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Abstract—As machine learning (ML) systems become more
ubiquitous, their resource requirements and associated financial
burdens increase, highlighting the need to optimise energy
consumption and costs to meet stakeholder expectations. While
quality metrics for predictive ML models are well established,
efficiency metrics are less commonly addressed. We present a
comprehensive framework for evaluating efficiency metrics that
facilitates the comparison of different types of efficiency. A
novel efficiency metric approach (Compact Efficiency Metric)
is proposed that considers resource usage, computational effort,
and runtime in addition to prediction quality. Implementations
for specific focus areas have been developed, such as the Quality-
Focused Compact Efficiency Metric (QCO). This work also
introduces a Pareto-based methodology for selecting ML models
with an emphasis on efficiency. The QCO metric has undergone
rigorous testing to validate its applicability, plausibility, and
ability to adjust for variations in dataset size and hosting
environment performance. This QCO metric has been applied
to two datasets and calculated for a wide range of ML models.
In particular, our metric identified an efficient solution when
determining the optimal sequence length for transformer-based
models. The results from Pareto-based selection were congruent
with those derived from the QCO metric, providing a viable
approach for pre-selecting preferred solutions. The framework
enables stakeholders to make informed decisions concerning
the utilisation and design of ML models, thereby ensuring
environmental responsibility and cost-effectiveness.

Index Terms—machine learning; nlp; efficiency; metric; soft-
ware performance; automl.

I. INTRODUCTION

In past decades, the imperative for computational effi-
ciency was determined by the constraints of then-available
technology, compelling the optimal use of limited hardware
resources. With advancements in computing capabilities, par-
ticularly in machine learning (ML), focus has gradually shifted
towards augmenting the quality of predictions, often at the
expense of operational efficiency. The advent of large language
models (LLMs) has been pivotal, marking a transformative
phase in computational tasks and signalling their growing
dominance in human-computer interactions. This shift coin-
cides with the integration of ML in various environments,

Note: This paper is a revised and extended version of [1].

including edge computing, where resource limitations neces-
sitate a critical reconsideration of computational approaches
from perspectives of green computing and sustainability. Util-
ising resource-intensive techniques, such as transformer-based
embeddings or LLM, introduces financial and environmental
challenges, emphasising the necessity for enhanced computa-
tional efficiency. In response to these challenges, the oblique
objective of this publication is to improve the efficiency of ML
operations. By introducing a set of comprehensive metrics,
this work aims to measure the efficiency of ML models,
thereby facilitating their sustainable and economically viable
deployment across different platforms [2].

The focus of ML research has been on improving model
quality, for which a number of metrics are available. Re-
search on effective ML lacks standardised and comprehensive
efficiency metrics. To ensure reproducibility and facilitate
comparison of results, best practices in ML research typi-
cally include detailed descriptions of experiments, including
datasets, pre-processing steps, machine learning techniques,
hyperparameters, and hardware setups [3]. The lack of dataset-
agnostic procedures and the absence of ’golden standard’
datasets pose challenges in achieving accurate reproducibility
and fair comparisons in natural language processing (NLP)
[4]. Furthermore, assessing the impact of innovations in ML
process steps, such as improved pre-processing, on prediction
quality is complicated by the influence of other ML steps.

The delicate balance between complexity and outcome is
often overlooked in research efforts to utilise all available
resources to reduce time-to-solution. Evaluating complexity
in time and space is subordinated to finding the best model
or process. Numrich stated [5]: “Increasing productivity by
minimising the total time-to solution is a somewhat ill-defined
statement of the problem. We propose an alternative statement:
at each moment in time, use the resources available optimally
to accomplish a mission within imposed constraints.” In the
context of ML research, it is important to establish metrics
that address efficiency concerns alongside prediction quality.

We propose to fill the existing gap by introducing novel met-
rics for measuring the efficiency of machine learning models.
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Fig. 1. Development of Quality Focused Efficiency Metric.

By incorporating resource consumption, computational effort,
and runtime considerations into our efficiency metrics, we aim
to provide a holistic perspective on the actual efficiency of ML
models. We demonstrate the process of defining a quality-
focused efficiency metric (Figure 1) and present the Quality
COmpact (QCO) Efficiency Metric, detailed in Equations (4)
and (5).

We acknowledge the significance of dataset-agnostic evalua-
tion and propose solutions to overcome this challenge. Further-
more, we demonstrate the benefits of our metric for evaluating
hyperparameter tuning. To facilitate the measurements, we
have developed a tool to monitor the ML computing processes.
Additionally, we introduce a Pareto-based approach to simplify
selecting the most suitable ML setup. The aim is to enable
researchers and practitioners to make informed decisions that
prioritize prediction quality and efficiency, thus advancing
the field of machine learning towards sustainable, green, and
economically feasible solutions.

A. Summary of Contributions
The contributions of this research are as follows:

Efficiency Definition Following Physical Units. Defines ma-
chine learning efficiency using a framework analogous
to physical units, providing a standardized approach to
quantify and compare machine learning efficiency.

Definition of Efficiency Dimensions: Establishes key metrics
such as quality, speed, and resource utilization.

Foundational Efficiency Metric: Introduces a basic efficiency
model.

Focused Efficiency Metrics: Extends the Efficiency Metric to
address specific aspects like computational cost or quality,
allowing for targeted optimizations.

Definition of Instantiation Process: Applies the efficiency
metrics on use cases, including selecting appropriate

measurements, data transformation techniques, and de-
termining validity ranges.

Exemplary Instantiation for QCO: Demonstrates how to im-
plement an efficiency metric specifically focusing on
quality.

Capturing Tool Observe: Develops a user-friendly tool to au-
tomatically capture data needed to evaluate the efficiency
of machine learning algorithms, simplifying performance
analysis.

Evaluation of Efficiency Metric: Discusses methods to as-
sess the validity of efficiency metrics by comparing them
to expert and Pareto solutions.

B. Comparison of Approaches

Table I compares traditional efficiency approaches and the
solutions provided by the Compact Efficiency Metric, with
particular emphasis on the advantages of the former. The com-
parison demonstrates the enhanced flexibility and applicability
of the Compact Efficiency Metric across various computational
contexts. It addresses the limitations of traditional methods by
providing a structured, measurable framework for evaluating
machine learning efficiency.

