
Applying a Technical Reference Architecture to Implement

a Microservices-based Insurance Application

Arne Koschel∗

Andreas Hausotter∗
∗Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hanover, Germany
Email: arne.koschel@hs-hannover.de

andreas.hausotter@hs-hannover.de
christin.schulze@stud.hs-hannover.de

Henrik Meyer†

Christin Schulze∗
†Capgemini

Hanover, Germany
Email: henrik.meyer@capgemini.com

Abstract—To overcome the shortcomings of traditional mono-
lithic applications, the Microservices Architecture (MSA) style is
playing an increasingly vital role in providing business services.
This also applies to the insurance industry, which is facing
challenges like cut-throat competition and decreasing customer
loyalty. Providing scalable and resilient services of high avail-
ability in a flexible and agile manner, which comes with the
MSA style, is undoubtedly a competitive advantage. However,
the insurance industry’s application landscape is characterized
by the coexistence of historically grown systems based on
different architectural paradigms. Therefore, the integration of
microservices with Service-Oriented Architecture (SOA) services
or even legacy systems induces additional complexity. A reference
architecture may lower the complexity of this integration task by
defining an architectural framework of MSA-based applications
in a heterogeneous environment. In this contribution, we present
a technical reference architecture for our partner insurance
companies. The reference architecture is shaped along a cloud-
native approach to provide good scalability, short release cycles,
and high resilience. As a key feature, a technical microservice
supports the integration of SOA services. To demonstrate the
applicability of the technical reference architecture, it is used to
implement a typical insurance business process in the context of
car insurance. The target architecture comprises four business
microservices and a SOA service managed by an ESB.

Keywords—Microservices Architecture; Reference Architecture;
Cloud Native; SOA; Insurance Industry.

I. INTRODUCTION

In this paper, which is an extension of a previous paper [1],
we look at implementing the technical reference architecture
in the insurance industry via a cloud-native approach.

A long-lasting trend in software engineering is to divide
software into lightweight, independently deployable compo-
nents. Each component can be implemented using different
technologies because they communicate over standardized
interfaces. This approach to structuring the system is known as
the MSA style [2]. A study from 2019 (see [3]) shows that the
MSA style is already established in many industries, such as
e-commerce. However, this is rarely the case for the insurance
services industry.

Our current research is the most recent work of a long-
standing, ongoing applied research–industry cooperation on
service-based systems. This includes cooperative work on
traditional SOA, Business Rules and Business Process Man-
agement (BRM/BPM), SOA-Quality of Service (SOA-QoS),
and microservices [4]–[7], between the Competence Center
Information Technology and Management (CC ITM) from
the University of Applied Sciences and Arts Hanover and
two regional, medium-sized German insurance companies.
The ultimate goal of our current research is to develop a
’Microservice Reference Architecture for Insurance Compa-
nies’ (RaMicsV) jointly with our partner companies. This
shall allow the building of microservice conformant insurance
application systems or at least such system parts.

However, several cornerstones and resulting challenges exist
frequently in the German industry domain for this purpose.
Insurance companies rarely start development ’in the green
field’ but must integrate and comply with existing application
systems, like Knoche and Hasselbring showed in [8]. This re-
quirement stems from building complex systems over multiple
years, or decades even, where a significant bang replacement
is too risky and cost-intensive. For example, our partners both
operate a SOA and additional 3rd party software, such as
SAP systems, which both have significantly different charac-
teristics, for example, for testing, release cycles, versioning,
administration etc.

Nowadays, our partners would like to get the promised
benefits of microservices, such as improved scalability, both
technical and organizational, through parallel execution and
also parallel development, significantly faster release cycles,
(a few weeks or even days instead of quarters or several
months) etc. However, a microservices-based approach to help
them must still work well in ’cooperative existence’ with their
existing systems and SOA services. Thus, improvements or
partial replacements of their existing software landscape for
particular goals using microservices is fine. Still, a complete
migration to the Microservices Architecture style is not a

132International Journal on Advances in Intelligent Systems, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



feasible option. The main goal is to extend a system and not
replace it.

