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Abstract—Time-frequency image processing is considered in 

the context of change detection and diagnosis purposes based 

on signal processing paradigm. A method for selection and 

extraction of features from time-frequency is considered and 

evaluated. New images are obtained by applying a criterion 

based on the contours generated by the main components of 

the analyzed time-frequency image. The transformed images 

are less complex and could be white and black only. Features 

based on statistical moments are considered, selected and used 

to define discriminant functions, in order to improve the 

results of the classification. The features include the number of 

the contours, the average area defined by the contours, the 

variance of the areas and the Renyi entropies. As case study, 

signals coming from vibration generated by faults in bearings 

are considered. The main output of the paper is the method of 

the feature selection and extraction from time-frequency 

images. 

Keywords - signal; image; time-frequency transform; signal 

processing; feature selection; classification. 

I. INTRODUCTION 

Incipient fault detection in mechanical processes by 
vibration monitoring is an important activity for various 
goals such as predictive maintenance, safety and product cost 
optimization. The paper presents a method for feature 
selection and extraction from time-frequency images of the 
vibration signals generated by various faults in the bearings 
of the rotating machines for classification purposes mainly 
and represents an extended and enhanced version of [1]. 
More facts and references are presented in the state of the art, 
the structure of the method is introduced, more details from 
the selection process of the features, and more results from 
experiments are presented also. 

An important activity in industry, for safe work and 
quality of the products, is the Change Detection and 
Diagnosis (CDD) in various processes. These two activities 
are parts of a wider domain, called condition-based and 
predictive maintenance, as described in some excellent books 
with theory and applications [2] [3] [4]. In the field of 
vibrational processes, i.e., processes that generate 
mechanical vibrations, with or without faults or damages, 
advanced signal processing algorithms are intensively used 
to elaborate accurate and robust algorithms for process 
diagnosis [5] [6] [7].  

One of the more complex signal processing method is 
based on time-frequency transform, and next on time-

frequency images, as described in [8] [9] [10]. The structure 
of such processing chain is presented in Figure 1. Signals 
from the process under study are pre-processed both in 
continuous and discrete time, mainly by filtering and scaling. 
Next, a time sliding window is considered for the 
computation of the time-frequency transform.  

The parameters of the sliding window depend on the 
statistical properties of the analyzed signals, to meet the 
condition of the statistical stationarity. The coefficients of the 
time-frequency transform are considered as elements of an 
image. From this point all processing steps are based on 
image processing, for various tasks, as fault detection and 
diagnosis. Finally, from methodological point of view a set 
of papers and practical examples are available as [11] [12]. 

 

Figure  1. The block structure of signal processing for CDD  

This work considers the last block before diagnosis, i.e., 
image processing for classification purposes. The main 
activities are related to the selection and extraction of the 
right features, in order to recognize the difference among 
various images. Some pre-processing steps should be 
considered also, as image scaling and registration.  

The main processing blocks are mainly for signal 
processing, i.e., data acquisition and pre-processing, time-
frequency transforms, image processing, classification and 
diagnosis, and are described in the Sections of the paper. 
Direct classification of time-frequency images does not offer 
always the best results in CDD activities, as described in [13] 
[14]. It is the main objective of this paper to define 
algorithms for feature selection and extraction, in order to 
obtain better results in the future classification and diagnosis 
stages.  

The rest of this paper is organized as follows. Section II 
describes the basic transforms applied to the vibrating 
signals, i.e., time-frequency and Renyi entropy. Section III 
describes the basic structure of the proposed method, 
including data description  and time-frequency images. 
Section IV goes into the results of the experiments, where 
the main results and examples are presented and discussed. 
The conclusion and acknowledgement close the article. 
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II. DATA TRANSFORMS 

The signal under transform is generated by a sliding 
window with a length depending on the dynamic properties 
of the analyzed signal, as in the Figure 2. Signal transforms 
are used to compute specific features of the analyzed signal 
or to change the analysis system, e.g., time-frequency 
transforms, or to compute and extract other relevant features, 
e.g., the Renyi entropy. The final goal of these processing 
steps is to detect changes in the data stream, preferably 
associated with individual or mixed faults of the elements 
and components of the process.  