C. Outline

The structure of the paper is as follows: Section II (State
of the Art) covers the research on efficiency types, metrics in
ML, and the Pareto approach. In Section III, the efficiency
metric is presented by elaborating on its objectives, followed
by the theoretical foundations of efficiency dimensions and
concepts, and finally, the definition of the efficiency metrics.
In the subsequent Section IV, the metric for quality-focused
efficiency is defined, adhering to a specified protocol. The
score equations for QCOF are presented, accompanied by a
brief explanation of its usage. The Evaluation Section V uses
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TABLE I
COMPARISON OF APPROACHES

Approach Downside Compact Efficiency Metric

Computational Cost Complexity based on theoretical calculation Empirical measurements

Computational Cost for Deep Learning Model parameter based theoretical calculation Empirical measurements

Resource Efficiency Objective is a two-sided optimization of software and
hardware

Resource consumption is emphasized, aiming to balance
multiple efficiency dimensions

Efficiency Comparison Restricted to comparing methods, not scoring Provides comparable scores with defined validity ranges

Efficiency Metrics Optimized for high-performance computing
components with specific measurements

Measurements applicable on standard hardware and
software

Pareto Efficiency Multi-dimension optimization without dimension
weights

Allows for weights to be assigned to each efficiency
dimension

two experiments to assess the performance of the metric. The
results obtained are discussed in detail in Section VI, leading
to the presentation of the conclusion (Section VII).

II. STATE OF THE ART

This section provides an overview of the current state of the
art and serves as a background chapter. Approaches that ad-
dress computational cost as a method, with the aim of predict-
ing both computational and financial costs, are considered first.
Next, resource efficiency approaches are reviewed, aiming
to find algorithms that operate cost-effectively. Additionally,
generic approaches to efficiency metrics are examined. Finally,
the concept of Pareto efficiency is introduced.

A. Computational Cost

Computational Cost or efficiency is based on the com-
putational effort. Most statistical ML algorithms can be ad-
dressed, and their time complexity or space requirements can
be calculated. For example, the time complexity of gradient
descent is O(ndk), where d is the number of features and
n is the number of rows. In the context of transformer-
based approaches, the number of operations for multi-head
attention can be calculated as n2d + nd2, where n is the
sequence length and d is the depth [6]. Translating these
statistical calculations into real training times is challenging
due to numerous optimisations of modern CPUs and GPUs that
change the type of computation and the number of operations
[7][8][9]. The approach defines work and duration dimensions
based on actual measurements.

Computational Cost for Deep Learning is specific to deep
learning due to its reliance on complex neural network
architectures, which complicates the direct computation of
complexity. Several approaches attempt to predict complexity,
such as the model proposed by Li et al. [10], which introduces
two classes of prediction models for distributed SGD. The
use of profiling information in this approach is similar to the
presented method, but it has limited validity for deep learning
optimised with distributed SGD.

Resource Efficiency is essential for deep learning, where
hardware requirements differ from statistical ML and con-
stantly evolve. The research aims to adapt deep learning to

specific hardware. Yang et al. [11] developed a method to
bridge this gap, focusing on computing the model locally near
the sensor. In HPC, research such as Performance Metrics
based on computational action (Numrich [5]) optimises the
use of hardware. Resource efficiency focuses primarily on
the optimal hardware usage of specific algorithms, ignoring
algorithm complexity or runtime. The efficiency definition
addresses this aspect to provide comprehensive statements
about the entire ML task.

B. Efficiency
Efficiency Comparison plays a role in evaluating novel

approaches. For instance, Thomson et al. [12] present an op-
timisation for machine learning-based compilers that focuses
on process speedup while overlooking the impact on resource
consumption. Fischer et al. [13] propose a framework for
evaluating the energy efficiency of ML without considering
prediction performance. Kumar, Goyal & Varma [14] develop
ML with a small footprint and compare efficiency based on
model size, prediction quality, prediction time and prediction
energy. Discussions of the novel approach primarily revolve
around individual measurements, lacking an overall efficiency
comparison. In contrast, Huang et al. [15] discuss the selection
of an object detection architecture in terms of efficiency, defin-
ing it as a speed/memory/accuracy trade-off and evaluating
it through two-dimensional trade-off curves. The proposed
efficiency metric would provide a balanced and meaningful
score for evaluating [14] and [15].

Efficiency metrics were ’invented’ for HPC research, which
deals with highly scaled hardware systems and highly spe-
cialised applications, making efficiency statements easier to
derive and crucial. The difficulties have been recognised
and discussed from an early stage [16] - to philosophical
considerations [17]. Numrich of Cray Research developed an
approach based on physical laws [18] [5], which inspired the
proposed metric based on dimensions reflecting components
of a physical law.

C. Pareto efficiency
In the field of machine learning, Pareto efficiency has

emerged as a key criterion for evaluating and optimising algo-
rithms under the constraints of multiple competing objectives.
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Pareto efficiency delineates an optimal state where no single
objective can be improved without simultaneously degrading
another, thus embodying the essence of trade-offs inherent in
decision-making processes.

Pareto efficiency is a critical factor in multi-objective op-
timization (MOO) [19] [20], where ML models are opti-
mized across various dimensions, including accuracy, compu-
tational complexity, and energy consumption [21] [22]. This
requires a departure from traditional single-objective optimiza-
tion paradigms towards more nuanced approaches that can
navigate the complex trade-offs among competing objectives.
Several algorithms have been proposed to address MOO in
ML. These include evolutionary algorithms [23] [24], swarm
intelligence [25], and gradient-based techniques [26], each
offering different mechanisms for approximating the Pareto
front, which is the set of all Pareto efficient solutions.

Pareto efficiency has become a critical criterion for evaluat-
ing and optimising algorithms in the evolving ML landscape,
where multiple competing objectives must be considered [27].
Pareto efficiency is a concept from economics that describes an
optimal state in which it is impossible to improve one objective
without degrading another, thus embodying the essence of
trade-offs inherent in decision-making processes [28]. This
chapter explains the applications of Pareto efficiency in ma-
chine learning, including its significance, evaluation methods,
and implications for algorithm design and evaluation.

Recent advancements have led to the integration of Pareto
efficiency with deep learning, particularly in areas such as
neural architecture search (NAS) [29]. The objective is to dis-
cover optimal network architectures that balance performance
with resource constraints. Studies have employed Pareto-based
approaches to navigate the search space efficiently, identifying
architectures that offer optimal trade-offs between accuracy
and computational cost [30].

Furthermore, Pareto efficiency can be applied to optimisa-
tion and model evaluation and selection [31]. In this context,
Pareto fronts serve as a valuable tool for evaluating the
performance of various models, allowing practitioners to make
informed decisions based on a comprehensive understanding
of the trade-offs involved. This approach has proven advanta-
geous in fields where performance is multifaceted and cannot
be captured by a single metric. For instance, in recommender
systems, accuracy, diversity, and novelty may all be of concern
[32].