In our previous work [9], we already developed RaMicsV,
a logical reference architecture considering those insurance
industry specifics. Moreover, we explored parts of it, such as
logging, monitoring, security, workflows, and choreographies,
in more depth (in [9]–[11]).

As the major contribution of this article, we present a
technical reference architecture for RaMicsV. Our technical
reference architecture (T-RaMicsV) is based on a cloud-
native approach for microservices, including, for example,
containerization, message-driven communication, and an ESB-
wrapper microservice. In addition to the contents of our
previous work [1], we also present the application of a typical
insurance business process (Car Insurance Process), based on
insurance business microservices within our technical refer-
ence architecture. In this implementation, we have selected
and used a selection of technologies, such as Kubernetes
for container orchestration, Apache Kafka for message-driven
communication, and Keycloak for security-related topics. This
is to be seen as one possible example of implementing our
architectural considerations.

We organize the remainder of this article as follows: Af-
ter discussing related work in Section II, we briefly repeat
RaMicsV in Section III. Next, Section IV and Section V
contribute our cloud-native approach to the technical reference
architecture based on RaMicsV. Some implementation details
of microservices within this architecture follow in Section VI.
Section VII concludes and looks at future work.

II. RELATED WORK

The foundations of this work relate to the concepts of
Microservices Architecture, cloud computing, cloud-native
architecture, and practical application within the insurance
industry.

Our research builds on authors in the field of microservices,
such as the work of Newman [12], as well as Fowler and Lewis
[2], as well as Fachat [13]. When designing our reference
architecture, we benefit from various microservices patterns
discussed by Richardson [14].

To design T-RaMicsV, we use a cloud-native approach that
is definitionally based on the descriptions of the Cloud Native
Computing Foundation [15]. Furthermore, we supplement our
understanding with the aspects of cloud computing introduced
by the National Institute of Standards and Technology (NIST)
[16], as well as containerization, automation, and observability.
We also used works by S. Reinheimer to learn the basics of
the cloud. [17]

To implement the approach in practice, we are using
an exemplary insurance industry business process. For this
purpose, we have chosen car insurance, one of the core
products of German insurers. The authors [18] provide the
basis for the process. Car insurance is compulsory for every
car in Germany. For this reason, it is considered particularly

important for acquiring new customers. The elaboration refers
to the VAA [19] and describes in detail what car insurance
is all about and much more. We use Business Process Model
and Notation (BPMN) to realize the processes [20], as it is
widely used in the insurance industry.

In this contribution, we lay out T-RaMicsV that is derived
from RaMicsV [21] as our foundation. An implementation
of RaMicsV that demonstrates its technical feasibility, as
envisaged in this paper, has not yet taken place.

Regarding its realization, a technical reference architecture
must be developed that makes fundamental statements about
the technologies used, such as programming languages or in-
frastructure. In accordance to Angelov, Grefen, and Greefhorst
[22] T-RaMicsV can be categorized as a ’semi-concrete type
4’ reference architecture, i.e., indicating technology choices to
be implemented in one single organization [22].

In this context, the technology-agnostic approach of mi-
croservices is broken with, to provide practical specifications
that harmonize with the existing system landscape of an
insurance company. The cloud-native approach used in this
contribution is a conceivable option that seems promising to
us to realize RaMicsV technically.

Deriving a technical reference architecture from a logi-
cal one, like RaMicsV, seems to be a common practice.
Furthermore, there are contributions to reference architecture
for microservices for broader enterprise context, e.g., by Yu,
Silveira, and Sundaram in [23]. However, this has not yet been
done for insurance companies such as our industry partners
and their specific requirements.

These operate a historically grown heterogeneous system
landscape characterized by an existing SOA. The use of
microservices, that is embedded in the cloud-native approach,
must be integrated in a cooperative manner, which plays an
essential role in our overall architectural considerations.

III. SERVICE-BASED REFERENCE ARCHITECTURE FOR
INSURANCE COMPANIES

This section presents our RaMicsV as initially started in [9].

