
AI-centric Proxy Design Synthesis for Non-Obvious Link/Entity and Higher-Order 
Network Discernment  

S. Chan 
VTIRL, VT/I-PAC 

Orlando, USA 
stevec@i-pac.tech 

 
 

Abstract—The discernment of relevant sparse and “Very 
Small/Non-Obvious” (VSNO) clusters within High 
Dimensional Data (HDD) and the operationalization of Spatio-
Temporal Knowledge Graph Completion (STKGC) for High-
Order Network (HON) discernment are NP-Hard. The 
amalgam of a Lower Ambiguity, Higher Uncertainty 
(LAHU)/Higher Ambiguity, Lower Uncertainty (HALU) 
Module (LHM), Isomorphic Paradigm (IsoP) Comparator 
Similarity Measure Module (ICSM2), Multi-Criteria Decision-
Making Module (MCDM2), Information Fusion Module 
(IFM), AI Energy Consumption Module (AECM), and a 
bespoke Metaheuristic Algorithm Module (MAM) are 
delineated in this paper to show the potentiality for the 
concurrent treatment of VSNO, STKGC, and HON, which are 
essential for Advanced Analytic Technologies (AAT)/Advanced 
Anomaly Detection (AAD), At-the-Edge Observational Space 
Analysis (AOSA), and Continuous Situational Awareness 
(CSA). These are vital aspects for critical applications, such as, 
among others, network analysis (e.g., C2 systems) and 
maritime domain awareness. The described LHM-ICSM2-
MCDM2-IFM-AECM-MAM amalgam can be operationalized 
by a bespoke Graph Convolutional Network (GCN)-
Bidirectional Long Short-Term Memory (BiLSTM)-Graph-
Attention-Network (GAT) mechanism along with a Robust 
Convex Relaxation (RCR)-based Deep Convolutional [Neural 
Network] Generative Adversarial Network (DCGAN)-
Hypergraph-Induced Infimal Convolutional Manifold Neural 
Network (H-IICMNN)-1,2,3,4 architectural construct (GCN-
BiLSTM-GAT & RCR-DCGAN-[H-IICMNN]-1,2,3,4 or 
GBGRDH-1,2,3,4) to address the involved NP-Hard problems. 

Keywords-Intelligent Decision-Making Systems; Artificial 
Intelligence; Machine Learning; Big Data; Advanced Analytics; 
Command and Control; Large Scale Complex Networks. 

I.  INTRODUCTION  
The architecting of a discernment capability for Very 

Small/Non-Obvious” (VSNO) clusters, as well as related 
links (which might be of a dotted line nature) and nodes 
(wherein a node might also equate to discerning a Higher 
Order Network or HON containing other nodes and links), is 
a considerable feat. Various considerations, such as spatial 
and temporal, are often presumed; however, in many cases, 
this information must be appropriately fused (i.e., 
Information Fusion or IF), as the involved data repositories 
might be devoid of such temporal and/or spatial information. 
Data repositories with quadruple representation will likely 
have temporal information and those with quintuple 

representation will likely have both spatial and temporal 
information; however, those with triple representation will 
often not (without being extended). A determination with 
regards to IF must be made based upon the involved 
ambiguity/uncertainty, and such Artificial Intelligence (AI)-
centric Intelligent Systems (IS) Decision Engineering 
Discernment Engines (DE2) (AI-IS-DE2 construct), which 
illuminate these desired Decision Engineering Pathways 
(DEPs), are non-trivial to design. As a nice recap, Ding 
reviews various involved categories: Representation (e.g., 
Higher-Order Networks or HONs), Prediction (e.g., Spatio-
Temporal Knowledge Graph Completion or STKGC for 
missing links/nodes), Simulation (e.g., ambient Control 
Signals or CS amidst dynamic topological changes), 
Inference (e.g., Adaptive Criteria Weighting Systems or 
ACWS for non-biased/more balanced suppositions), and 
[Command] & Control (C2) (e.g., elastic/resilient C2) [3]. 
HON, C2/CS, STKGC, and ACWS have been considered in 
the aggregate within various works-in-progress and prior 
works [1][2][3]. After all, by better understanding the 
involved C2 (which may serve as a HON, thereby having the 
ability to exercise CS), it will: (1) more readily effectuate IF, 
(2) better leverage Advanced Analytic Technologies 
(AAT)/Advanced Anomaly Detection (AAD), and (3) more 
robustly maintain At-the-Edge Observational Space Analysis 
(AOSA) as well as “Continuous Situational Awareness” 
(CSA) for the purposes of DE2. Similarly, ACWS can 
inform STKGC to affirm the CS, HON, and C2. 