The investigation of Pareto efficiency in machine learning
also poses fundamental questions regarding the nature of
optimality and the objectives of optimization itself. It urges the
community to reassess current practices and create new the-
oretical frameworks and algorithms to more accurately depict
and navigate the intricate trade-off landscapes typical of real-
world issues. In conclusion, integrating Pareto efficiency into
machine learning research and practice represents a significant
paradigm shift, promoting a more comprehensive and nuanced
approach to optimization. As the field progresses, further
exploration of Pareto-based methods is expected to provide
significant insights into the design, evaluation, and application

of machine learning systems, ultimately advancing the frontier
of what is achievable in the domain.

III. EFFICIENCY METRIC PROPOSAL

This proposal encompasses two integral parts: the develop-
ment of abstract efficiency metrics and the definition of the
quality-focused efficiency metric. The objectives, limitations,
and use cases of efficiency in machine learning (ML) are
introduced, and basic efficiency types based on trade-off rela-
tionships are established. Drawing inspiration from the laws of
physics, efficiency is defined using efficiency dimensions for
quality, work, space, load, and duration of the ML procedure,
with each dimension comprising measurements of the ML
process. Two types of metrics are presented: the efficiency
vector, which provides insight into the raw strengths and
weaknesses of the ML process in terms of efficiency, and
the focused efficiency scores, which are designed for ease
of interpretation. A defined procedure is employed to adjust
dimensional weights and perform sophisticated measurement
smoothing to enhance the significance of scores. For example,
the metric equation for quality-focused efficiency is outlined,
and a metric definition protocol is proposed to achieve metric
validity. This protocol is applied to define the quality-focused
efficiency metric, including the definition of the equation
for score calculation, selecting appropriate measurements,
smoothing measurement values, and elaborating dimension
weights.

TABLE II
LIMITATIONS OF QUALITY COMPACT (QCO) METRIC

Aspect Category or
Requirement

Evaluated Compen-
sation

Dataset Dataset Independent Labelled Text Sam-
ples

Dataset
Size1

ML-Task Complete or partial
Pipeline

Text Classification
Pipeline, NLP-Tasks4

No2

ML-
Techniques

Technique Independent Statistical and Deep
Learning Techniques

No3

System En-
vironment

Access to
Measurements of
Duration, Calculation
Steps, Resource
Consumption of ML-
Task

Virtualised Host No3

Host-Setup Host-Setup Technique
Independent

Non-HPC, Non-GPU Compute
Speed1

(1) Efficiency remains consistent regardless of value.
(2) Scores from different tasks are not comparable.

(3) Provides comparable efficiency scores per ML technique.
(4) untested

A. Objectives & Limitations

The methodology aims to ensure applicability across various
machine learning techniques. It is designed to function on
standard hosting setups, ensuring that measurements reflect
balanced efficiency irrespective of differing host or system
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environments. Table II lists the requirements and the evalu-
ated selection for each relevant aspect. The ’Compensation’
column provides an overview of the metric compensation for
variability, including dataset size and host setup performance.
Measurements are conducted during the training phase of the
classification model. Valid ranges for measurements must be
aligned to the expected values. The validity ranges of the
QCO Instance for the proof of concept are listed in Table
III. Smoothing techniques are employed to standardise the
validity of the data to ensure these measurements fall within
comparable ranges.

TABLE III
VALIDITY RANGE FOR QCO INSTANCE

Aspect Validity

Dataset Size <256 MB
Training Duration <48h
Calculation Amount 63P FLOPS, 800M Minor Page Faults
Resource Consumption RAM <128GB

The application of the ML process is contingent upon the
establishment of objectives and constraints. The following use
cases are subject to specific efficiency requirements.

1) Effects of changes in the ML process: The effects of
different techniques, such as pre-processing techniques,
need to be measured [33].

2) Select ML technique by efficiency: Identify the ML
technique that achieves high classification quality while
minimising the use of computational resources [11].

3) ML technique for limited resources or private data: Se-
lect a Whitebox ML technique suitable for local model
training [34].

4) Parameter optimisation: Effectiveness as a cost function
in the optimisation of hyperparameters or setups [35].

5) Performance comparison: Compare the performance of
an ML technique on different host setups to evaluate ML
efficiency [36].

6) Predicting computational costs: Predicting the cost by
predicting computational effectiveness of an ML tech-
nique in a production setup [37].

B. Dimensions

The efficiency approach may vary between applications but
relies on similar elements. All concepts consider the trade-
off between model performance and resource consumption
during training or inference. The efficiency metrics focus on
the following key components:

Accuracy or Performance. The efficiency of a machine
learning model depends on its accuracy or performance. Sev-
eral standard metrics can be employed to assess this, including
accuracy, precision, recall, F1 score and area under the ROC
curve (AUROC), depending on the task at hand.

Resource Utilisation. The efficiency should be evaluated
regarding the resources consumed during the training or infer-
ence process. These resources include computational resources

such as CPU, GPU, or memory usage. An efficient model
should aim to minimise the utilisation of resources.

Relative Resource Utilisation. The load imposed on the host
by the machine learning process provides a means of measur-
ing the relative utilisation of hardware resources. A higher load
indicates a more efficient use of available resources, as fewer
resources are left unused.

Computational Effort. The efficiency of ML processes is
contingent upon the complexity of the ML process itself, as
well as the amount of computation required to train the model
or to compute a result for inference. In order to enhance the
efficiency of ML processes, it is necessary to minimise the
computational effort.

Training Duration. The definition of efficiency encompasses
the time required to train the machine learning model. Faster
training times may be advantageous, particularly in instances
where models must be trained frequently or where time
constraints exist.

Inference Latency. In the context of models deployed in
real-time or interactive applications, the time taken to make
predictions or perform inference is critical. Low inference
latency or fast response times can be important efficiency
metrics in such cases.

In the context of cost-effectiveness in machine learning
research, different dimensions or base units are considered.
The need to define base units, such as distance and power,
which can be used to define efficiency, has been discussed
by Numrich [38]. The CO-Metric uses abstract dimensions
that allow for customisation through flexible adaptation. The
proposed efficiency metric uses the following efficiency dimen-
sions, with a description of valid measurements:
Quality. (Or Performance) The machine learning model

should achieve the desired level of accuracy as a per-
formance indicator for addressing the given task or prob-
lem. This accuracy can be measured using appropriate
evaluation metrics tailored to the specific task, including
accuracy, precision, recall, F1-Score, or AUROC. The
scores should compensate for any unbalanced datasets
[6].

