if their correlation coefficient ρ >= 0.90 

and significance value p < .05. This creates a correlation 

network with bridges as nodes along with highly correlated 

nodes connected by edges as shown in Figure 5. MCL 

clustering algorithm is then applied in Cytoscape [19] on 

the previously obtained correlation network to produce 

clusters. The inflation parameter in MCL clustering can be 

modified in such a way that the higher inflation value 

produces clusters of small sizes in terms of nodes. However, 

we restricted our experiments to the best inflation 

parameter, such as 1.8, as given in [29]. The clusters 

produced by MCL algorithm are basically sub-networks of 

nodes and edges. MCL has produced 8610 nodes in various 

clusters and 3,865 nodes are present in the top 5 clusters 

and shown in Figure 6. These top 5 clusters are considered 

for further analysis. Various experiments are conducted on 

the top 5 clusters produced by the MCL algorithm, and the 

results are shown in Section IV below. 

 

C. The parameters considered for analysis 

The authors divided the NBI data parameters into three 

categories, such as, input parameters, output parameters and 

external parameters—based on their effect on SR as given in 

the FHWA coding guide [3] to calculate the SR value. SR is 

an output parameter. 

The following are the input and external parameters: 

a) Input parameters: Average Daily Traffic (ADT), Deck 

Rating (DR), Superstructure Rating (SpSR), 

Substructure Rating (SbSR), Structural Condition 

Rating (SCR), and Water Adequacy Rating (WAR). 

b) External parameters: State is mentioned as a Location 

(Loc) (to represent the climatic regions as shown in 

Figure 1), Owner (OW), Age Category (Age-Cat) 

derived from the Age (based on Year Built) of the 

bridge, Inspection Frequency (IF), Rebuilt (RB), and 

Structural Deficiency (SD) derived from the Status of 

the bridge. 

 

Some of the above parameters are described as below in 

the FHWA coding guide [3]. 

1. Item 1- State Code: considered as the Location 

(LOC) of the bridge, as the bridges for our analysis 

were scattered across three states, i.e., California 

(CA), Iowa (IA), and Nebraska (NE). These three 

states are from three different climatic regions [9]. 

California is from the West, Iowa is from the 

Upper Midwest (East North Central), and Nebraska 

is from the Northern Rockies and Plains (West 

North Central) as shown in Figure 1. 

2. Item 22- Owner (OW): Maintenance responsibility 

(Item 21) is used to represent the type of agency 
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that is the primary owner of the bridge. For 

example, code ‘02’ in Item 21 is a county highway 

agency. 

3. Item 27- Year Built-  records the year that the 

structure was built. It is used to calculate the age of 

the bridge. In this study bridges are categorized 

into three categories based on their age. Ages 

ranging from 1 to 50 years are in Category A, 51 to 

100 years in Category B, and more than 100 years 

in Category C.  

4. Item 29- Average Daily Traffic(ADT): It 

represents the most recent average daily traffic 

volume on the bridge. 

5. Item 91- Designated Inspection Frequency (IF): It 

represents the designated inspection frequency of 

the bridge in months. This interval could be varied 

from inspection to inspection based on the 

condition of the bridge. IF=24 indicates that the 

bridge inspection frequency is for every 24 months 

as shown in Figure 7.F. 

6. Item 106- Year Reconstructed/Rebuilt (RB): It 

represents the year of reconstruction to keep the 

bridge operational. RB=0 means that the bridge is 

not rebuilt. RB=1 indicates that the bridge is rebuilt 

as shown in Figure 7.E. 

7. Status of the bridge: There are four possibilities for 

the status of the bridges. Status ‘N’ indicates that it 

is “Not Applicable”. ‘0’ signifies that the bridge is 

“Not Deficient”. ‘1’indicates that the bridge is 

“Structurally Deficient (SD)”, and ‘2’ means that 

the bridge is “Functionally Obsolete.”  A condition 

rating of 4 or less for Item 58, or 59, or 60, or an 

appraisal rating of 2 or less for Item 67 or 71, make 

the bridge structurally deficient [23] as given in 

[3].  

8. Sufficiency rating (SR):  It is an outcome 

measure/rating that is calculated from four factors 

as given in [3]. It represents the overall fitness 

rating of the bridge and ranges between 0 and 

1000. The lower the rating, the lesser the overall 

fitness rating is. 

 

IV. EXPERIMENTAL RESULTS 

 This section demonstrates various experimental results 

with respect to different network properties, various input, 

output, and external parameters of the top 5 clusters.  