 For the C2 case, various Global Maritime Domain 
Awareness (MDA) frameworks have been examined, and it 
was noted that MDA tend to consist of various constituent 
Regional Maritime Situational Awareness (RMSA) 
networks. Typical RMSA architectural constructs generally 
involve “a Decision Support System (DSS) node” in a lead 
role and various geographically distributed DSS nodes as 
part of an “enclaved network” [4]. As the situation evolves, 
the “enclaved network may evolve,” such as into a Multi-
Partner Enclave (MPE), or devolve [4]. Depending upon the 
circumstances, the “interim lead DSS” designation may 
alternate temporally, as certain DSS nodes may be construed 
to be more apropos and/or “optimally positioned” to 
guide/shape the “mosaic-at-large” (e.g., MDA, in this case), 
such as for IF [4]. The IF criterion may potentially involve 
ingesting more data, but this will be informed by a particular 
“Lower Ambiguity, Higher Uncertainty (LAHU)/Higher 
Ambiguity, Lower Uncertainty (HALU) Module (LHM)” 
and AI Energy Consumption Module (AECM) [4][5][6]. 
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A. LHM 
With regards to the LHM, under a “Compressed Decision 

Cycles (CDC)”  paradigm, which equates to a condition 
wherein time is of the essence, the LHM will actuate upon 
“sparse data” or “higher uncertainty…given the condition of 
lower ambiguity” (i.e., LAHU); this roughly equates to the 
situation, wherein an Isomorphic Paradigm (IsoP) is 
recognized, if it has occurred previously “within the 
historical data” [1][6][7]. In contradistinction, given a state 
of “higher ambiguity” (i.e., HALU), for which IsoP has not 
occurred before, the LHM might stipulate the need for “more 
data ‘to lower uncertainty’” [1][5][6]. The LHM will also 
consider the AEC involved, and this information is provided 
by the AECM. 

 
B. IsoP Comparator Similarity Measure Module (ICSM2) 

The LHM is supported by a bespoke ICSM2, which 
ascertains the prior occurrence of IsoPs by way of 
facilitating the derivation of the Optimal Shapley-
Nondominated Solution (OSNS) and the Optimal 
Corresponding (OC) “Generalized Linear ‘f’-sided” (GLf) 
[Spherical] Fuzzy Number (FN) (SFN)” or “(OCGLfSFN)-
based membership function” (by way of the Precursor [non-
OC] GLfSFN or P-GLfSFN) [7]. These “best-fit 
approximations” lend to the IsoP determination. 

1) Nondominated Solution (NS) 
Wu notes that Shapley values (SVs) (various researchers 

have noted that Monte-Carlo, among other can be leveraged 
to generate the f-th feature along with ML model m, feature 
index f, number of iterations i, etc.) can be leveraged to 
transform FN-related Fuzzy Optimization and Decision 
Making (FODM) problems to “Scalar Optimization 
Problem[s]” (SOPs) that can be efficiently resolved to segue 
to the Nondominated Solution (NS), wherein “no one 
objective function can be improved without” a concurrent 
degradation to “the other objectives” [7][8]. The OSNS can 
then be ascertained. 

2) OCGLfSFN-based membership function 
As noted in the introduction for Section IB, regarding 

“best-fix approximation,” Lakshmana has reported on the 
efficacy of the “approximations of general non-linear FNs” 
by way of higher-order linearized Generalized ‘f’-gonal 
FN/SFN forms, “‘such as Triangular, Trapezoidal,’ as well 
as Pentagonal, Hexagonal, Heptagonal, Octagonal, etc.” [7]; 
these can be re-expressed as “GTrFN, GTpFN, GPeFN, 
GHxFN, GHpFN, GOnFN, etc., respectively” [7].  
According to Velu and Ramalingam, “best-fit 
approximations” can be improved “when higher-order 
piecewise linear” FNs are utilized to approximate “non-
linear information” [7][9]. Along this vein, Augustin asserts 
that, as one example, GHpFN “can represent more intricate 
and nuanced degrees of uncertainty” since “certain apropos 
‘f’-gonal FN/SFN forms” are quite good at “preserving 
ambiguity” [7][10]. Ban, another advocate of this principle, 
has a predilection for “Triangular, Trapezoidal, and semi-
Trapezoidal for the ‘preserv[ing]…and weight[ing]’ of 
ambiguity” [7][11]. The pathways for deriving the OSNS (a 

Multi-Objective Decision Making or MODM problem) and 
the selection of the ‘f’-gonal FN/SFN form (a FODM and 
Multi-Criteria Decision-Making or MCDM problem) are 
informed by the ICSM2. 

C. MCDM Module (MCDM2) 
The ICSM2 is a constituent of the MCDM2, which is 

comprised of Multi-Attribute Decision Making (MADM) 
and MODM components, each of which has Subjective 
Method (SM) and Objective Method (OM) constituent 
elements. By well counterpoising SM with OM, selection 
bias can be better mitigated, and the MADM/MODM 
SM/OM (MMSO) amalgam facilitates the operationalization 
of an ACWS (that informs STKGC, etc.)  

 
D. IF Module (IFM) 

For Real World Scenarios (RWS), the MCDM problems, 
handled by the MCDM2, tend to be nested (e.g., marsupial 
drones, wherein the main MCDM for the “mother” drone is 
to deliver the “baby” (a.k.a., “joey”) drones to the area of 
operations, and the joey drones then perform their various 
tasks, which involve distinct and disparate MCDMs), and IF-
related “constituent grey” MCDM problems can be 
construed to be FODM that are complex “because the 
measures/objectives tend to” be at odds [7]. Accordingly, the 
facilitation/derivation of the OSNS (a constituent MODM 
problem) by the MCDM2’s ICSM2 is central, and other 
contributory, value-added approaches include: (1) the 
“Dempster-Shafer framework” to address IF “and reasoning 
under uncertainty,”  (2) “Zadeh’s Type-2 Fuzzy Set (FS) 
(T2FS)” for IF and tackling “the fused probability with 
possibility-probability information,” as well as (3) “Debois 
and Prade’s FNs” for the encapsulating of 
“complexity/uncertainty” [7][12][13]. Overall, the 
overarching intent to preserve ambiguity, uncertainty, et al., 
via “best-fix approximation” is maintained. 