Work. (Or Computational Effort, Computational Complex-
ity) The number of computational operations, such as
matrix multiplications, gradient computations, data trans-
formations, and the usage of computational cache (e.g.,
CPU L1-Cache). The theoretical amount of work can
be calculated by applying the theory of computational
complexity. The actual workload differs due to opti-
misation at the software and hardware level [7]–[9].
The measurement shall count generated and processed
compute steps; optionally data transfers through memory
and network. Computational steps can be counted directly
(floating point operations or instructions) [6] or indirectly
by measuring side-effects of computation, e.g., memory
management activity.

Load. (Or Relative Resource Consumption) The relative host
usage metric reflects the degree to which all available
host resources are utilised. This encompasses the relative
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usage of compute units (CPU and GPU cores), as well
as relative memory usage. Additionally, it encompasses
information per taining to load-related memory manage-
ment events, such as major page faults.

Space. (Or Absolute Resource Consumption, Space Com-
plexity) The amount of data resources, such as memory
and storage, required by the machine learning process.
Memory space consumption is quantified by resource
usage on the host system. This includes main memory
usage and allocation, such as virtual memory allocation,
resident set size, working set size or stack size.

Duration. (Or Time Requirements) Time-related measure-
ments encompass metrics such as training duration and
inference latency. These metrics quantify the time re-
quired to complete machine learning procedures and the
duration spent on processing units.

Other non-dimension specific measures incorporate dataset
characteristics, including the number of samples and the
dataset size. Sample attributes like the number of sentences,
words, and linguistic text properties are also considered for
specialised metrics.

C. Efficiency

Efficiency (cost-effectiveness) is defined as the achievement
of a high level of performance or accuracy while optimis-
ing the utilisation of resources and minimising associated
costs. The objective is to balance the model’s effectiveness
(performance) and the costs or resources required to achieve
that effectiveness. The CO-Metric approach encompasses three
concepts of cost-effectiveness:
Solution Efficiency. Efficiency is defined as the balance be-

tween solution achievement and cost. Solutions are fo-
cused on quality, and costs include the efforts done and
resources consumed. Every aspect is provided by one or
multiple efficiency dimensions. Solution efficiency with
a quality focus describes the computational effort used
to achieve prediction quality. This reflects the efficiency
of the model, i.e., the algorithm and its implementation.
Efficiency increases by doing less work in less time and
achieving higher prediction quality. Other focuses include
achieving low latency of ML inference.

Resource Efficiency. Efficiency is defined as the degree to
which resources are used. Resource efficiency is the
capability of the ML procedure to utilise all available re-
sources. It is increased by adapting to the host setup using
more existing resources. This is important for designing
hardware for specific ML techniques and adapting ML
algorithms to specific hardware [39].

Synthetic Efficiency. Efficiency can be employed as a metric
for the assessment of specific performance attributes. This
may include the analysis of text quality indicators, as ex-
emplified by the work of [40], or comparing performance
outcomes [41].

Efficiency rules are defined based on the efficiency objectives:
1 Solution Efficiency

1.1 The more quality is achieved in less time, work and
effort, the higher the ML quality efficiency.

1.2 The less time it takes to achieve more quality, the higher
the ML-Speed-Efficiency.

1.3 The less work required for more quality, the higher the
ML-Work-Efficiency.

2 Resource efficiency
2.1 The more load is used for more quality, less duration

and less work; the higher the ML resource efficiency.
3 Synthetic efficiency

3.1 The less computational work is necessary per data
chunk, the higher the ML model efficiency.

In addition to the efficiency objectives, there are two
opposed requirements for handling ML efficiency results:
interpretability and applicability. The greater the amount of
information a metric provides, the greater the need for in-
terpretation. This approach provides metrics at two levels of
complexity. (i) Efficiency is determined as a single scalar by
the at-a-glance metric (compact metric score) while supporting
weights for each dimension. (ii) The efficiency vector metric
represents uninterpreted values per dimension.

D. Compact Efficiency Metrics

Machine learning (ML) efficiency exhibits variability con-
tingent upon the specific application. Metrics have been
proposed for particular purposes and categorised according
to their level of complexity. The group of compact metrics
employs a subset of dimensions that contribute to calculating
an efficiency score, which is determined with respect to the
dominant dimension. The compact efficiency metric (CO) is
specified in the Definition 1.

Definition 1: It exists a compact efficiency score CO of
a ML procedure M for focused dimensions F with a focus
weight α and unfocused dimensions U , defined in Equation
(1); based on efficiency dimensions (D) quality q, work w,
space s, load l and duration d with specific dimension weights
β, detailed by Equation (2).
Quality Focused COmpact Efficiency Metric (QCO). A
compact metric to reflect quality-focused efficiency. A score
describes the best solution with a predefined high relevance
of the quality dimension and low relevance of the work
and duration dimensions. Relevant dimensions: Quality, Work,
Space, Duration. Dominant dimension: Quality.

The QCO-score for an ML process M is derived from
Equations (1) and (2) for the Quality-Focus, as stated by
Equation (3). The quality dimension is represented by q,
which measures the quality or performance of the machine
learning model. w represents the dimension of computational
effort, which quantifies the computational operations or effort
required for the machine learning tasks. The resource con-
sumption dimension s quantifies the system resources required
during the execution of the model. d represents the dimension
of duration, which measures the time or duration required to
train the model. The weight per dimension β is employed
to adjust the importance of dimensions, while α represents
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[F ]CO(M) = (F × α)× U (1)

[F ]CO(M) = (qM × βq)× (wM × βw)× (sM × βs)

×(lM × βl)× (dM × βd)× ψ (2)

where D = {r ∈ R | r > 1} and {q, w, s, l, d ∈ D}
F ⊆ D and U = D\F
ψ = Score-Compensation

the additional weight of the focus dimension, both derived
from expert knowledge of the use case. The compensation
factor ψ is introduced to optimise the readability of the score,
where 1 > ψ ≥ 0.1. The dominance of quality q is reflected
in the numerator, so efficiency is defined as the quotient of
quality divided by work w, space s and duration d (terms
in the denominator). It is assumed that the dimensions will
become increasingly important in proportion to their current
size. Consequently, the weights β of the dimensions and the
focus weight α are treated as exponents, with the respective
dimension as the base.

QCO(M) =
qα∗βq

(wβw + sβs + dβd)
∗ ψ

(3)

Resource Focused Compact Efficiency Metric (RCO). Com-
pact metric to reflect resource-oriented efficiency. A score
describes the best solution with a predefined high relevance
of the relative load usage and a low relevance of the quality
dimension. Relevant dimensions: Load, Quality, Work, Dura-
tion. Dominant dimension: Load.
Inference Focused Compact Efficiency Metric (ICO). Com-
pact metric to reflect resource-oriented efficiency. A score
describes the best solution with a predefined high relevance
of duration, low relevance of the quality dimension and
lowest relevance of work. Relevant dimensions: Quality, Work,
Duration. Dominant dimension: Duration.
Algorithmic Focused Compact Efficiency Metric (ACO).
Compact metric to reflect resource-oriented efficiency. A score
describes the best solution with predefined high relevance
of work and duration, low relevance of duration, quality,
and dataset dimension. Relevant dimensions: Quality, Work,
Duration, Dataset. Dominant dimension: Work.