RaMicsV defines the setting for the architecture and the
design of a microservices-based application for our industry
partners. The application’s architecture will only be shown
briefly, as it heavily depends on the specific functional re-
quirements.

When designing RaMicsV, a wide range of restrictions and
requirements given by the insurance company’s IT manage-
ment have to be considered. Regarding this contribution, the
most relevant are:

• Enterprise Service Bus (ESB): The ESB as part of the
SOA must not be questioned. It is part of a successfully
operated SOA landscape, which seems suitable for our
industry partners for several years. Thus, from their
perspective, the Microservices Architecture (MSA) style
is only appropriate as an additional enhancement and only

133International Journal on Advances in Intelligent Systems, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Building Blocks of the Logical Reference Architecture RaMicsV.

a partial replacement of parts from their SOA or other
self-developed applications.

• Coexistence: Legacy applications, SOA, and
microservices-based applications will be operated
in parallel for an extended transition period. This means
that RaMicsV must provide approaches for integrating
applications from different architecture paradigms –
looking at it from a high-level perspective, allowing an
’MSA style best-of-breed’ approach at the enterprise
architectural level as well.

• Business processes are critical elements in an insurance
company’s application landscape. To keep their compet-
itive edge, the enterprise must change their processes
flexibly and agilely. RaMicsV must, therefore, provide
suitable solutions to implement workflows while ensuring
the required flexibility and agility.

Figure 1 depicts the building blocks of RaMicsV, which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow; those out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

• Presentation includes components for connecting clients
and external applications, such as SOA services.

• Business Logic & Data deals with the implementation
of an insurance company’s processes and their mapping
to microservices, using various workflow approaches to
achieve desired application-specific behavior.

• Governance consists of components that contribute to
meeting the IT governance requirements of our industrial
partners.

• Integration contains system components to integrate
microservices-based applications into the industrial part-
ner’s application landscape.

• Operations consist of system components to produce
unified monitoring, logging, and tracing, which encloses
all systems of the application landscape.

• Security consists of components to provide the goals of
information security, i.e., confidentiality, integrity, avail-
ability, privacy, authenticity & trustworthiness, nonrepu-
diation, accountability, and auditability.

Components communicate either via HTTP(S) – using a
RESTful API, or message-based – using a Message-Oriented
Middleware (MOM) or the ESB. The ESB is part of the
integration responsibility area, which itself contains a message
broker (see Figure 1).

In the next section, we will present our understanding of
cloud-native architecture, which represents our approach to
developing T-RaMicsV as this paper’s contribution.

134International Journal on Advances in Intelligent Systems, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



IV. CLOUD-NATIVE ARCHITECTURE

The architectural approach of our contribution is based on
the following five aspects of a cloud-native architecture.

• Cloud Computing means that an IT service is offered by
a cloud service provider and used by a cloud service con-
sumer. The NIST [16] defines Cloud Computing via five
characteristics: On-demand self-service, broad network
access, resource pooling, rapid elasticity, and measured
service. Different deployment models (Public, Private,
Community, and Hybrid) are used to describe ownership
and control of the cloud environment, while service
models describe the level of abstraction from a consumer
perspective (Software-, Function-, Platform-, Container-,
and Infrastructure as a Service. They are abbreviated to
SaaS, FaaS, PaaS, CaaS, and IaaS, respectively). CaaS
and FaaS are often used in the industry.

• Microservices are considered – clearly not the only –
but the ’most native’ architectural style in cloud-native
architectures. They grant loose coupling as well as in-
dependent scaling and deployment [14]. These services
are modeled around business functionality and gain high
cohesion in the process.

• Containerization is the process of deploying software for
a cloud-native architecture as isolated, virtualized units.
Containers offer efficient hardware usage and dynamic
resource allocation.

• Automation in a cloud-native architecture aims at au-
tomated deployments of microservices and new func-
tionality. To achieve this goal, concepts like Continuous
Integration and Continuous Deployment (CI/CD) [12] and
Infrastructure as Code (IaC) [24] play a vital role.