 

A. Network Properties of Top 5 Clusters 

The correlation network (correlation ρ>=0.90) is 

presented with 9546 nodes, 767542 edges, and 101 

connected components. This is basically a scale-free 

network. In a scale-free network the degree distribution of 

network follows a power-law. In a power-law node degree 

distribution, there are many nodes with fewer degrees and 

fewer number of nodes with more degrees. The nodes with 

higher degrees could be acting as hub nodes. The study of a 

hub node is very important with respect to network 

properties as this hub node is connected to many other 

similar nodes or bridges. However, studying those hub 

nodes is beyond the scope of this paper. Figure 6 shows the 

top 5 clusters (yellow colored clusters) produced by the 

MCL algorithm. These clusters’ statistics are shown in 

TABLE 1, with the topmost cluster having the highest 

number of nodes, which is 1,496 and 354,939 edges, and 

the smallest cluster having 255 nodes and 13,922 edges. 

The higher the clustering coefficient [23], the higher the 

degree to which nodes in a graph are inclined to cluster 

together. The higher values of the average clustering 

coefficient for each cluster / subnetwork indicate that the 

nodes inside each cluster tend to be part of that cluster only. 

Therefore, the top 5 clusters with higher clustering 

coefficients are considered for further analysis. TABLE 1 

shows that cluster 5 has the highest clustering coefficient, 

which is 0.838. The cluster density describes the potential 

number of edges present in the sub-network compared to 

the possible number of edges in the sub-network. From 

TABLE 1, we see that cluster 3 has the highest density 

(0.533) among all the top 5 clusters.  
 

B. Population analysis with respect to external parameters 

Figures 7.C through 7.F are a comparison of the top 5 

clusters with respect to some external parameters such as 

Age-Category (AGE-CAT), Owner of the bridge (OW), 

whether the bridge is Rebuilt (RB) or not, and Inspection 

Frequency (IF). Figure 7.C is a bar chart for comparing the 

age categories of various clusters. Category A is the set of 

bridges whose age is 1 to 50 years (labeled blue). B-

category bridges are from the age group 51 through 100 

(labeled green), and finally the last category, which is 

Category-C bridges (labeled yellow), with an age of more 

than 100 years. Cluster 2 is highly enriched with Category-

B bridges as shown in Figure 7.C, while the remaining 

clusters are mostly dominated by both Category-A, and 

Category B bridges. So, this could have affected the 

structural deficiency of the bridges as shown in Figure 7.B, 

where most of the cluster 2 bridges are structurally 

deficient.  

 
TABLE 1. NETWORK STATISTICS OF TOP 5 CLUSTERS 

PRODUCED BY THE MCL ALGORITHM. 

Cluster 

Number 

#Nodes #Edges Avg. 

Degree 

Density Avg. 

Clust. 

Coeff. 

SR 

Avg. 

Cluster1 1496 354939 474.51 0.317 0.775 623.7 

Cluster2 1180 99000 167.79 0.142 0.674 489.3 

Cluster3 634 106955 337.39 0.533 0.823 801.9 

Cluster4 300 13377 89.18 0.298 0.812 818.5 

Cluster5 255 13922 109.19 0.43 0.838 577.5 
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Figure 7.D shows that there are six categories of 

owners of the bridges. However, all the clusters are highly 

dominated by Owner-2 (labeled green), which is a county 

highway agency [3]. So, we can infer that all the clusters are 

enriched and maintained by county highway agency. Figure 

7.E is a bar chart that shows whether the bridges were 

rebuilt (labeled green) or not (labeled blue). If we observe 

cluster 4, out of 300 bridges, 83 bridges were rebuilt, and 

most of them were rebuilt in the recent past. The average 

ratings given in Figures 8.B, and 8.C, show that cluster 4 is 

a special cluster having lower average ratings in the 

beginning year 1992 and subsequently increased to high 

average ratings (especially structural condition rating shown 

in Figure 8.B) as the number of rebuilt bridges increased in 

those subsequent years.  
 

 

 
Figure 5. Correlation network (correlation ρ>=.90) with 9,546 nodes, and 
767,542 edges (Average degree=89.14, and 101 connected components). 

 
Figure 6. Top 5 clusters (yellow colored clusters) produced by MCL 

algorithm. (Figure 5 and 6 were generated using Cytoscape [20]). 