 
E. AEC Module (AECM) 

Of note, LHM actions are shaped by the AEC 
information provided by the AECM. In essence, there are 
two counterpoising: (1) the LHM’s consideration of the 
ambiguity/uncertainty counterpoising, and (2) the LHM’s 
consideration of the AEC status ¾ current/anticipated AEC. 
The latter is a non-trivial consideration, and historically, 
AEC numbers have been “skewed more towards the training 
side” [14]. Contemporary times have spotlighted a potential 
inversion, wherein the AEC for inferencing is oftentimes far 
greater than that for training [14][15]. This makes sense, for 
while a single inference “requires much less computation 
than that” involved in model training, “inference happens 
far more frequently than model training” [16]. Along this 
vein, Luccioni notes that “in-depth work quantifying” AEC 
as well as other inference-related costs “is limited” [16], and 
Luccioni, Desislavov, and others have asserted that “the 
total energy cost” for the various segments of the Artificial 
Intelligence (AI)/Machine Learning (ML) “model life cycle 
… is very rarely available” and that the AEC “per (one) 
inference is rarely reported” [16][17]. Ranking industrial 
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organizations concur and posit “that inference loads will 
increase over time” [18]. For example, AI chip/server 
provider, NVIDIA, “estimates that 80-90% of the cost of 
neural networks lies in inference processing,” and Castro 
furthers this by asserting that “training a particular AI model 
incurs a one-time cost, whereas using an AI model 
continues to consume energy over time” [19][20].  It then 
follows that most of AEC “will eventually come from 
inference” [19][20]. The described lack of AEC data for 
“the key AI stages (e.g., pre-training, fine-tuning, and 
inferencing)” likely constitutes a key reason for the potential 
“dearth of analyses on effective compute (e.g., algorithmic 
efficiency versus hardware efficiency)” [7]. Even when a 
certain model has been closely scrutinized, the phenomenon 
of AEC varying, such as with the involved number of 
parameters (e.g., “a higher number of parameters” segues to 
a higher AEC), has not been well studied [7][14][20]. 
Finally, higher requisite accuracies beget higher AECs, and 
AAT/AAD necessitates tasks that have an even higher AEC. 
This facet is oftentimes not well considered in contemporary 
designs. 

F. Metaheuristic Algorithm (MA) Module (MAM) 
AEC is heavily impacted by the involved MA, which is 

operationalized by the MAM. Despite the grim backdrop 
depicted in Section IE, “there are opportunities to reduce 
AEC at the MA level,” such as “at the convolutional layer,” 
via avenues “that scale well across the AI stages” [7]. By 
way of contextualizing information, two of the MA bastions 
are: “Evolutionary Algorithms (EA) and Swarm Intelligence 
(SI)” [7]. It is recognized that “Holland’s Genetic Algorithm 
(GA) is among the more popular EA” while “Kennedy & 
Eberhart’s Particle Swarm Optimization (PSO) “is among 
the more popular SI” [7]. Various MA have since “been put 
forth, but they tend to be derivative variants of EA or SI” 
[7]. For many cases, the plain vanilla PSO has outperformed 
the derivatives [7]. This was furthered by a remark, made 
during a keynote session of the World AI IoT Congress; 
“oftentimes “purported performance assertions are more 
marketing than actuality;” in any case, “Nikelshpur and 
Tappert as well as others have successfully utilized SI, in 
the form of PSO, for pre-training,” “Wang et al. and others 
have successfully used PSO for fine-tuning,” and 
Babanezhad as well as “others have successfully used PSO 
for inferencing” [7][21][22][23]. As it is seemingly fit for 
purpose “‘across the AI stages,’ PSO-based MA” warrants 
further investigation” [7].  

The aspects discussed within this paper (with utilized 
acronyms) are presented in Table I (which is drawn from 
[1]), via five parts: (1) the overarching objectives (e.g., 
targets, actions), (2) the functional requirements, (3) the 
constraints (e.g., functional, selection bias, 
spatial/temporal), (4) certain boundaries, and (5) the 
requisite components (e.g., constituent elements, which each 
constitute a separate system). In this way, by Section V 
(Conclusion & Future Work), it can be evaluated whether 
the proposed approach suffices in addressing the 
overarching objectives. 