• Observability is the aggregation and analysis of data in a
system to gain transparency and understanding about the
internal components [25]. This supports troubleshooting
in a microservices-based system, where data and business
logic are distributed [12].

The following section will provide insight into our cloud-
native technical reference architecture, designed with our
business partners in mind.

V. CLOUD-NATIVE TECHNICAL REFERENCE
ARCHITECTURE FOR INSURANCE COMPANIES

This section provides an overview of T-RaMicsV (see
Figure 2). It has been designed using a cloud-native approach,
which is expected to provide good scalability, short release
cycles, and high resilience.

T-RaMicsV provides for private cloud and public cloud
as the underlying operating model. The host machines of all
elements of the architecture are physical or virtual machines,
whereby the former can also include mainframes typical for
Insurance Companies. In line with the cloud operating model,
the host machines are operated in the company’s data center or
booked as IaaS solutions from public cloud service providers.
A hybrid cloud scenario is also made possible by T-RaMicsV.

In the insurance context, for example, it would be conceivable
to use only certain IT services in the public cloud while
continuing to process highly regulated, sensitive customer data
in the company’s own data center.

The chosen cloud-native approach implies the operation
of microservices as containerized workloads. Thus, a cen-
tral element of the reference architecture is the container
orchestration platform (COP). It is operated by the company
itself or purchased as a managed service from a public cloud
provider. All microservices and their databases, the Enterprise
Service Wrapper (ESW), a MoM for message-driven commu-
nication, and the Security Token Service (STS) are operated
in containers. These run in a container runtime environment
managed by the container orchestration platform, which also
distributes them across multiple host machines. A microservice
is horizontally scaled in an automated fashion by the platform
as a set of containers, where one container corresponds to one
service instance.

Furthermore, the platform performs the task of service
discovery, i.e., a mechanism by which the microservices of the
architecture can find and address each other. In addition, the
COP provides routing capabilities and allows load balancing
between multiple instances of a microservice.

The MSA includes business-oriented microservices, named
A to C, as examples in Figure 2. These mainly communicate in
an asynchronous, message-driven fashion via topics or queues
provided by the MoM. Depending on persistence needs, a
microservice may exclusively use its own database.

For authentication and authorization purposes, microser-
vices exchange JSON Web Tokens (JWT) with each other as
security tokens. These are issued by the STS of the architec-
ture, to which the microservices must authenticate themselves.
In addition to the use of JWT, T-RaMicsV stipulates that
microservices communicate with each other in an mTLS-
encrypted form.

To gain transparency in the architecture, metrics, logs, and
traces of the services are collected. These can be aggregated,
processed, and analyzed in corresponding solutions.

As in correspondence with RaMicsV, the SOA with ESB
is understood as an existing system landscape part in T-
RaMicsV, in which existing SOA services are operated. The
connection to the ESB is a classic use case in the context of
insurance. The legacy systems characterized by SOA cannot
be replaced by microservices but should instead be extended.
The insurance partners are aiming for the coexistence of SOA
and microservices.

In the insurance industry, for example, SOAP — or REST-
based web services, Enterprise Java Beans (EJB), or SAP
systems offered as SOA services are conceivable. The SOA
with ESB is run on host machines in the company’s own
data center but not on the container orchestration platform.
The Microservices Architecture on the COP is considered a
part of the landscape in which new services can be realized

135International Journal on Advances in Intelligent Systems, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 2. Building Blocks of the Technical Reference Architecture T-RaMicsV.

as microservices. Existing SOA services could be migrated
successively to the Microservices Architecture as required.

T-RaMicsV provides a proposal for the ESW, a component
directly derived from RaMicsV. The ESW acts as a central
transition from the Microservices Architecture to the ESB of
the SOA. It is accessed by one or more microservices via
REST when they need to consume a SOA service.