 

We also observe from Figures 7.E that most of the 

cluster 2 bridges are rebuilt, but that have not increased any 

ratings in Figures 8.B and 8.C. From Figure 7.F, we see that 

cluster 2 is highly enriched with 24- month inspection 

frequency. So, we recommend that these bridges’ IF’s 

should be lowered, and maintenance must be done more 

frequently to increase the ratings. An inspection interval of 

12 months is more suitable for these bridges.  

 

C.  Population analysis of Top 5 clusters with respect 

to input rating parameters 

The input ratings that are considered for population 

analysis are, DR, SPSR, SBSR, WAR, and SCR of the NBI-

dataset-2016. These five different input ratings are 

compared with respect to their average values in the top 5 

clusters as shown in Figure 7. All the average ratings of 

clusters 3 and 4 are higher compared to all other clusters in 

top 5. This clearly indicates that these bridges do not have 

any maintenance issues in terms of any condition ratings in 

near future. This could be an indication that these bridges’ 

IF’s could be updated and increased to either 36 months or 

48 months instead of 24 months. Another interesting finding 

about this figure is that cluster 2 has lower average ratings 

in all the clusters. For example, cluster 2 has average SBSR 

value of 4.59. Which is less than 5. According to coding 

guide [3], these bridges will very soon become structurally 

deficient. But from Figure 7.F, we see that majority of these 

bridges’ inspection frequencies are 24 months. Hence, we 

recommend that this cluster’s IFs must be lowered to 12 

months. Similarly, from Figure 7, if we see the average SCR 

rating of cluster 2, it is 3.78. which is even below 4. Hence, 

most of these bridges fell in structurally deficient category. 

This can be seen from Figure 7.B, as this cluster is highly 

enriched with SD bridges.  

 Figures 11 through 15 show the enrichment of 

individual average input rating values for different clusters. 

Figure 10 shows that both cluster 1 and 2 are highly 

enriched with DR = 5. As per the coding guide [3], these 

bridges are in “Fair Condition” as per the deck is concerned. 

They are just 1 rating above structural deficiency rating, 

such as rating 4. This calls the frequent maintenance, such 

as making IF=12 months for the decks of the bridges in 

these clusters.  

Figures 12 and 13 show the average condition ratings of 

superstructures and substructures, respectively. From Figure 

11, we see that cluster 2 is enriched with SpSR <= 5. Once 

these bridges’ SpSR’s drop from 5 to 4, then most the 

bridges will fall into the SD bridge category. Hence, the 

improvement in the SpSR rating in terms of dropping the 

live load is required. This can be done by reducing Average 

Daily Traffic and implementing required recovery services 

on these bridges. Cluster 2 from Figure 12 also shows that 

the substructure rating (SBSR) is critical, as most of the 

bridges’ enriched with SBSR ratings <= 5. Figure 13 shows 

that all the clusters are highly enriched with water adequacy 

rating (WAR) >=6. Hence, any improvement in terms of 

WAR rating is not required for the next couple of years. 
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From Figure 14, we find that the bridges in clusters 1, 

2, and 5 are highly enriched with average structural 

condition rating (SCR) <=4, which shows that the maximum 

of the bridges in these clusters are either structurally 

deficient (SD) or very soon will they fall into this SD 

category. Hence, more frequent (such as, IF=12 months) 

maintenance is required for these clusters.  

 
Figure 7. Ratings comparison for top 5 clusters (year 2016). 

 

 

 
Figure 7.A. Location-Inspection Frequency (Loc-IF). 

 

 
Figure 7.B. Structural Deficiency (SD). 

 
Figure 7.C. Age-Category (AGE-CAT). 

 
Figure 7.D. Owner(OW). 

 
Figure 7.E. Rebuilt (RB). 

 
Figure 7.F. Top 5 clusters’ Inspection Frequencies (IF). (All these bar  

charts from Figures 7.A through 7.F were produced in SPSS [25]). 
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D. Effect of the Average Daily Traffic(ADT) on various 