TABLE I. CONSIDERED ASPECTS OF THE LHM-ICSM2-MCDM2-IFM-
AECM-MAM AMALGAM (WITH UTILIZED ACRONYMS) [1] 

I. Overarching Objectives (e.g., targets, actions) & Case Studies 
   Decision Support & Decision-Making 
• Intelligent System (IS) 
• Command & Control (C2) 
  ➣Information Fusion (IF) 
      ⌳Multi-Partner Enclave (MPE)  
  ➣Advanced Analytic Technologies (AAT) 
      ⌳Advanced Anomaly Detection (AAD) 
  ➣Continuous Situational Awareness (CSA) 
  ➣At-the-Edge Observational Space Analysis (AOSA) 
• Decision Engineering Discernment Engine (DE2) 
  ➣Decision Support System (DSS) 
								⌳Optimal Decision Engineering Pathway (DEP) amidst 
          ⌳Uncompressed Decision Cycles (UDC) 
          ⌳Compressed Decision Cycles (CDC) 
								⌳Fuzzy Optimization and Decision Making (FODM) 
       ⌳Scalar	Optimization	Problem	(SOP) 
         ⌳Nondominated Solution (NS) 
             ⌳Optimal Shapley-Nondominated Solution (OSNS) 
• Multi-Criteria Decision Making (MCDM) with constituent 
   ➣Multi-Attribute Decision Making (MADM) 
   ➣Multi-Objective Decision Making (MODM) 
       ⌳Mathematical Programming Methods (MPM) 
       ⌳Artificial Intelligence (AI)/Machine Learning (ML) methods 
       ⌳Integrated Approaches (IA).  
   ➣MADM/MODM each have: 
       ⌳Subjective Methods (SMs) 
       ⌳Objective Methods (OMs)  
       Collectively: MADM/MODM SM/OM (MMSO) 
• Quality Control Program (QCP) 
  ➣Quality Assurance/Quality Control (QA/QC) 
      ⌳	Real World Scenario (RWS) case studies 
         ⌳Global Maritime Domain Awareness (MDA) 
            ⌳Regional Maritime Situational Awareness (RMSA) 
II. Functional Requirements 
     Aspects Needed 
• Knowledge Graph (KG)  
  ➣KG Embedding (KGE) 
							⌳KG Completion (KGC) 
        ⌳Spatio-Temporal KG (STKG) Completion (STKGC) 
							⌳KG	Reasoning	(KGR) 
         ⌳STKGR   
            ⌳Type-Sensitive	(TS)	STKGR	(TS-STKGR	or	T2S2KGR) 
• Discernment Facets: 
  ➣High Dimensional Data (HDD)  
      ⌳Sparse Solution Discernment (SSD) 
         ⌳Very Small/Non-Obvious (VSNO) 
            ⌳HDD VSNO SSD (HVD) 
     ⌳HDD-centric Cluster Validity Index (CVI) Measures (HCM)   
III. Constraints (e.g., functional, bias, temporal) 
      Implementation Considerations 
• High Order Network (HON) 
  ➣ HON interactions (HONi) 
     ⌳Hypergraphs 
									⌳Complex Manifolds (CMs) 
     ⌳Simplicial Complexes (SC) 
        ⌳ Homological Percolation Transition (HPT) 
  ➣Control Signals (CS) 
      ⌳Control Energy Cost (CEC), 
										⌳Key Control Driver Nodes (KCDN) 
          ⌳Influence Dominating Sets (IDS) 
           ⌳Positive Influence Dominating Sets (PIDS) 
              ⌳Negative Influence Dominating Sets (NIDS), 
              ⌳Bak–Tang–Wiesenfeld (BTW) 
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										⌳Co-Evolution Networks (CEN) 
							⌳Elongated Temporal Span (ETS) 
      ⌳Gramian	
         ⌳Inverse	Gramian 
													⌳Vanishing-Moment Recovery Matrix (VMRM) 
•  Multi-Layer Networks (MLN) 
➣Efficient Controllability Problem (ECP) 
					⌳Minimum Controllability Problem (MCP) 
• Relationship Membership Stream (RMS) 
   ➣Probability [& Statistics] Systems Theory (PST) 
   ➣Fuzzy Systems Theory (FST) 
      ⌳	Fuzzy	Number	(FN)	
         ⌳	Spherical	FN	(SFN)	
            ⌳Optimal Corresponding (OC) Generalized Linear ‘f’-sided 
                  SFN (OCGLfSFN) 
               ⌳Generalized	(G)	‘f’-gonal FN/SFN forms: 
                     ⌳G Triangular FN/SFN (GTrFN/GTrSFN) 
                     ⌳G Trapezoidal FN/SFN (GTpFN/GTpFSN) 
                     ⌳G Pentagonal FN/SFN (GPeFN/GPeSFN) 
                     ⌳G Hexagonal FN/SFN (GHxFN/GHxSFN) 
                     ⌳G Heptagonal FN/SFN (GHpFN/GHpSFN) 
                     ⌳G Octagonal FN/SFN (GOnFN/GOnSFN) 
        ⌳Fuzzy Set (FS) 
           ⌳Intuitionistic FS (IFS) 
           ⌳Pythagorean FS (PFS) 
           ⌳Neutrosophic FS (NFS), which combines Neutrosophic Set  
             (NS) with FS.  
												⌳Type-2 Fuzzy Set (T2FS), as contrasted to Type-1 Fuzzy Set  
             (T1FS) 
           ⌳Spherical Fuzzy Sets (SFS) 
               ⌳T-SFS (TSFS) 
        ➣Rough Set (RS) 
            ⌳Rough (R)-Fuzzy Set (RFS) 
        ⌳Three-Way Soft Clustering (TWSC) 
									⌳Similarity	Measures	(SimM)		 
           ⌳Center of Gravity (COG) 
           ⌳Radius of Gyration (ROG) 
   ➣Grey Systems Theory (GST)  
• AI/ML Implementations 
   ➣ Robust Convex Relaxation (RCR) paradigm  
       ⌳Constriction Factor (CF) 
       ⌳Particle Swarm Optimization (PSO) 
								⌳Numerical Stability Architectural Construct (NSAC) 
								⌳Number of Function Evaluation (NFE) 
   ➣Sequence of Transformations (SOT) 
       ⌳Nonnegative Matrix Factorization (NMF) 
       ⌳Gaussian Composite Model (GCM) 
       ⌳Multiresolution Matrix Factorization (MMF) 
       ⌳Corresponding WT (CORWT) 
       ⌳Enhanced CORWT (ECORWT) 
       ⌳Wavelet Transform (WT) which include 
          -Continuous Wavelet Transform (CWT), whose implementation 
           can include CWT PyWavelet Schema (CPS) 
• Explainable AI (XAI) 
   ➣Criteria Weighting Systems (CWS), which might include MMSO,   
      such as: 
        ⌳Point Allocation (PA) 
        ⌳Analytic Hierarchy Process (AHP) 
        ⌳CRiteria Importance through Intercriteria Correlation (CRITIC) 
        ⌳Technique of Order Preference by Similarity to an Ideal Solution 
           (TOPSIS) 
        ⌳VIseKriterijumska Optimizacija I Kompromisno Resenje 
           (VIKOR)   
        ⌳Multi-Objective Optimization by a Ratio Analysis plus the Full 
           Multiplicative Form (MULTIMOORA) 
           while other HDD-oriented sub-space approaches include: 
       ⌳Clustering in QUEst (CLIQUE) 
       ⌳Merging Adaptive Finite Intervals And (MAFIA) 