The software delivery process is planned to be automated
as much as possible. For this purpose, CI/CD pipelines are
used to build, test, and deliver artifacts. Provisioning of virtual
infrastructure, especially the one provided by a public cloud
service, should be based on the IaC principle. The infrastruc-
ture and application code, as well as the software artifacts,
are captured and versioned in appropriate repositories. With
the aim of increasing the resilience of the Microservices
Architecture in production, it may additionally be tested using
Chaos Engineering methods.

In the following, we give an overview of a concrete im-
plementation example of our proposed technical reference
architecture and shed light on more details.

VI. CLOUD-NATIVE MICROSERVICES

This section presents the more specific design of microser-
vices in T-RaMicsV, together with an overview of an imple-

mentation example of the proposed approach (see Figure 3).
It was operated in the eduDScloud, a private cloud used for
academic and educational purposes [26].

The example implements a part of a typical business process
in the insurance industry we modeled, called the Car Insurance
Process (from [18]). In this process, a customer submits an
application to an insurance company to successfully conclude
a contract for a car insurance policy. The workflow in this ex-
ample is realized by the four business-oriented microservices
insurability, application, premium, and policy.

To achieve high availability of the microservices, asyn-
chronous communication over a MoM is preferred, and syn-
chronous calls are to be reduced to a minimum. For this
purpose, a solution like Apache Kafka can be used to im-
plement messaging. The synchronous communication style is
implemented as REST calls in combination with JSON as
the serialization format. It is a common and well-understood
synchronous inter-process communication style between mi-
croservices.

The ESW is implemented as a technical microservice
(eswrapper) that propagates calls from the MSA to the
ESB of the SOA. The ESB, in turn, consumes a SOA service,
which can be a SOAP web service, as shown in the example
(solvency). The JWT that the microservices use for authen-

136International Journal on Advances in Intelligent Systems, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 3. Technical Architecture for the Car Insurance Process.

tication and authorization purposes are issued by Keycloak in
the role of the STS.

A. Event-driven Choreography

In continuation of our previous work in [11] and [27],
choreography is preferred over orchestration in T-RaMicsV
to realize business processes through a microservices-based
architecture. Furthermore, event-driven communication is pro-
posed to implement the choreography. This approach supports
loose coupling of microservices and enables good scalability
of the architecture. The complexity caused by the implicit
communication of the microservices of this approach has to
be addressed by observability solutions, e.g., Prometheus and
Jaeger with Grafana, for visualization purposes.

The publication of events is carried out according to the
publish-subscribe pattern. A service emits events according to
the fire-and-forget principle in a topic managed by the MoM.
Interested services can subscribe to the topic, receiving the
corresponding events, whereas the publishing service has no
knowledge or expectation of whether or not the events are
processed. The choreography then emerges as an interplay of
publishing events and responding to those events.

The MoM only plays the role of a mediator that forwards
the events. It is not meant as an orchestrator in the sense
of orchestrating services since it does not include any logic
to control or monitor the business-oriented correctness of the
communication flow.

B. Scalability

The scalability of microservices in T-RaMicsV is consid-
ered using Newman’s extended scaling cube [12]. Scaling is
based on the dimensions of functional decomposition into

microservices and horizontal scaling of these services through
replication. The functional decomposition of a domain into
microservices is derived directly from RaMicsV and is an
essential component of the chosen cloud-native approach.
Horizontal scaling is achieved by running the microservices
in containers.

A container serves as a lightweight delivery unit that pro-
vides a consistent, isolated environment for the microservice
and can be updated independently of other containers. The
containers can be distributed and moved virtually without
much effort. This results in the potential for more efficient
utilization of hardware resources and higher availability.

Replication of a microservice into multiple instances can be
achieved by various provisioning of a corresponding container.
This and the management of the instances in the form of the
individual containers is handled by the container orchestration
platform. The platform also provides the mechanism for load
balancing and routing requests to a group of replicas of a
microservice. An often used platform for this is Kubernetes,
available in different distributions, like K3s, which was used
in the example (see Figure 3).