 

Figure  2. The structure of the processing for feature selection  

A. Time-Frequency Transform 

Time-frequency transforms are advanced processing 
techniques for data processing, and especially for data 
coming from non-stationary signals. A general theoretical 
framework is presented in [15] [16]. Examples of signals and 
applications are audio signals [17], mechanical vibrations 
[18] or biomedical signals [19].  

There are three main methods currently used for time-
frequency representation and analysis. These are: (i) Short-
Time Fourier Transform (STFT); (ii) Wavelet Transform 
(WT); (iii) Cohen class.  

The STFT of a signal )()( 2
RLtx  considers a window 

w(t), as  
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where w(t) is the weighting window. The squared modulus is 
called spectrogram, as 

2
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and constitutes a signal energy distribution in the time-
frequency plane. Even the spectrogram constitutes one of the 
widely used methods for the analysis of non-stationary 
signals, in some case it is unsuitable for the compromise 
needed of time and frequency resolutions, i.e., it is not 
possible to simultaneously have good time resolution and 
good frequency resolution. Consequently, the user must 
correctly choose the characteristics of the analysis window 
depending on the signal structure, considering especially the 
proximity and evolution of the signal components in time 
and in frequency.  

 The signal x(t) is a function of time, and its STFT is a 
function of time and frequency. This transform is linear and 
depends on the chosen window, w. Details on how to choose 
the parameters of the observation window, as length and 
shape, and the discrete-time version, are presented in [20]  
[21] [22]. 

 The Wavelet Transform (WT) was promoted to solve the 
time-frequency resolution problems of Fourier-type methods. 
A concept called ”multi-resolution” or “multi-scale” is 
promoted. In the case of continuous time wavelet transform, 
a basis of translated and dilated functions called wavelets are 
used as 
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The wavelet transform is then 
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The Cohen class is the set of all bilinear representations, 
invariant under time and frequency translations, and 
described by the equation 
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where the kernel ),;,( vftk has some special properties, as 

discussed in [23]. By an equivalent parameterization the 
equation (5) becomes 
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The function Wx(t,f) is called the Wigner-Ville 
distribution (WVD), [20] [24], being one of the most 
important members of the Cohen’s class. It may be the only 
distribution with real values that satisfies the properties 
necessary for the classical applications of signal processing. 
It is also the only distribution to provide perfect localization 
for impulse signals and signals with a linearly modulated 
frequency, [24]. In particular, the WVD is always real-
valued; it preserves time and frequency shifts and satisfies 
the marginal properties. It has also some drawbacks, as the 
apparition of the cross-terms. This is the reason for using the 
Choi-Williams Distribution (CWD) [24], where the kernel 
function is 

( )
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This distribution function adopts exponential kernel to 
suppress the cross-term that results from the components that 
differ in both time and frequency centers.  

The discrete time WVD is defined by [24] 
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It is informal to verify that W(n,m) is a periodic function 
of period 2N in both time and frequency. The last 
relationship shows that in the range

120,120 −− NmNn , representing one period, the 

WVD needs only be calculated over the range

10,10 −− NmNn , having an area of one quarter 

that of the complete period.  
The coefficients of the time-frequency transform define 

an image, which will be called a Time-Frequency Image 
(TFI).  

B. Entropy Transform 

The Renyi entropies are important measures of the 
information, in wide sense. The measures are scale-
dependent when applied to continuous distributions, so their 
absolute values are meaningless. Therefore, they can 
generally only be used in comparative or differentiable 
processes. The information content and the complexity of a 
probability density function can be measured by this entropy 
function. The Renyi entropy is intensively used in the field 
of statistical signal processing, especially in non-stationary 
conditions, being able to estimate the number of the 

components of complex signals and the degree of 
randomness in various signal representation framework, in 
time or frequency domains [25] [26] [27]. 