   ➣Adaptive CWS (ACWS), 
• Exemplar Metrics: 
  ➣Performance (P) 
  ➣Consistency (C) 
  ➣Flexibility (F)  
• Neural Networks (NN)/Deep NNs (DNNs) 
  ➣Convolutional NN (CNN) 
      ⌳Graph Convolutional Network (GCN) 
      ⌳Deep Convolutional Generative Adversarial Network (DCGAN) 
							⌳Hypergraph-induced Convolutional Manifold Network (H-CMN) 								
										⌳Hypergraph-Induced Infimal Convolutional Manifold NN (H- 
           IICMNN) 
   ➣Graph NN (GNN) 
       ⌳Graph-Attention-Network (GAT) 
  ➣Recurrent NN (RNN) 
						⌳Bidirectional Long Short-Term Memory (BiLSTM) 
  ➣Model Paradigm 
      ⌳Training	
							⌳Fine-Tuning	
							⌳Inferencing	
										⌳Forward	Passes	(FP)	
• Triples, Quadruples, and/or Quintuples (TQQ) 
IV. Specific Boundaries 
• Cluster Validity Index (CVI), which can be grouped as 
    ➣External Measures (EMs), such as 
         ⌳F-Measure (FM) 
         ⌳Normalized Mutual Information (NMI) 
    ➣Internal Measures (IMs), such as 
         ⌳Calinski-Harabasz (CH) 
         ⌳Davies-Boulding (DB) 
         ⌳Ball-Hall (BH) 
         ⌳Pakhira-Bandyopadhyay-Maulik (PBM) 
         ⌳Trace(W) (TW) 
         ⌳Point-Biserial (PB) 
    ➣Relative Measures (RMs), which can be construed to be IMs: 
         ⌳Dunn-Index (DI)  
         ⌳Maulik-Bandyopadhyay (MB)    
         ⌳McClain-Rao (MR) 
         These can also be grouped as Candidate Lists (CL): 
         ⌳Difference-like Criteria (DLC) -> DLC CL (DCL) 
         ⌳Optimization-like Criteria (OLC) 
V. Requisite Modules (e.g., constituent elements, which 
     each constitute a separate system) 
     Key Constituents 
➣LAHU/HALU Module (LHM), which is comprised of 
      ⌳Lower Ambiguity, Higher Uncertainty (LAHU) 
      ⌳Higher Ambiguity, Lower Uncertainty (HALU) considerations 
  ➣Isomorphic Paradigm (IsoP)  
      ⌳IsoP Comparator Similarity Measure Module (ICSM2) 
         ⌳Isomorphic Heuristical Pathway (IHP) 
  ➣MCDM Module (MCDM2) 
  ➣IF Module (IFM) 
 ➣AI Energy Consumption (AEC) Module (AECM) 
     ⌳Units: 
        ⌳Joules (J) 
        ⌳Watt (W) 
        ⌳kilo Watt hours (kWh) 
     ⌳Floating Point Operations (FLOPs) 
     ⌳[computational] Efficiency (EFF) 
➣Metaheuristic Algorithm (MA) Module (MAM) 
     ⌳Evolutionary	Algorithms	(EA)	
									⌳Genetic	Algorithm	(GA)	
     ⌳Swarm Intelligence (SI) 
        ⌳PSO 
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Overall, this paper describes an AI-IS-DE2 construct 
(i.e., LHM-ICSM2-MCDM2-IFM-AECM-MAM) being 
advanced, whose focus is the discernment of HON so as to 
better understand the C2/CS at play (and vice versa); in 
either case, STKGC is leveraged, as is ACWS, by the 
underpinning Graph Convolutional Network (GCN)-
Bidirectional Long Short-Term Memory (BiLSTM)-Graph-
Attention-Network (GAT) along with a Robust Convex 
Relaxation (RCR)-based Deep Convolutional Generative 
Adversarial Network (DCGAN)-Hypergraph-Induced 
Infimal Convolutional Manifold Neural Network (H-
IICMNN)-1,2,3,4 (GCN-BiLSTM-GAT & RCR-DCGAN-
[H-IICMNN]-1,2,3,4 or GBGRDH-1,2,3,4), whose “IsoP 
scrutinization” of the IsoP repository (i.e., Isomorphic 
Heuristical Pathway or IHP) to ICSM2 progression is shown 
in Fig. 1 [7]. The ICSM2 informs the LHM that influences 
the involved MCDM2, which impacts the IFM. 