The dimensions of data partitioning and vertical scaling
are not considered in a focused manner by T-RaMicsV. In
the case of data partitioning, it should be mentioned that
concrete DBMS products that can be used in principle may
implement internal mechanisms of data partitioning. For exam-
ple, consider the document-oriented DBMS MongoDB, which
implements data partitioning via its sharding technology [28].
The elasticity of the Microservices Architecture is addressed
by horizontal scaling of the services.

This must take place in an automated manner, depending on
the generated load. This is the responsibility of the container

137International Journal on Advances in Intelligent Systems, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



orchestration platform, which offers a corresponding mech-
anism for automating the horizontal scaling of the services.
Depending on the workload on the existing containers, new
ones are started up, or existing ones are terminated again when
they run idle.

The availability of a service can be supported by horizontal
scaling. A service remains available overall, despite the failure
of individual instances, as long as a correspondingly high
number of replicas is provided that is ready to respond to
queries.

C. Fault tolerance

The distribution of the containers across different virtual or
physical host machines managed by the COP is significant
for the overall consideration of resilience. If all instances of
a microservice were running on the same host machine and
that machine was to fail, the service would not be accessible
despite replication. The same applies further if the COP is
run on virtual machines and these are only deployed on one
physical one.

The virtual machines must be distributed across multiple
physical ones. The distribution of the virtual host machines
to multiple physical ones is outside the responsibility of the
container orchestration platform, as it does not differentiate
between physical and virtual host machines. This must be
handled by the underlying virtualization solution.

D. Delivery

The container orchestration platform is responsible for
managing a highly dynamic environment that results from
continuous shutdown and startup of different containers. This
is done intentionally, e.g., by new releases of services, or
unintentionally, e.g., in case of failure.

To be resource-efficient and minimize the time to boot up
containers, lightweight software artifacts should be targeted.
Thus, a container image of a microservice should always
be designed with a ’just as much as necessary’ approach in
mind. A lightweight operating system and only the packages,
libraries, and files required for the service running in the
container should be included in the image.

The infrastructure should be provided according to the IaC
principle, especially when using public cloud services, and
configured as immutable infrastructure only via the code. The
infrastructure code can be recorded in version management
systems, such as Git, and hosted with solutions like GitHub
or GitLab, as used in the example. It thus serves as the Single
source of truth of the infrastructure and can be versioned
like application code. This creates transparency among ad-
ministrators and developers and enables traceable, repeatedly
executable deployment. In particular, in the event of a failure,
this approach allows the system to be reliably recovered.

The application and infrastructure code of different mi-
croservices should be managed separately in their respective
repositories. This can lead to redundant code between the

repositories of different microservices. However, to support
the autonomy and loose coupling of the microservices, this
is recommended, especially regarding different development
teams working on each of them. In this context, a platform
like GitLab can also be used to implement CI/CD pipelines to
automate the delivery process.

VII. CONCLUSION AND FUTURE WORK

In this contribution, we present a cloud-native-based tech-
nical reference architecture that aims to build compliant
microservices-based applications for insurance companies.
The architecture adopts our partner’s special requirements,
such as integrating SOA services.

The reference architecture is applied to the car insurance
process to shape an application-specific architecture for this
scenario. With the given selection of specific technology, we
present an instance of one possible implementation of our
technical reference architecture.

The following steps in our research work are the integration
of Microsoft Azure as a prominent public cloud solution
(see block ’Cloud deployment model,’ Figure 2). Again, the
Car Insurance Process will be used to build a conforming
architecture. The findings may require enhancing or even
redesigning our technical reference architecture.

In the following work, we will carry out experiments on
the technical reference architecture using chaos engineering.
We will focus on requirements such as scalability. We are
also investigating the topic of security in the context of
microservices using homomorphic encryption within cloud
environments.

Another topic is the refinement of the building block Busi-
ness Processes within the responsibility area Business Logic
& Data (see Figure 1). Choreography is the preferred approach
to implementing workflows. Based on BPMN Choreography
diagrams, we identified and classified frequently occurring
patterns in the context of the insurance industry. Our goal
is to implement the patterns to make choreography diagrams
executable.