In the case of continuous signal X(t), the Renyi’s entropy 
of the order α is defined as:  

1,0,)(2log
1
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where fX(x) is the probability density function (pdf). For 
univariate discrete signals the common expression for the α-
order Renyi entropy is   
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As relations (12) and (13) show, the computation of the 
entropies needs the availability of the exact or estimated pdf. 
(The probabilities’ set, in discrete case). There are estimation 
solutions based on, e.g., Gaussian kernels, which provides 
expression as [28] 
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The entropy estimators require the selection of the kernel 
size,  . This should be small (relative to the standard 

deviation of the data). Values between 0.1 and 2 for unit-
variance signals are good choices, [29]. 

In the case of images, I, a normalized image is 
considered as a probability density function. The α-order 
Renyi entropy from [25] is considered as 
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By comparing the entropy of two images, associated to 
consecutive frames – as evolution in time, is possible to 
detect the differences and thus to make change detection.  
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Figure  3. The general structure of the method for selection and extraction of features 

 

III. DESCRIPTION OF THE METHOD 

Considering some results obtained by other previous 
studies and works, e.g., [13], a method to select and to 
extract the features of the time-frequency image and to 
define a new set of features, is developed.  

The structure of the method is presented in Figure 3. 
Data coming from environment/process is stored in a data 
buffer for analysis and processing. Depending on objective, 
a data transform, e.g., Choi-Williams time-frequency 
transform, is applied to obtain an image. Depending on 
processing resources and time-constants of the analyzed 
signals and process, a set of TFIs is obtained. The set of 
these images is then registered based on the detection and 
computation of the main components in the analyzed image. 
The registered image is the base for feature selection 
process. The selected features could have physical meaning, 
as frequency, energy, bandwidth or spreading, or might be 
generated from other image transforms, as, e.g., Hough 
transform [30] [31] or Discrete Cosine Transform [32] [33]. 
In this work, a transform based on the representations of 
isolines (line of equal elevation) of a matrix is applied 
[34][35]. The features of these contours, as number, area, 
average, etc. could be used as feature for CDD objectives. 
Both data transforms, i.e., for time-frequency image and 
feature generation need parameters. The number and the 
values of these parameters depend on CDD 
performance/results. Thus, an adaptation block is necessary 
in order to establish the necessary parameters for each 
transform, as presented in Figure 3.  

A. Vibration Data 

Data were considered for the case of faults in bearings, 
available from [36], which are also well explained and 
analyzed in [37]. The number inside of the round parenthesis 
indicates the names of the files from the original source of 
data vibrations, i.e., [36].  Data are briefly described in Table 
I. Three types of faults are available, like F1 (Inner race), F2 
(Ball) and F3 (Outer race). The case F0 means no faults. In 
the case of the fault F3, there are three sub-cases, depending 
on the fault position relative to the load zone: ‘centered’ 
(fault in the 6.00 o’clock position), ‘orthogonal’ (3.00 
o’clock) and ‘opposite’ (12.00 o’clock), [37]. 

TABLE I.   DATA TEST SET 

 Faults in bearings 

Fault 

size 

F1 F2 F3 F4 

Free 
Inner 

Race 
Ball 

Outer 

Race 

0.000 “ 
d0 (97) 

(case#0) 
- - - 

0.007" - 
d1(105) 

(case#1) 

d2 (118) 

(case#2) 

d3 (130) 

(case#3) 

0.014" - 
d6 (169) 

 (case#6) 

d7 (185) 

(case#7) 

d8 (197) 

(case#8) 

0.021" - 
d9 (209) 

(case#9) 

d10 (222) 

(case#10) 

d11(234) 

(case#11) 

0.028" - 
d14 (3001) 

(case#14) 

d15 (3005) 

(case#15) 
- 

 
Vibration data from four sizes of the faults are available, 

data having the advantage of consistency, by considering 
faults from incipient/small size (0.007") to larger (0.028").  