ratings 

 Figures 8.A, through 8.C show the averages of 

Averages Daily Traffic (ADT), Structural Condition Rating 

(SCR), and Sufficiency rating (SR), respectively, for the 

years 1992, 1997, 2002, 2007, 2012, and 2016 (i.e., for 

every 5 years except for the year 2016, which has a gap of 

four years from 2012). The ADT graph shown in Figure 8.A 

indicates that the traffic rate is increasing year by year for 

any cluster of bridges except for the cluster 2 (between the 

years 1997 and 2002) and for the cluster 5 (between the 

years 2007 and 2012). Which clearly indicates that some 

measures regarding lowering the ADT must have been taken 

in those clusters in those years to increase the life of the 

bridges. However, that is not enough to increase the ratings 

of these bridges at the end year 2016. But at the same time, 

we see that the increase in ADT, decreases the ratings in 

case of remaining clusters as we compare Figures 8.A, with 

8.B, and 8.C. As these input ratings are reduced, it 

automatically affects the SR (the overall fitness) and hence, 

it gets reduced. For clusters 1, 2 and 5, the effect of ADT is 

huge on both input ratings (for example, SCR), and on 

output rating SR. As most of the bridges in these three 

clusters are already structurally deficient, the effect of ADT 

would be instant.  From Figure 8.D, we see that mean ADT 

volumes increased only due to category D (ADT>=5000) in 

cluster 1. This indicates that the very high traffic needs to be 

controlled for the bridges in cluster 1.  
 

E. Analysis with respect to Structural Deficiency 
 

The Structural Deficiency (SD) of the top 5 clusters is 

shown in Figure 7.B and their individual visualized 

comparison is shown in Figures 9.A through 9.E, with a 

total of 61.69% of cluster 2, 47.06% of cluster 5, and 

32.15% of cluster 1 bridges are structurally deficient. At the 

same time, further analysis on cluster 2, as shown in Figures 

9.B and 9.F, shows that this cluster is enriched with 62.63% 

Iowa and 17.29% Nebraska bridges, and both have 24-

month inspection frequencies and a mean sufficiency rating 

below 500. The same is the case for cluster 1. Here, more 

than 60% of the bridges are from Nebraska with 24-month 

inspection frequency and having a mean sufficiency rating 

of just above 600. Hence, we suggest that the 24-month 

inspection frequency for these structurally deficient bridges 

needs to be modified to a 12-month inspection frequency to 

provide rehabilitation services more frequently. Similarly, 

only 3.63% and 8.33% of cluster 3 and cluster 4 bridges are 

structurally deficient, as shown in Figures 9.C and 9.D. 

Cluster 3 and Cluster 4 are enriched with more than 94% 

and 63% of Nebraska bridges, respectively, with 24-month 

inspection frequency (as shown in Figure 7.A). Also, the 

average sufficiency rating of these two clusters is above 800 

as shown in Figure 15. Hence, these bridges’ 24-month IF 

can be increased to either 36 months or 48 months as these 

bridges need not be serviced more frequently. 

 

 
 

Figure 8. Comparison of top 5 clusters’ averages (dataset years 
1992,1997,2002,2007,2012 and 2016) with respect to various ratings and 

average daily traffic.  A: Average Daily Traffic (ADT). B: Structural 

Condition Rating (SCR). C: Sufficiency rating (SR). D: Cluster 1 means of 
ADT, category wise (four different colors indicating four different 

categories. Category-A: ADT<100, B: 100<=ADT<1000, C: 

1000<=ADT<5000, and category D: ADT>=5000). 
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Figure 9. Visualized comparison of Structural Deficiency(SD) of top 5 

clusters (Figures A through E respectively for cluster 1 through cluster 5) 
and Location-Inspection Frequency (Loc-IF, shown in Figure F). SD=0: 

Structurally Good, SD=1: Structurally Deficient, SD=2: Functionally 

Obsolete. (The above images were generated using Gephi [21]). 

159

International Journal on Advances in Intelligent Systems, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/intelligent_systems/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 10. Comparison of top 5 clusters with respect to Deck Rating (DR). 

 

 
Figure 11. Comparison of top 5 clusters with respect to Superstructure 

Rating (SpSR). 

 
Figure 12. Comparison of top 5 clusters with respect to Substructure Rating 

(SBSR). 

 
Figure 13. Comparison of top 5 clusters with respect to Water Adequacy 
Rating (WAR). 

 
Figure 14. Comparison of top 5 clusters with respect to Structural 
Condition Rating (SCR). 