E. Efficiency Vector Metric (EV)

The CO metrics condense efficiency information into a
score. To provide information on the dimension-specific per-
formance, the EV metric reveals the dimension scores of the
CO metric. The EV is available per CO as a vector, to describe
the efficiency in the vector space of the specific CO. For QCO
the QEV is represented by a vector in a Quality-Work-Space-
Duration space.

TABLE IV
INSTANTIATION PROTOCOL.

Step Objective

1 Select Efficiency Metric
2 Define Validity Requirements
3 Setup and Conduct Experiment
4 Define Dimensions
5 Analyse measurements
6 Assign measurements to Dimensions
7 Define Validity Ranges
8 Normalisation of Measurement-Values
9 Determine Dimensional Weights

10 Define Score compensation factor
11 Define Score Equation

F. Pareto

In the field of machine learning, it is important to select
the most efficient configurations to streamline usage. This
can be achieved by considering efficiency metrics and making
preliminary selections. The selection process should consider
the requirements of the machine learning workflow, which
reflect diverse priorities such as speed, resource utilization,
and outcome quality. Using a Pareto-based approach to select
the most efficient configurations aligns well with the given
criteria. This methodology identifies configurations that offer
an optimal trade-off among competing objectives, ensuring
that the selected setups are not only efficient but also tailored
to the specific demands of the machine learning process.

IV. COMPACT METRIC INSTANTIATION

To operationalize the proposed efficiency metric, the ab-
stract definitions must be instantiated. The instantiation is
akin to the object instantiation of a class in programming.
Attributes like the efficiency dimensions are set, and the
metric can then be applied to measurements to receive scores.
These attributes are defined based on empirical evidence, valid
within specified ranges and tailored for particular use cases.
This paper focuses on a text classification use case aimed at
optimizing classification quality for two distinct datasets. The
instantiation stages for a CO-Metric are listed in Table IV.
For reasons of brevity, the instantiation is limited to the QCO
metric.
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A. Use Case

In this demonstration of the instantiation process Use Case
1 was selected, the aim is to identify the most efficient
machine learning method for a set of text classification tasks,
prioritising efficiency - a measure of quality per unit of work,
space and time - over pure classification quality. The Quality
COmpact (QCO) score is employed to assess this efficiency.
The use case involves two different text classification tasks:
spam classification, using the dataset of Almeida et al. [42],
and sentiment analysis of movie reviews, based on the dataset
of Maas et al. [43]. Vectorisation methods include traditional
TF-IDF and advanced word embeddings using DistilBERT.
Classifiers selected include Support Vector Machines, Naı̈ve
Bayes, Gradient Descent, Random Forest and a transformer-
based method using a fine-tuned DistilBERT model for both
vectorisation and classification tasks.

TABLE V
VALIDITY REQUIREMENTS

Aspect Count Variables Optional

Dataset >=2 Size, Sample Count Sample Length,
Language

Vectorization >=2 Algorithm Dictionary Size,
Model Size

Classifier >=4 Algorithm,
Classifier Tech. Hyperparameters

Host-Setup >=2 Hardware Conf.,
Operating System Software Version

B. The QCO-Metric Instance

The dimensions and the QCO score are instantiated ac-
cording to the protocol given in Table IV. The required
validity for different datasets and ML procedures results in
the empirical variance requirements presented in Table V. To
gain comparison validity among host-setups, four different
computing environments were set up (No. 1-4 as shown in
Table VI).

TABLE VI
HOST-SETUPS

No. Type CPU-Model Clock Threads RAM

1 Virtualised AMD Ryzen 7 5800U 1.9 8 16
2 BareMetal Intel Core i5-6200U 2.3 4 8
3 BareMetal Intel Core i7-7700 3.6 16 32
4 Virtualised Intel Xeon Gold 6230 2.1 4 8
5 Virtualised AMD EPYC 7742 2.2 16 16

[Clock in GHz, RAM in GB.]
OS: Linux, Language: Python3,

Libraries: Scikit-learn [44], DistilBERT [45], torch [46], pandas [47].

C. Observe Tool

To facilitate a reusable instrument for gauging efficiency,
an observation tool was developed. This tool is designed to
monitor the performance metrics of a Linux process. Initially,

it places the target process in a suspended state, thereby prepar-
ing the environment for the commencement of measurements.
Subsequently, it activates three distinct measurement tools
(Figure 2) and resumes the operation of the process under
scrutiny. Upon the completion of the process, the observation
tool automatically terminates the measurement utilities.

Fig. 2. Observe Tool

The measurements were provided by a set of Linux tools:

• time. Basic process measurement (CPU, Memory).
• pidstat. Advanced process measurement (CPU, Mem-

ory, IO-Usage).
• perf. Performance counter capture. (CPU, Memory).

The acquired dataset necessitates transformation for analyt-
ical purposes. The utility time generates output in a textual
format, which requires conversion into a comma-separated
values (CSV) format to facilitate subsequent data processing
and analysis. Similarly, the perf utility collects performance
metrics in a multi-table format, necessitating transformation
into CSV format to enable efficient data manipulation and
interpretation. Furthermore, the pidstat utility produces
continuous output, which must be processed to extract min-
imal, maximal, and mean values over the specified duration.
This transformation is essential for summarising performance
characteristics and facilitating a comprehensive analysis of
system behaviour under varying conditions.

Quality scores were computed separately from the ML
procedure. Measurements were grouped for resource domain,
e.g., memory consumption or computational work on CPU.
The groups were filtered by correlation, the heatmap (Fig-
ure 3) shows Pearson Correlation Coefficients for selected
measurements. perf was not supported on all host setups
due to missing performance counters and conflicts with power
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Fig. 3. Pearson Correlation Coefficients of Empirical Measurement Values.

TABLE VII
MEASUREMENTS

TYPE DIM IMP TRANS DEP RNG

F1-Score Quality 10 None 0-1
Bal.-Acc. Quality 10 None 0-1
FLOPS Work[CPU] 10 Log 63P Data 0-63P
MinorPF Work[CPU] 5 Log 800M Data 0-800M
RSS (avg) Space[Mem] 10 Log 128G Time 0-128G
CPU Time [ns] Duration 10 Log 172T 0-172T
Data Size - 10 Log 256M 0-256M

TYPE=Measurement; DIM=Dimension; IMP=Weight; TRANS=Data
transformation; DEP=Dependency; RNG=Range of validity

saving methods. Two sets of measurements have to be set up,
which results in two QCO flavours: F loating Point Operation
(QCOF ) based and Minor Page F ault (QCOF ) based. The
selected measurements are listed in Table VII.