The sampling rate is 12,000 Hz, the motor is with no 
load, and all data are from drive end bearing (DE). A set of 
four classes of patterns are considered as: C#0 – no faults, 
defined by d0; C#1 –inner race faults, defined by {d1, d6, 
d9, d14}; C#2 – ball faults, defined by {d2, d7, d10, d15}; 
C#3 - outer race faults, defined by {d3, d8, d11}. The 
vectors d4, d5, d12, and d13 correspond to other sites of the 
transducers. The set of classes are defined as  

Class #1:  d0 // Fault free                           (17) 

 

Class #2:  d1, d6, d9, d14 // Fault 1             (18) 

 

Class #3:  d2, d7, d10, d15 // Fault 2             (19) 

 

Class #4:  d3, d8, d11 // Fault 3                 (20) 
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For tests based on computer simulation, some new names 
for a variable were considered. All names beginning with 
“d” indicates a vector with 5,000 samples from normal 
conditions (no faults) and 5,000 samples from the records 
with faults. The variable d0 contains the first 5,000 elements 
of the raw file named 97 from [36].  

Figure 4 presents a sample of time varying signals from 
each considered class, by considering the first 1,000 samples 
from each file. The signals are scaled to [-1,1] by 
normalization. The waveforms seem to be quite different. 

 

Figure  4. The structure for feature selection  

B. Time-Frequency Images (TFI) 

Figures 5-8 present a set of TFIs, one for each class. 
Frame or window no 5 is considered for all data records. 
There are also presented the time evolution, on the bottom 
side, from 0 to 0.08 [s], and the power spectral density, on 
the left side of each figure. For the case with no faults, i.e., 
Figure 5, the spectrum is centered roughly on 1,000 Hz. For 
the other cases, which cases with faults, the power spectrum 
density (psd) is spreading up to 4,000 Hz. The shape of the 
psds indicates some periodic components, like in the Figures 
5-8, but also shapes close to the spectrum of modulated 
signals. These are signals with high frequency bandwidth, 
with spectral components from 500 Hz up to 4,000 Hz, like 
in Figure 6. These cases could generate real difficulties in 
processing and – later - in the detection and classification 
blocks. 

In order to compute a prototype image for each class, the 
TFIs associated to data frames should be registered, and 
finally averaged to obtain a prototype image for each class. 
This is based on a stationarity hypothesis of the processed 
signals, and thus the main components from TFIs can be 
registered in both directions, horizontal and vertical. In order 
to keep the physical meaning/positions of these components, 
the registration techniques are restricted to horizontal 
translations only. The next subsection presents some aspects 
and results from the registration stage. 

 

Figure  5. Time frequency image, Class #1 (free of faults) 

 

Figure  6. Time frequency image, Class #2  

 

Figure  7. Time frequency image, Class #3  
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Figure  8. Time frequency image, Class #4  

C. Image registration 

The registration process of the images is a pre-processing 
step, before the computation and the classification of the 
prototype images. 

Common algorithms for image registration could use 
translation, on x and y directions; rigid processing, which 
means translation plus rotation; similarity, which means 
translation, rotation and scaling; affine transformation, which 
considers translation, rotation, scaling, and shearing. The 
choice of one of them is based mainly on the content of the 
image, the sources and the number of the images, which are 
considered for registration. Simple registration methods of 
the images, from the content point of view, use intensity-
based registration algorithms. As complexity rises, the 
feature-based method is more indicated. Details and 
examples are available in many references as in, e.g., [38] 
[39]. 

The registration time is rapidly growing from translation 
to affine transformation. Sometimes, for complex transforms 
- like affine, the registration process could diverge. This is 
the reason to consider new methods valid for time-frequency 
images – in general – and in the case of bearings. The 
registration of TFI has only one degree of freedom, in the 
sense that any TFI processing must preserve the information 
of vertical axis, i.e., the frequency axis. 

An adapted procedure considers several maxima from 
time-frequency image, which are considered as references, 
i.e., their positions remain unchanged during and after 
registration. Thus, the registration considers the physical 
meaning of these components, which should have the 
physical parameters (e.g., frequency), whatever the moment 
on the time axis. There should be also a distortion limit, in 
the sense that all images, which are far of the reference, 
should be removed from the registration set.  More details 
are available in [40]. Further works might investigate some 
filtering techniques, in order to eliminate the noise or other 
components. 

The reference and the registered images, in pair for each 
class, are presented in the Figure 9, for a window length of 
2,000 samples. 