 

 
Figure 15. Averages of SRs of top 5 clusters for the year 2016. 
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V. CONCLUSION 

We have presented a model for identifying which 

bridges need to be serviced first and suggested intervals of 

inspection using correlation networks and population 

analysis along with cluster enrichment parameters. Different 

clusters are enriched with different parameters and/or 

ratings. Each cluster is analyzed and has given sufficient 

evidence for our original hypothesis that bridges with 

similar characteristics/parameters must be part of the same 

cluster. We found that there are three clusters of bridges 

(clusters 1,2 and 5), which have low values of sufficiency 

ratings as shown in Figure 15, and to which immediate 

rehabilitation services are required. Hence, they need to be 

serviced first. Therefore, their inspection frequency should 

be adjusted from 24 months to 12 months. Out of these three 

clusters, cluster 2 is eligible for federal funding as the 

average SR for this cluster is below 500 (SR value below 

500 makes a bridge eligible for federal funding as per 

FHWA guidelines [2]) as shown in Figure 15. From Figure 

15, we also found that the bridges in clusters 3 and 4 have 

high overall fitness ratings. Therefore, they do not require 

immediate attention and their inspection frequencies could 

be adjusted to 36 months or 48 months instead of 24 

months.  

We have further analyzed the clusters to see how 

increased ADT leads to decreased overall fitness (in terms 

of SR) of the bridges. We have also presented visualizations 

of all the top 5 clusters with respect to SD to allow different 

bridge owners to clearly distinguish what bridges are 

deficient, or functionally obsolete, or in good condition.  

From various visualizations and statistics with respect 

to different input ratings and external parameters, our 

decision support system could visualize that most of the 

bridges (built with steel material and having stringer/multi-

beam or girder design) from clusters 1, 2 and 5 are in both 

Iowa and Nebraska states, and with IF = 24 months, and 

aged above 50 years. These bridges need to be serviced first 

and their inspection frequencies need to be adjusted to 12 

months instead of 24 months.  

With all these results, our correlation network model 

enables various bridge authorities to clearly distinguish 

between the structurally good and deficient bridges. SHM 

inspectors can now estimate which bridges’ IFs need to be 

adjusted to 12 months instead of 24 months. Rehabilitation 

services should be provided accordingly, and authorities can 

distribute funds on priority basis which could result in 

saving money and many human lives.  

One shortfall of this method is that the big data 

associated with the information of thousands of bridges may 

consume more time to create the correlation matrix and 

correlation network, but with the power of existing 

supercomputers and their huge memories this couldn’t be a 

big problem. 

Presently we have considered only the bridges that are 

constructed with steel material and with stringer / multi-

beam or girder design. As a future work, we may study 

CNM to see the clustering of various bridges constructed 

with a different design and/or with different material, and 

for different states. We would also like to study these 

clusters further and assign risk rankings to these top 5 

clusters, to prioritize the clusters that need immediate 

rehabilitation services. Further studies may also focus on 

studying the remaining clusters instead of top 5 clusters. 

One can also use either DR or SbSR instead of SR, to create 

the correlation network and provide the inspection 

frequencies based on the temporal data of these ratings. We 

can also study the network properties of these clusters in 

detail to get more insights about these groups of bridges. 

This work may further be extended for verifying the 

temperatures role on the bridges as they come from different 

climatic regions.  

 

ACKNOWLEDGEMENTS 

The authors of this paper would like to thank the 

administration of the University of Nebraska at Omaha, 

USA as this research work is sponsored by the university 

under the GRACA research grant with the application 

number 16796.  

 

REFERENCES 
[1]  P. Chetti and H. H. Ali. “Analyzing the Structural Health of 

Civil   Infrastructures Using Correlation networks and 

Population Analysis”, Proceedings of the Eighth International 

Conference on Data Analytics, Porto, Portugal,  2019. 

[2]   Federal Highway Administration (FHWA), 

https://www.fhwa.dot.gov/bridge/nbi/ascii.cfm , 2018.08.15 

[3]   Federal Highway Administration (FHWA), 

https://www.fhwa.dot.gov/bridge/mtguide.pdf, 2018.08.15 

[4]  C. R. Farrar and K. Worden, "An introduction to structural 

health monitoring", Philosophical Transactions of the Royal 

Society of London A: Mathematical, Physical and 

Engineering Sciences 365.1851, pp. 303-315, 2007. 

[5] A. Hatami and G. Morcous, “Developing deterioration models 

for Nebraska bridges”, No. M302, 2011. 

[6] J. Parr, Michael, J. Conner, Robert, and Mark Bowman. 

"Proposed method for determining the interval for hands-on 

inspection of steel bridges with fracture critical members", 

Journal of Bridge Engineering, 15.4 , 2009, pp. 352-363. 

[7] M. Nasrollahi and G. Washer, “Estimating inspection     

intervals for bridges based on statistical analysis of national 

bridge inventory data,” Journal of Bridge Engineering, Vol. 

20, No. 9, 04014104, 2014. 