Range definition is essential for normalisation. The valid
ranges for this QCO-Instance are listed in Table III. Normalisa-
tion is necessary due to the use of different units and data types
in calculations. Monotonic data transformations on dimension
values result in a range between 0 and 2, based on the
maximum values per dimension. Consequently, valid ranges
are not related to measurement ranges. The definition of valid
measurement ranges, as shown in Table III, facilitates data
transformations on measurement values. After transformation,
values are placed on a closed scale with a slightly decreased
distribution (Figure 4).

The dimension-equations are defined by interpreting the
dependencies of the measurements (Table VII). Especially the
dependency on duration and data size has been considered.

The dimension weight is used to adjust the importance of the
focused metrics. The importance of quality is based on domain
knowledge: Quality is about two times more important than

work, space, and duration which delivers βQ = 6. Readability
compensation ψ is set to 10.

QCO is defined for each set of measures, resulting in
Equations (4) and (5).

TABLE VIII
QCO DIMENSION INSTANCES

Dimension QCOF QCOP (*)

Quality (F1 + BACC) / 2 (F1 + BACC) / 2
Work FLOPS / Dataset[kB] Minor PF / Dataset[kB]
Space aRSS/s[MB] * Duration[s] aRSS[MB] * Duration[s]
Duration Time on CPU [ns] Time on CPU [ns]

(*) FLOPS-Measurement was not available on all hosts.

D. QCO Metric Usage

1) Select QCO type according to available measurements.
If CPU-Performance-Counters are available QCOF, oth-
erwise QCOP. Respect expected validity ranges (Table
III.

2) Perform training on a dataset subset while capturing
measurements according to Table VIII.

3) Calculate efficiency by Equations (4) and (5).

E. QCO Score Calculation

The Quality-Focused Score is calculated for FLOPS-based-
score as QCOF (4) and QCOP for Page-Fault-based score
(5).

F. Pareto Implementation

The implementation of the Pareto principle has been used to
address three critical dimensions: quality, space, and workload
efficiency. To improve the utility and manageability of the
Pareto set, a compression technique has been employed. This
approach involves removing points within the set that exhibit a
high degree of similarity, with a predefined similarity threshold
set at 50% of the value range. This methodological adjustment
ensures a streamlined and representative Pareto set, making
it easier to identify optimal solutions across the specified
dimensions.

V. EVALUATION

The applicability, plausibility and balance of the proposed
metric is assessed in a comprehensive evaluation.

A. Experiments

In Experiment 1, preliminary studies were conducted to de-
sign the text classification pipeline. This included the selection
and configuration of appropriate measurement tools, as well
as the implementation of hyperparameter adjustments to set
up text classification algorithms.

In Experiment 2, Use Case 1 was adapted to binary clas-
sification tasks, which were performed by different vector-
ization and classifier technologies. Two datasets are selected
for Experiment 2, both with moderate text length; SMS
Spam Classification (25.000 samples) [42] and Movie Survey
Classification (7.805 samples) [43]. The experiments were
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QCOF (M) =
((F1+BACC

2
)6)

(log63P FLOPS/DS[kB] + log128GRSS[MB] ∗ log864MD[s] + log172T TOC[ns]
∗ 10

(4)

QCOF (M) =
((F1+BACC

2
)6)

(log800M MPF/DS[kB] + log128GRSS[MB] ∗ log864MD[s] + log172T TOC[ns]
∗ 10

(5)

where F1 = F1-Score, BACC = Balanced Accuracy Score,
FLOPS = Floating Point Ops., MPF = Minor Page Faults,

DS = Dataset-Size, RSS = Resident Set Size,
D = Duration, TOC = Time on CPU

Fig. 4. Spread and Skewness per Dimension after logarithmic smoothing.

run on host 1 (Table VI) in two virtual hosts with different
virtualisation technologies. The results of experiment 2 are
shown in Table IX. To compare the QCOF and QCOP metrics
in Experiment 2, two sets of QCO had to be created as some
FLOPS measurements were not available (QCO1 & QCO2∗).

In Experiment 3, the metric was further evaluated by apply-
ing it to an optimisation problem similar to Use Case 4. The
objective was hyper-parameter optimisation with efficiency
as the cost function. The ML process involved fine-tuning a
transformer model (DistilBERT [45]), word embedding and
text classification. The experiment aimed to find the most
efficient value for the Maximum Sequence Length (MSL) for
the SMS spam detection task [42], which was run on host 5
(Table VI).

B. Applicability

Experiment 2 shows surprising results that can be explained
by runtime conditions such as schedulers, competing pro-

cesses and caching techniques. The experiment is not de-
signed to make general statements about specific combinations
of vectorization or classification methods. Consequently, the
following statements apply only to this experiment, which
does not preclude testing the usefulness of the efficiency
metric. The word embedding method is, on average, superior
to the TFIDF in terms of quality, but there are classifiers
(NB, GD) that can compensate for the quality disadvantage
and, in some cases, achieve the highest efficiency. This is
due to the low workload. The transformer method requires
significantly more work. It achieves high quality, but also takes
the longest time. The Random Forest (RF) classifier has a low
efficiency because it requires a lot of computation and time to
achieve good quality. The Support Vector Machine (only linear
kernel) classifier benefits most from the word embeddings
and, therefore, achieves good efficiency. When comparing the
combinations in terms of the time-to-work ratio (WO-Focus),
the worst ratio (1.28) is found for IMDB/TFIDF/SVM and
the best for SMS/TFIDF/NB with 0.39. This leads to the
conclusion that the measurement of time does not reflect the
amount of work.

In Experiment 3, both QCOF and QCOP were successfully
computed (see Table X). The most efficient MSL configuration
consisted of 512 tokens, resulting in a high classification qual-
ity and moderate duration. On the other hand, the configuration
with 126 tokens showed an increased workload and duration.
The fastest result was obtained with an MSL of 256 tokens.