 
Figure 1.  IsoP Scrutinization [7] 

Section I provided an overview as to some the 
overarching objectives of the construct (in addition to some 
of the tactical objectives, such as IF): AAT (e.g., AAD), 
AOSA, and CSA for DE2, such as shown in Fig 2. The color 
schema alludes to the relative AEC in a ROYGBIV fashion. 

 

 
Figure 2.  Exemplar Overarching Objectives 

It also introduces some key modules: LHM, ICSM2, 
MCDM2, IFM, AECM and MAM. The paper is, 
subsequently, structured as follows. Section II provides 
background information regarding the tasks of: (1) 
AAT/AAD (a more granular and narrower aperture), (2) 
AOSA (a wider aperture with greater contextualization), and 
(3) CSA (an ongoing tasking of AAT/AAD and/or AOSA), 
and Section III presents key foundational considerations, 
which include the preferred OCGLfSFN, the ranking of the 
involved FNs/SFNs (facilitated by the ACWS), the SimM 
challenge for these FN/SFN, the SimMs and Distance 

Measures (DMs) for Spherical Fuzzy Sets (SFS) and T-SFS 
(TSFS), the discernment of clusters/boundaries, the spatio-
temporal representation via a quintuple, the use of Type-
Sensitive (TS) for RWS, the consideration of Influence 
Dominating Sets (IDS), ascertaining the Minimum 
Controllability Problem (MCP), determining the Efficient 
Controllability Problem (ECP), finding out the 
Controllability Gramian, establishing the Inverse Gramian, 
perceiving the phase transitions for High Dimensional Data 
(HDD) Clustering, and employing various HDD-centric 
Cluster Validity Index (CVI) Measures (HCM). Section IV 
provides some preliminary experimental results, and Section 
V concludes with some observations, puts forth some future 
work, and the acknowledgements close the paper. 

II. BACKGROUND 
A case study, such as MDA, involves IF as well as 

AAT/AAD, AOSA, and CSA (which comprise the DE2 
construct and are all affected by the degree of robustness at 
the pre-training, fine-tuning, and inferencing phases); these 
key facets are described below. 
 
A. AAT/AAD 

Tasks involving AAT/AAD will necessarily have a high 
AEC, as the “discernment of relevant sparse and ‘Very 
Small/Non-Obvious’ (VSNO) subspace entities within the 
associated High Dimensional Data (HDD)” will be involved, 
and more extensive use (and higher AEC) will be involved 
for AAD-related VSNO [14]. The color schema of Fig. 3 
alludes to the relative AEC in a ROYGBIV fashion. 
 

 
 

Figure 3.  Relative AEC Delineation 

B. AOSA 
Along the vein of AEC, for AOSO, “optimizing the 

algorithms” seems to be an approach more in accordance 
with Hernandez and Brown (of OpenAI) spotlighting the 
fact that “effective compute” is being driven by “25x growth 
algorithmic efficiency” as contrasted to “the hardware 
efficiency gain estimate” of the “8x growth” posited by 
Moore’s Law [14][24]. Desislavov affirms and posits that 
lower AEC, and improved resultants are likely “attributable 
to algorithmic improvements” rather than “more computing 
power” [14][17]. 

1) Pre-Training:  
The import of adequately managing AEC is underscored 

by Hoffman’s research. Hoffmann had found that several 
contemporary large models “are significantly undertrained,” 
and this leads to situations, wherein “fine-tuning and 
inferencing AECs” are likely to be “much greater than 
expected” [14][25]. In fact, “it turns out that the 
‘convolutional layers’” [a.k.a., Conv] of the Convolutional 
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Neural Network (CNN) tend to have the ‘highest AEC’” 
(compared to the fully connected layers, and increased filter 
sizes at the Conv tend to segue to an increased number of 
parameters, higher computational complexity, and higher 
AEC), and to address this point, approaches for the 
reduction of AEC have included “SqueezeNeXt, which 
builds upon SqueezeNet, or SqueezeNet itself, which 
utilizes 1x1 convolutions (rather than 3x3), by way of 
example” [14][26][27]. SqueezeNet is often used in 
conjunction with a “Fire Module” (i.e., 1x1 convolution 
filters comprising a “squeeze convolution layer” and an 
“expand layer” consisting of 1x1 as well as 3x3 convolution 
filters) [14][26][27]. A “Fire Module” or “Fire Layer” is 
referred to as FL, and when a series of FLs is used, it can be 
referred to as SFL. A Modified Squeezed DCGAN You 
Only Look Once (YOLO) version 3 (v3) Implementation 
(MSYv3I) can incorporate these notions, as shown in Figure 
4. In addition, alternative transformations (distinct and 
disparate from the Conv or more energy-efficient 
convolutions with alternative numerical methods) can be 
leveraged. 