 
 

 
 

 
 

 

Figure  9. The referenece and the registered images, for classes #1 to #4 

D. Feature selection 

All images are quite complex, by having many 
components with various shapes. A first exploratory idea in 
order to describe the complexity of these images is to 
compute the Renyi entropies. The numeric results are 
presented below by the Table II with bold numbers and the 
averages values of the classes are represented in Figure 10, 
which does not show important differences among them – 
especially for the case of faults. As example, cases faults F2 
and F4 are difficult to distinguish, the difference between 
entropies being 0.02 only. The range values of the Renyi 
entropies indicate the possibility of change detection but 
difficulties for classification. 

An improvement in describing more accurate the content 
of the TFIs is to consider the shape of the main peaks from 
the analyzed image. A pre-defined number of peaks could 
be considered, e.g., 1 to 3, depending on the complexity of 
the image. Thus, a new image is considered and defined in 
terms of contours, defined by the above peaks, which will 
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be called transformed image or contour-based image (CBI). 
This transformation reduces the computation task, by 
keeping the information about the shape and position of the 
main components. 

TABLE II. THE RENYI ENTROPIES OF THE REGISTERED IMAGES 

 Faults / Classes 

 
F1 F2 F3 F4 

Free 
Inner 

Race 
Ball 

Outer 

Race 

0.000 “ 
4.40 

(case#0) 
- - - 

0.007" - 
6.08 

(case#1) 

5.93 

(case#2) 

5.64 

(case#3) 

0.014" - 
4.25 

 (case#6) 

5.89 

(case#7) 

6.18 

(case#8) 

0.021" - 
4.60 

(case#9) 

5.77 

(case#10) 

4.09 

(case#11) 

0.028" - 
6.24 

(case#14) 

5.30 

(case#15) 
- 

Average 4.40 5.29 5.72 5.31 

 

 

Figure  10. The averaged Renyi entropies of the registered images 

In the set of the next two figures, i.e., Figure 11 and 
Figure 12, the raw/original images and the transformed 
images are presented, for classes C#1 and C#2. On blue 
background, the set of the registered images are presented. 
The registered images are considered the prototypes of the 
classes, from pattern recognition point of view. 

The transformed images are presented on white 
background. Some details are presented in Figure 13, for 
three values of the number of contours (nc =1, 2, and 3). As 
the number of contours is rising, the shape is coming more 
complex. A primary analysis of the transformed images 
reveals some interesting properties: 
a) the common content of the images is of vertical curves, 

as C#1(1,6,9), C#3(3,11,12); 
b) the class C#2 has a very complex pattern, for all cases 

(2,7,10, and 15); 
c) the classes C#1 and C#3 have some strange patterns, 

C#1(14) and C#3(8). Keeping all these images will 
damage the final classification. 

d) the vertical curves/contours of the transformed images 
are in fact a set of contours, which could be described 
each by numbers and areas. These could be used as 
features of the CBIs and later for the associated fault. 

 

Figure  11. Original and transformed image, Class #1 

 

 

 

Figure  12. Original and transformed images, class #2 and #3. 

 

 

Figure  13. Details of contours based images, nc = 1,2. 3. 
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In order to extract the right information, as features from 
the transformed images, some elements or parameters 
should be considered and properly used. In this work, 
parameters based on the number and size of the contours are 
used, mixed with the values of some statistical moments.  

The basic elements of the feature vector are: 
i) the number of contours, Nc, as a measure of the 

complexity; 
ii) the area of the polygons, Ac, as a measure of the 

spreading on horizontal plane; 
iii) the variance of the above areas, var(Ac), as a measure 

of the complexity; 
iv) the average of the area of the polygons, E{Ac}=Ac; 
v) the mean of the squared values of areas, E{A2

c}; 
vi)   the Renyi entropy of transformed images, RH. 