C. Plausibility

QCO was successfully generated for all ML methods in
Experiment 2. A comparative assessment of QCO based on
expert rankings is used for evaluation. Domain experts ranked
the dimensions, listed in Table IX Column Rank-EXP. Com-
paring expert and QCO rankings, a minimal deviation from the
expert rank was observed for high-quality ML methods, but
the deviation increased with decreasing quality. This variance
can be attributed to the expert’s specific weighting of quality
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TABLE IX
QCO EVALUATION RESULTS

EVMetric QCO Metrics Rankings
DAT VECT CLF DUR QUA TIME SPA WOP WOF QCOP QCOF EXP1 QCO1P EXP2 QCO2P QCO2F

SMS TFIDF NB 00:00:34 0.968 0.407 0.260 1.043 0.691 1.260 1.726 1 1 1 1 1
SMS TFIDF GD 00:02:36 0.972 0.583 0.371 1.043 0.631 1.190 1.678 2 2 2 2 2
IMDB TFIDF GD 00:00:19 0.885 0.339 0.222 0.616 0.610 1.145 1.153 3 3 3 3 3
SMS DIST-T DIST-T 00:01:34 0.982 0.525 0.384 1.249 1.099 6 4
SMS BERT SVM 00:11:29 0.972 0.755 0.510 1.143 1.465 1.018 0.852 4 5 5 4 4
IMDB DIST-T DIST-T 02:38:32 0.982 1.058 0.795 1.058 0.970 5 6
SMS BERT GD 02:04:00 0.978 1.030 0.696 1.140 1.637 0.956 0.752 8 7 4 5 6
IMDB DISTIL DISTIL 11:31:52 0.978 1.228 0.923 1.136 0.848 7 8
IMDB TFIDF NB 00:01:18 0.845 0.504 0.330 0.618 0.581 0.766 0.797 9 9 6 6 5
SMS BERT NB 01:58:30 0.932 1.024 0.692 1.141 1.638 0.715 0.563 11 10 8 7 8
SMS DISTIL DISTIL 01:39:58 0.983 1.005 0.750 1.845 0.697 12 11
SMS BERT RF 01:09:50 0.916 0.963 0.651 1.140 1.639 0.660 0.516 10 12 7 8 9
IMDB TFIDF RF 00:00:58 0.809 0.469 0.309 0.617 0.646 0.604 0.586 15 13 9 9 7
SMS TFIDF RF 00:03:02 0.787 0.601 0.376 1.043 0.931 0.335 0.363 16 14 12 10 10
IMDB TFIDF SVM 00:20:20 0.714 0.821 0.554 0.638 0.812 0.223 0.194 13 15 11 11 11
SMS TFIDF SVM 00:00:35 0.652 0.409 0.264 1.048 1.092 0.117 0.113 14 16 10 12 12

Columns: Dataset, Vectorizer, Classifier, Duration, Quality, Time, Space, WOF = Work (FLOPS), WOP = Work (Minor Page Faults), QCO Metrics,
Rankings by Domain EXP erts, or QCO,

Abbrev.: SMS = SMS Spam Dataset [42], IMDB = IMDB Dataset [43], BERT = BERT word embedding, DIST-T = finetuned DistilBERT word embedding
(PyTorch) & classification, DISTIL = finetuned DistilBERT word embedding (TensorFlow + keras) & classification, GD = Gradient Descent, SVM =

Support Vector Machine, NB = Naı̈ve Bayes, RF = Random Forest

TABLE X
EFFICIENCY OF DISTILBERT

Measurements Dimensions Scores
SL Duration F1 Q W S T QCOF QCOP

128 09:08:50 0.76 0.64 3.02 0.45 0.78 0.159 0.164
256 00:27:02 0.78 0.64 2.86 0.45 0.71 0.171 0.172
512 00:50:13 0.78 0.65 2.94 0.47 0.72 0.183 0.174

Text Classification Efficiency with DistilBERT with different maximum
Sequence Length (SL). Smoothed Dimensions: Quality, Work, Space and
T ime. Efficiency Scores Quality-Focused based on FLOPS (QCOF ) and

Minor Page Faults (QCOP )

relevance, which is particularly evident in the DistilBERT
setups.

D. Balance & Compensation

QCO achieved a balance of aspects through compensation
(Table III). The results of Experiment 2 showed no anomalies
for different datasets; even ML processes with large datasets
achieved high efficiency. Moreover, significant differences
in speed and computational complexity were observed for
comparable efficiency, suggesting a balance in these aspects.
Due to the small number of hosts available for evaluation, the
balance on host setups could not be verified.

E. Pareto Application

Pareto sets were successfully established for both datasets,
as delineated in Table XI, optimizing for maximization of
quality while minimizing work and space requirements. The
initial composition of these sets included two distinct points
for the IMDB and seven for the SMS Spam datasets. Subse-
quent refinement involved the elimination of points exhibit-
ing significant similarity, with the threshold set at 50% of

the value range, leading to a reduction in the SMS Spam
Dataset’s Pareto set (Figure 6), while the IMDB Dataset’s
set remained unchanged (Figure 5). The optimal Pareto front
was characterized by the most favourable values within the
set, namely the highest quality alongside the minimum for
both work and space. The distance to this Pareto front was
computed to evaluate the proximity of solutions to the optimal
trade-off.

Analysis of the results for the IMDB Dataset [43] revealed
that the fastest solution was achieved through TFIDF Vec-
torization combined with Gradient Descent, whereas the best
quality solution was attributed to a fine-tuned DistilBERT
model. For the SMS Spam Dataset [42], three top-quality
performers emerged: TFIDF combined with Naı̈ve Bayes,
BERT with Gradient Descent, and a fine-tuned DistilBERT. A
balanced solution, offering a compromise between quality and
computational efficiency, was identified as TFIDF combined
with Random-Forest. These findings highlight the efficacy
of employing a Pareto-based approach to identify optimal
solutions that cater to varying optimization dimensions across
different datasets.

VI. DISCUSSION

This study proposes an efficiency metrics framework for
machine learning techniques that addresses different aspects of
cost-effectiveness, resource utilisation and model performance.
The approach is intended to be adaptable and applicable to a
variety of ML techniques and host setups.

The objectives of the efficiency metrics framework have
been defined with the intention of addressing different real-
world scenarios and use cases. The proposed efficiency metrics
provide information that can be used to identify the optimal
ML technique and hyperparameters, select ML techniques for
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Fig. 5. Pareto results IMDB Dataset [43]

Fig. 6. Pareto results for SMS Spam Dataset [42]
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TABLE XI
PARETO SETS

DAT VECT CLF DUR QUA Time SPA Work QCOP Distance

SMS TFIDF NB 00:00:34 0.97 0.41 0.26 1.04 1.26 0.02
IMDB TFIDF GD 00:00:19 0.89 0.34 0.22 0.62 1.15 0.10
IMDB DISTIL DISTIL 02:38:32 0.98 1.06 0.80 1.06 0.97 0.84
SMS BERT GD 02:04:00 0.98 1.03 0.70 1.14 0.96 0.63
SMS DISTIL DISTIL 01:39:58 0.98 1.01 0.75 1.85 0.70 1.00
SMS TFIDF RF 00:03:02 0.79 0.60 0.38 1.04 0.34 0.28

Columns: Dataset, Vectorizer, Classifier, Quality, Time, Space, Work, QCOP Metric, Distance to Pareto Front,
Abbrev: SMS = SMS Spam Dataset [42], IDB = IMDB Dataset [43], BERT = BERT word embedding, DIST = finetuned DistilBERT word embedding
(PyTorch) & classification, DISTIL = finetuned DistilBERT word embedding (TensorFlow + keras) & classification, GD = Gradient Descent, SVM =

Support Vector Machine, NB = Naı̈ve Bayes, RF = Random Forest

limited resources or private data, compare classification perfor-
mance across different host setups, and estimate computational
cost.