REFERENCES

[1] C. Schulze, H. Meyer, A. Koschel, A. Hausotter, A. Link, and T. van
Dorp, “A Technical Reference Architecture for Microservices-
based Applications in the Insurance Industry,” in SERVICE
COMPUTATION 2024, 15th Intl. Conf. on Advanced Service Computing.
IARIA, ThinkMind, 2024, pp. 1–6, Online. Available: https:
//www.thinkmind.org/library/SERVICE COMPUTATION/SERVICE
COMPUTATION 2024/service computation 2024 1 10 10009.html
[retrieved: 09, 2024].

[2] M. Fowler and J. Lewis, “Microservices a definition of this new
architectural term,” 2014, Online. Available: https://martinfowler.com/
articles/microservices.html [retrieved: 04, 2023].

[3] H. Knoche and W. Hasselbring, “Drivers and Barriers for Microservice
Adoption–A Survey among Professionals in Germany,” Enterprise Mod-
elling and Information Systems Architectures (EMISAJ), vol. 14, p. 10,
2019.

[4] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken, “Al-
ways Stay Flexible! WfMS-independent Business Process Controlling
in SOA,” in 15th IEEE Intl. Enterprise Distributed Object Computing
Conference Workshops. IEEE, 2011, pp. 184–193.

138International Journal on Advances in Intelligent Systems, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[5] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald,
“Components for a SOA with ESB, BPM, and BRM – Deci-
sion framework and architectural details,” Intl. Journal On Ad-
vances in Intelligent Systems, vol. 9, no. 3 & 4, pp. 287–297, Dec.
2016, [Online]. Available: https://www.thinkmind.org/index.php?view=
article&articleid=intsys v9 n34 2016 6. [retrieved: 12, 2023].

[6] A. Hausotter, A. Koschel, J. Busch, and M. Zuch, “A Flexible QoS
Measurement Platform for Service-based Systems,” Intl. Journal On
Advances in Systems and Measurements, vol. 11, no. 3 & 4, pp.
269–281, Dec. 2018, [Online]. Available: https://www.thinkmind.org/
index.php?view=article\&articleid=sysmea\ v11\ n34\ 2018\ 4. [re-
trieved: 12, 2023].

[7] A. Koschel, A. Hausotter, M. Lange, and P. Howeihe, “Consistency for
Microservices - A Legacy Insurance Core Application Migration
Example,” in SERVICE COMPUTATION 2019, The Eleventh
International Conference on Advanced Service Computing, Venice,
Italy, 2019, [Online]. Available: https://thinkmind.org/index.php?view=
article&articleid=service computation 2019 1 10 18001. [retrieved:
12, 2023].

[8] H. Knoche and W. Hasselbring, “Using Microservices for Legacy
Software Modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49.
[Online]. Available: https://ieeexplore.ieee.org/document/8354422/

[9] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021, 13th Intl.
Conf. on Advanced Service Computing. IARIA, ThinkMind, 2021,
pp. 5–9, Online. Available: https://www.thinkmind.org/articles/service
computation 2021 1 20 10002.pdf [retrieved: 10, 2023].

[10] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald, “Mi-
croservices Authentication and Authorization from a German Insurances
Perspective,” Intl. Journal od Advances in Security, vol. 15, no. 3 &
4, pp. 65–74, 2022, Online. Available: https://www.iariajournals.org/
security/tocv15n34.html [retrieved: 01, 2024.

[11] A. Koschel, A. Hausotter, R. Buchta, C. Schulze, P. Niemann, and
C. Rust, “Towards the Implementation of Workflows in a Microservices
Architecture for Insurance Companies: The Coexistence of Orches-
tration and Choreography,” in SERVICE COMPUTATION 2022: The
Fourteenth International Conference on Advanced Service Computing,
2022, Online. Available: https://www.thinkmind.org/articles/service
computation 2022 1 10 10002.pdf [retrieved: 12, 2023].

[12] S. Newman, Building Microservices: Designing Fine-Grained Systems,
2nd ed. Sebastopol, Kalifornien, USA: O’Reilly Media, Inc., 2021.