A vector of features is defined for each class by using 
the above features, as 

4,3,2,1

,var 2

=






= 

i

RHAA(Ac)AN ccccif    (21) 

For each data vector, d, from a class, the vector fi is 
evaluated, and matrix of features is obtained for each class, 
as 

  4,1,... 421 == jj fffF                (22) 

The effect of the features is estimated by a general 
discriminant matrix of the classes 

4,1,,
4

1

4

1
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or, by considering only the distinct classes, by the 
discriminant function 
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or 
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This should be high as possible. The number of the features 
considered in the Equation (21) could be modified, in order 
to gain the highest dissimilarity among classes.  

IV. RESULTS OF THE EXPERIMENTS 

The evaluation of the features for all classes is presented 
in Figure 14, with green for C#1, yellow for C#2, for C#3 
and black for C#4. A high variance of the features for 
patterns of the same class is observed, e.g., feature 1 for class 

#2, #3, and #4; feature 2 for classes #3 and #4; feature 6 for 
classes #2 and #3. If the variance is associated with the size 
of the fault, then a criterion to select the right features is to 
maximize the dissimilarity among classes.  

The mean values of the features are presented in Figure 
15, with different colors for classes. There six features for 
each class of four. There is a difficulty to make a good 
classification, especially for the classes 2, 3 and 4, where the 
evolution and the range of the values seem quite close. A 
solution to change this is to increase the number of contours 
(nc) in CBIs from 1 to 2, and 3, with the results presented in 
Figure 16. Based on these evolutions, the next step is to 
evaluate a criterion for the selection of the best features for 
classification purposes, i.e., to maximize the dissimilarity of 
the classes in the feature space. Figure 17 shows the 
evolution of the dissimilarities in terms of the six features 
and based on Equation (23). 

 

Figure  14. Feature space among various cases, from 1 to 12 

 

Figure  15. The mean values of the features; nc =1 

 

Figure  16. The mean values of the features; nc =2, and 3 
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Figure  17. Dissimilarities among classes 

The values of the discriminant functions (24) and (25) for 
various values of the number of contours are presented in 
Table III. The highest value of the discriminant functions is 
obtained for one contour only, nc = 1. 

TABLE III. VALUES OF THE DISCRIMINANT FUNCTIONS 

 
nc 

1 2 3 4 5 

D1 1.094 0.147 0.349 0.375 0.481 

D2 6.596 0.884 2.094 2.251 2.888 

CONCLUSION 

The objective of the paper was to promote a method for 
feature selection and extraction from time-frequency images, 
as an alternative to some classical well-known methods, as 
those based on Hough Transform or Discrete Cosine 
Transforms. 

Experiments used real vibration data coming from 
bearings of the rotating machines, bearings with various 
faults and sizes. The proposed method is general and can be 
applied also to other types of data, mechanically generated or 
not. 

The roots of the method come from the fact that for 
classification purpose, the complexity of time-frequency 
images is not properly described by Renyi entropy. More 
information in terms of more features must be considered at 
the input of the classifier.  

The method uses two data transforms. The first one is 
based on Choi-Williams time-frequency transform and the 
second uses a representation based on isolines of a matrix, 
applied to the main components of the time-frequency 
images. Before extracting the features, the time-frequency 
images are registered. Depending on the number of the 
contours obtained, which could vary, e.g., from 1 to 5, the 
features are varying and change the dissimilarity of the 
classes.   

An important step is adaptation of the parameters for the 
used data transform. Depending on the dynamic properties of 
the process which generates the mechanical vibrations and 
depending on the evolution of the faults, the user must check 
the length of the data frame/window, the number of frames, 
the numbers of the contours which define the transformed 
images (contour – based). 

The selected features are based on the statistical 
moments, as average, variance and squared average values of 
the areas of the contours. The information- based features is 
also used, by considering the Renyi entropy. Larger feature 
vectors could be considered by including also the number of 
the main components and their centers, in time and space. 

The results show a good separability in the feature space, 
in the sense of clustering, and thus the possibility to obtain 
efficient classifiers. 

The method could be extended to more complex signals 
and applications. The feature vector could be extended with 
qualitative or quantitative parameters, which describe the 
shape of contours, i.e., the distance to some standards cures 
as circles, ellipses or squares. Further research could  
consider also fuzzy logic in the description and selection of 
the features from time-frequency images. 
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