The metrics framework introduces several dimensions that
collectively capture the efficiency of machine learning tech-
niques in achieving the aforementioned goals. These dimen-
sions include quality, work, load, space and duration, each
of which contributes to the overall efficiency score. The
dimensions are intended to assess different aspects of machine
learning performance and resource use, allowing for a com-
prehensive evaluation.

A key advantage of the proposed framework is its adapt-
ability to different ML techniques and tasks. The dimensions
and metrics can be adjusted based on specific use cases
and requirements, ensuring relevance and accuracy in differ-
ent contexts. This adaptability makes the metric framework
suitable for a wide range of applications, from small-scale
experiments to large-scale production systems.

The efficiency metrics introduced in the framework, such
as QCO, FCO, ICO and ACO, provide different perspectives
on efficiency. These compact metrics provide a clear, at-a-
glance view of efficiency, making it easier for researchers and
practitioners to evaluate and compare different ML techniques.
In addition, the Efficiency Vector (EV ) metric provides de-
tailed information about the performance of ML techniques on
individual dimensions, providing insights for further analysis
and improvement.

The process of instantiating the efficiency metrics necessi-
tates empirical investigation to ensure that the metric defini-
tions are concrete and applicable to specific ML experiments.
The validity of metric instantiation is emphasised, and the size
of the experiment plays an important role in achieving reliable
results. By conducting experiments on different datasets and
host setups, the metric instantiation gains credibility and
comparability.

The development of the observational tool provides a prag-
matic approach to incorporating efficiency measurements into
the machine learning (ML) toolchain. The implementation of
an out-of-the-box efficiency measurement tool represents a
significant contribution in several ways. First, it provides a
tangible benefit to practitioners and researchers in the field
of machine learning by facilitating the direct assessment of

computational efficiency. This tool enables users to benchmark
and optimise the performance of ML algorithms and systems,
thereby improving the overall efficiency of the ML develop-
ment lifecycle. Secondly, by providing a standardised method
for measuring efficiency, it contributes to the reproducibility
and comparability of experimental results, which are funda-
mental to the scientific rigour of machine learning research.
Finally, the tool’s accessibility and ease of integration into
existing ML toolchains encourages its adoption, thereby broad-
ening its impact on the field through improved performance
evaluation practices.

In summary, the efficiency metrics framework developed
in this study presents a robust approach to quantifying and
comparing the efficacy of machine learning methods in terms
of both performance and resource consumption. Its flexible
and comprehensive nature makes it an invaluable resource
for the machine learning community, aiding in the strategic
decision-making process regarding the deployment of machine
learning models and the allocation of computational resources.
The continued refinement and application of this framework
are poised to significantly influence the efficiency and sustain-
ability of future machine learning endeavours.

VII. CONCLUSION AND FUTURE WORK

The successful computation and evaluation of efficiency
scores represent a step forward in improving the effectiveness
of machine learning research. By incorporating sophisticated
dimensions that reflect measurement interdependencies - such
as FLOPS relative to data volume or memory usage relative to
duration - we could effectively balance the metric to account
for variations in dataset size and host setup. A lack of sufficient
samples challenged the evaluation of the QCO dimensions,
which limited the robustness of our findings. Nevertheless, the
FLOPS-based evaluation demonstrated consistency, and our
innovative use of a minor page fault measure to extend the
work dimension met with limited success. For future efforts,
exploring efficiency dimensions that integrate ML-specific
factors, such as model size, would be prudent to deepen our
understanding of efficiency dynamics in different machine
learning contexts. It is pertinent to highlight that the validation
methods used for the proposed efficiency metric rely heavily
on expert consensus. While this approach provides insightful
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feedback, the need for improved statistical validation is evident
to strengthen the metric’s credibility and structural integrity.
Expert insight and the relevance of quality within specific
applications particularly shape the effectiveness of machine
learning methods. However, if quality is considered the sole
criterion for development, it is important to recognise the
potential for a significant escalation in complexity. Achieving a
balance between different dimensions of efficiency is essential
to ensure a pragmatic and reasoned strategy for optimising
machine learning workflows.

A. Future

For further research, several key areas have been identified
that require in-depth exploration to improve the understanding
and implementation of machine learning efficiency metrics.

Comparability and Generalisability: This research has ad-
vanced the field by addressing comparability through the iden-
tification of dependencies within the data. The proposed com-
pensations have validated the conceptual framework. However,
a more detailed identification of these dependencies and a
refinement of the compensation procedures remain crucial.
Future studies should consider additional variables, such as
those listed in the ’optional’ column of Table V, or the
complexity of the dataset to enhance the granularity and
applicability of the results.

Applicability: The measurement tool presented in this study
should be developed into a comprehensive library that simpli-
fies the process of obtaining efficiency scores. This develop-
ment would make the tool more accessible to a wider user
base. In addition, creating solutions tailored for cloud-based
computing environments will extend the utility of the tool
and facilitate its widespread adoption in different computing
environments.

Validation: Expanding the scope of experiments is essential
for a deeper understanding of the biases present in current effi-
ciency metrics. Comprehensive statistical investigations should
be conducted to robustly validate these metrics, reducing
reliance on expert opinion and strengthening the empirical
foundations of efficiency measures.

Recurrent optimisation: Continuous improvement through
recurrent optimisation processes is essential. Efficiency con-
siderations should be routinely integrated into the development
cycle of machine learning algorithms. This ongoing refinement
will ensure that algorithms are not only effective but also
optimised for efficiency and adapted to evolving computing
environments and requirements.

AutoML: Integration of efficiency analysis within the Au-
toML framework to enhance automatic model selection and
optimisation processes by incorporating efficiency metrics.

By addressing these areas, future research can significantly
contribute to the sophistication and practicality of efficiency
metrics in machine learning, paving the way for green machine
learning.
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der Walt and Jarrod Millman, Eds., 2010, pp. 56–61.

87International Journal on Advances in Intelligent Systems, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