[13] André Fachat. Challenges and benefits of the microservice architectural
style, part 1. [Online]. Available: https://developer.ibm.com/articles/
challenges-and-benefits-of-the-microservice-architectural-style-part-1/

[14] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[15] The Linux Foundation - The Cloud Native Computing Foundation,
“Cloud Native Computing Foundation (“CNCF”) Charter,” 2023, On-
line. Available:https://github.com/cncf/foundation/blob/main/charter.md
[retrieved: 12, 2023].

[16] P. Mell and T. Grance, NIST Special Publication 800-145: The NIST
Definition of Cloud Computing, National Institute of Standards and
Technology, U.S. Department of Commerce, Gaithersburg, Maryland,
USA, 2011, Online. Available: https://nvlpubs.nist.gov/nistpubs/legacy/
sp/nistspecialpublication800-145.pdf [retrieved: 12, 2023].

[17] S. Reinheimer, Cloud Computing - Die Infrastruktur der Digitalisierung
(The infrastructure of digitization), 1st ed. Springer Vieweg Wiesbaden.
[Online]. Available: https://doi.org/10.1007/978-3-658-20967-4

[18] M. Stadler and U. Gail, Die Kfz-Versicherung - Grundlagen und Praxis
(The car insurance - basics and practice). Karlsruhe: VVW GmbH,
2015.

[19] Gesamtverband der Deutschen Versicherungswirtschaft e.V. - General
Association o.t. German Insurance Industry, “VAA Final Edition. Das
Fachliche Komponentenmodell (VAA Final Edition. The Functional
Component Model),” 2001.

[20] OMG, Business Process Model and Notation (BPMN), Version 2.0, Ob-
ject Management Group Std., Rev. 2.0, January 2011, Online. Available:
http://www.omg.org/spec/BPMN/2.0 [retrieved: 12, 2023].

[21] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021: The Thir-
teenth International Conference on Advanced Service Computing, 2021,

pp. 5–9, Online. Available: https://www.thinkmind.org/articles/service
computation 2021 1 20 10002.pdf [retrieved: 12, 2023].

[22] S. Angelov, P. Grefen, and D. Greefhorst, “A classification of software
reference architectures: Analyzing their success and effectiveness,” in
2009 Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, 2009, pp. 141–150.

[23] Y. Yu, H. Silveira, and M. Sundaram, “A microservice based reference
architecture model in the context of enterprise architecture,” in 2016
IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC), 2016, pp. 1856–1860.

[24] K. Morris, Infrastructure as Code: Dynamic Systems for the Cloud Age,
2nd ed. Sebastopol, Kalifornien, USA: O’Reilly Media, Inc., 2021.

[25] C. Majors, L. Fong-Jones, and G. Miranda, Observability Engineering:
Achieving Production Excellence. Sebastopol, Kalifornien, USA:
O’Reilly Media, Inc., 2022.

[26] D. Schöner, A. Koschel, and F. Heine, “Teaching Microservices in
the Private Cloud by Example of the eduDScloud,” in SERVICE
COMPUTATION 2018: The Tenth International Conferences on Ad-
vanced Service Computing, 2018, pp. 36–39, Online. Available: https://
thinkmind.org/articles/service computation 2018 2 30 18003.pdf [re-
trieved: 12, 2023].

[27] A. Koschel, A. Hausotter, C. Schulze, A. Link, and H. Meyer, “To-
wards patterns for choreography of microservices-based insurance pro-
cesses,” in SERVICE COMPUTATION 2023: The Fifteenth International
Conference on Advanced Service Computing, 2023, Online. Avail-
able: https://www.thinkmind.org/articles/service computation 2023 1
10 10003.pdf [retrieved: 12, 2023].

[28] MongoDB Manual, “Sharding,” Online. Available: https:
//www.mongodb.com/docs/manual/sharding/ [retrieved: 01, 2024].

139International Journal on Advances in Intelligent Systems, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/intelligent_systems/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