 

Figure 4.  MSYv3I of FL and SFL 

2) Fine-Tuning:  
Fine-tuning can be construed to be “additional training of 

the pre-trained model on a more task-specific subset of the 
original dataset,” which substantially changes the pre-trained 
model, such as via an ACWS, “so as to better conform with 
the dataset and/or task-at-hand” [14]. In addition, “Wang, 
Knack, and others note that with regards to AEC, there is a 
‘need to study fine-tuning…separately from’ pre-training 
‘and inference workloads’,” for while pre-training AEC costs 
can be relatively steady, fine-tuning and inferencing AEC 
costs can “vary greatly,” as they are dependent upon the 
task-at-hand, the desired accuracy, and the robustness of the 
pre-training [14][28][29]. This is especially the case when 
the deployed model is undertrained (as contrasted to being 
overtrained “past the Chinchilla optimal”) [14]. 

3) Inferencing:  
Moving from fine-tuning to inferencing, it is generally 

recognized that the works of “Li et al. as well as Canziani et 
al. are among the first robust examinations regarding 
inference costs” [14][17], and several interesting 
observations are put forth; for example, Canziani notes that it 
has become current “practice to run several trained instances 
of a given model over multiple similar instances” [14][30]. 
This “practice is known as model averaging,” usually 

involves an ensemble of Deep Neural Networks (DNNs), and 
“dramatically increases the amount of computation required 
at inference time to achieve” the specified accuracy (or, 
given the involved ambiguity/uncertainty, the degree of 
quantitative exactitude) [14][30]. Clark puts it quite well by 
noting that the involved AI first needs to “‘understand…the 
query then ‘thinks’ of an answer,” which “thereby 
increas[es] the involved AEC” [14][31]; this is consistent 
with a statement made at a keynote session of the World AI 
IoT Congress: “it’s not just about detecting but 
understanding.” For this ensemble paradigm, the “AEC is 
multiplied accordingly” segueing to a much higher multiple 
for the aggregate AEC [7]. 

C. CSA 
Taking the proxy case of MDA, the 

likelihood/probability of a large model size, high accuracy 
requirements for the involved AAT/AAD, and a high number 
of Forward Passes (FP) is quite elevated [14]. Also, as 
“MDA is typically associated with mission-critical 
activities,” it has been noted that “the involved fine-tuning” 
will “likely be extensive and ongoing” [14]. Moreover, CSA 
will “necessarily involve higher-order AEC tasks” (e.g., 
AAD) that will necessitate high FPs [14][16]. As MDA “and 
other similar mission-critical” RWS “are likely prioritizing 
quality of results,” the various involved modules are likely to 
be calibrated accordingly [14]. 

With regards to the overall involved AEC, researchers 
have noted that “Desislavov’s estimates tend to be quite 
close to reported measured values,” so “the Desislavov 
approach is adopted,” for this paper, “wherein inference 
Floating Point Operations (FLOPs) are focused upon and 
‘the efficiency metric FLOPS per Watt’ (Watt=W) is re-
expressed as ‘FLOPS per Joule’ (Joule=J), so as to express 
the [computational] Efficiency (EFF) and AEC, such as in 
(1): 
        EFF in units: FLOPS/W=[FLOPs/s]/[J/s]=FLOPS/J (1) 
         
      AEC=FP/EFF in units: [FLOPs]/[FLOPs/J]=J)” [14][17]. 
 
Inference AEC is task-dependent, and as one simple 
example, the task of “object detection” (e.g., in an AAT 
case) has “a higher AEC than image classification,” and 
aberrant object detection (e.g., in an AAD case) has an even 
higher AEC [14][16]. Experimentation by Lucioni had found 
that inference AEC tended to be much higher than expected, 
and “the ‘mean and standard deviation of inference energy’ 
in kiloWatt hours (kWh) ‘per 1,000 queries’ was 542% and 
2000% greater, respectively” [14][16][17]. Lucioni further 
found that the “utilization of ‘multi-purpose models for 
discriminative tasks’ had a higher AEC when ‘compared to 
task-specific models for these same tasks’,” and the 
differential was quite high: “2-3x to 5-7x” [14][16][17]. 
Furthermore, any requisite “increase in accuracy,” such as 
throughout the course of AOSA and/or CSA, can segue to “a 
dramatic” “increase in the required FLOPs for” FP [14][17].  
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III. THEORETICAL FOUNDATIONS & CONSIDERATIONS 
A. Preferred OCGLfSFN 

Continuing from Section I, a goal of the involved MA 
(for which the MAM is responsible) is to ascertain the 
OCGLfSFN. Prior to segueing to this OC form, there is a 
precursor non-OC form (i.e., P-GLfSFN), as previously 
delineated in Fig 1. For example, Augustin acknowledged 
the predilection for GHpFN for its ability to “represent more 
intricate and nuanced degrees of uncertainty” while Ban 
favored GTrFN, GTpFN, and semi-GTpFN for the 
preservation of ambiguity and weighted ambiguity 
[7][32][33]. Whatever the preferred form, the choice of the 
precursor Generalized ‘f’-gonal FN/SFN form (e.g., P-
GLfSFN) affects the efficacy of the utilized “defuzzification 
method” (i.e., “the transformation of a FN/SFN into a crisp 
form”) [7]. The significance of this centers upon the 
intricacy that “as the LHM contends with the counterpoising 
of” ambiguity/uncertainty, the precursor non-OC form, 
which best preserves ambiguity, is likely to be optimal for 
facilitating/deriving the OCGLfSFN. 