[8] A. B. Mehrabi et al., "Evaluation, rehabilitation planning, and 

stay-cable replacement design for the hale boggs bridge in 

Luling, Louisiana", Journal of Bridge Engineering, 15.4, 

2010, pp. 364-372. 

[9] T. Karl and W.J. Koss, “Regional and national monthly, 

seasonal, and annual temperature weighted by area, 1895-

1983”, 1984. 

[10]  S. Dongen, “A cluster algorithm for graphs”, CWI (Centre for     

Mathematics and Computer Science), 2000. 

[11]  K. Pearson,  "On the coefficient of  racial likeness",  Biometrika pp. 

105-117, 1926. 
[12] J. Benesty et al., "Pearson correlation coefficient", Noise  

reduction in speech processing, Springer Berlin Heidelberg, 

pp. 1-4, 2009. 

161

International Journal on Advances in Intelligent Systems, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/intelligent_systems/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[13] A. Batushansky, D. Toubiana and A. Fait, “Correlation-based 

network generation, visualization, and analysis as a powerful 

tool in biological studies: a case study in cancer cell 

metabolism”, BioMed research international, 2016. 

[14] J. Lisec et al., “Identification of metabolic and biomass QTL 

in Arabidopsis thaliana in a parallel analysis of RIL and IL 

populations”, The Plant Journal, Vol. 53, No. 6, pp. 960-972, 

2008. 

[15] R.C. Meyer et al., “The metabolic signature related to high 

plant growth rate in Arabidopsis thaliana”, Proceedings of the 

National Academy of Sciences, Vol. 104, No. 11, pp. 4759-

4764, 2007. 

[16] H.L. Kotze, E.G. Armitage, K.J. Sharkey, J.W. Allwood, 

W.B. Dunn, K.J. Williams and R. Goodacre, “A novel 

untargeted metabolomics correlation-based network analysis 

incorporating human metabolic reconstructions”, BMC 

systems biology, Vol. 7, No. 1, pp. 107, 2013. 

[17] K. LeBeau and W.F. Sara, "Predictive and diagnostic load 

rating model of a prestressed concrete bridge", Journal of 

Bridge Engineering, 15.4, 2010, pp. 399-407. 

[18] K. Dempsey, I. Thapa, D. Bastola and H. Ali, “Identifying 

modular function via edge annotation in gene correlation 

networks using Gene Ontology search”, Bioinformatics and 

Biomedicine Workshops (BIBMW), IEEE International 

Conference, pp. 255-261, 2011. 

[19] A. Fuchsberger and H. Ali, "A Correlation Network Model for 

Structural Health Monitoring and Analyzing Safety Issues in 

Civil Infrastructures", Proceedings of the 50th Hawaii 

International Conference on System Sciences, 2017. 

[20] P. Shannon et al., “Cytoscape: a software environment for 

integrated models of biomolecular interaction 

networks”, Genome research, Vol. 13, No. 11, pp. 2498-2504, 

2003. 

[21] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open 

source software for exploring and manipulating 

networks”, ICWSM, Vol. 8, pp. 361-362, 2009 ( retrieved on  

August 15, 2017 from https://gephi.org/) 

[22] Daily Civil, http://www.dailycivil.com/structural-elements-

bridge/ 2018.08.15 

[23] Federal Highway Administration (FHWA), 

https://www.fhwa.dot.gov/bridge/britab.cfm 2018.08.15 

[24] A.K. Agrawal, K. Akira, C. Zheng. "Deterioration rates of 

typical bridge elements in New York." Journal of Bridge 

Engineering 15.4 (2010): 419-429. 

[25] A. Field, “Discovering statistics using IBM SPSS statistics”, 

Sage, 2013. 

[26] http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf 

[27] C.F.R., National Bridge Inspection Standards, in 23 CFR part 

650. 2004: USA. p.7441974439. 

[28] Li Zhe and R. Burgueño, "Using soft computing to analyze 

inspection results for bridge evaluation and management", 

Journal of Bridge Engineering, 15.4, 2010, pp. 430-438. 

[29] S. Brohee and J. V. Helden. "Evaluation of clustering 

algorithms for protein-protein interaction networks." BMC 

bioinformatics, Vol. 7, No. 1, pp. 488, 2006. 

[30] A.K. Jain, “Data clustering: 50 years beyond K- 

means”, Pattern recognition letters, Vol. 31, No. 8, pp. 651-

666, 2010. 

 

 

 

 
 

162

International Journal on Advances in Intelligent Systems, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/intelligent_systems/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