B. The Ranking of FNs/SFNs 
There are numerous “ranking methods for the discussed 

pre-cursor [non-OC form] Generalized “‘f’-gonal FN/SFN 
form (e.g., P-GLfSFN), and the appropriate selection” is 
central [7]. For example, Velu and Ramalingam noted that 
“a ranking method which works very well for” G Hexagonal 
FNs/SFNs “may have some shortfalls when it is extended 
for” G Octagonal FNs/SFNs [7][8]. Similarly, “a ranking 
method which works very well for” G Octagonal FNs/SFNs 
might have “some shortfalls when it is used for” Triangular 
or Trapezoidal FNs/SFNs [7][34]. In any case, the ranking 
mechanism (facilitated by the ACWS) informs the precursor 
non-OC to final OC form. 

C. The Similarity Measure (SimM) Challenge for FN/SFN  
With regards to the ranking methods referred to in 

Section IIIB, the underpinning measures typically involve 
various SimMs. Gogoi & Chutia noted that while there are a 
myriad of methods (each with advantages/drawbacks), “a 
universally accepted ‘silver bullet’” SimM “for ascertaining 
the similarity between” FNs/SFNs “does not necessarily 
exist” [7][35]. They also noted that a “‘literature survey 
reveals that most of the’ SimM ‘are being developed based 
upon’” the following parameters: “geometric distances, 
height, area, perimeter, ‘Center of Gravity (COG),’ ‘Radius 
of Gyration (ROG),’ etc.” [7][35]. It was noted in [35] that 
for various studies, with the exception “of Hejazi et al. 
(2011),” certain “glass ceiling” SimM methods (e.g., 
“failing to ‘give reasonable similarity between pairs’ of FNs 
when one FN ‘is identical for both the pairs’”) “are being 
carried forward” into contemporary works [7][35]. This is 
reminiscent of our prior finding that certain bugs/issues in 
various frameworks/libraries/toolkits, such as made 
available via assorted developer platforms, were being 
carried forward into various projects/papers. To aggravate 
matters, “FNs are simply a special case of a” FS, and 
“beyond FS, there” are other FS variations; these include the 

Atanassov Intuitionistic Fuzzy Set (IFS), Pythagorean 
Fuzzy Set (PFS), and Neutrosophic Fuzzy Set (NFS) 
[7][36][37]. The IFS, which is often leveraged for “coalition 
decision-making,” is comprised of constituent elements that 
“have both membership function u and nonmembership 
function v, such that u + v <=1, and hesitation margin h, 
such that u + v + h = 1” [7]. Other situations are better 
addressed by PFS, “wherein u + v >=1 (or u + v <=1) and u2 
+ v2 + h2 = 1” [7][36]. Yet other cases are better handled by 
NFS, which combines “FS with NS” [7][37]; delving into 
this, Das notes that while FS addresses “uncertainty” by the 
utilization of “membership grade,” Smarandache’s NS 
tackles “uncertainty using truth, indeterminacy, and falsity 
member grades” [7][37]. Furthermore, Ashraf, Gundogdu & 
Kahraman, Mahmood, etc. have “contributed to the notion 
of…SFS, which ‘is the generalized structure over’ the 
referenced FS (e.g., IFS, PFS, and NFS)” [7][38]. 

D. SimMs and Distance Measures (DMs) for SFS/T-SFS 
Various SimM approaches have been adapted for the 

SFS ecosystem, as noted by Zhang, and Wei observes, by 
way of example, that a plethora of “SimMs for SFS ‘based 
on the cosine and cotangent function’ have been” put forth 
[7][39]. Likewise, certain combinatorials, such as “Jaccard, 
Exponential, Square root cosine for SFS,” etc., have been 
employed as pragmatic implementations of SimMs [7][40]. 
With regards to DMs, “Donyatalab and others have 
examined ‘Minkowski, Minkowski-Hausdorff, Weighted 
Minkowski and Weighted Minkowski-Hausdorff distances 
for SFSs’” [7]. Overall, there have been numerous SimM 
and DM advances, and among these, researchers, such as 
Wu, have “focused on the T-SFS,” which is a “‘specific 
case of NS’” (a.k.a., “n-hyper SFS”) [7][39][40]. According 
to Wu, T-SFS is quite adept in contending with “uncertainty 
information” and “can handle information that 
SFSs…cannot process” [7][40]. Accordingly, the 
SimMs/DMs of T-SFS show promise for higher efficacy. 

E. Discernment of Clusters/Boundaries 
Despite the prospective high promise, the use of SimMs 

and DMs for clustering should also have concomitant 
methods of Boundary Detection (BD) for enhanced efficacy. 
As a case in point, regardless of the type of Knowledge 
Graph (KG) involved, they are often incomplete. Along this 
vein, researchers have criticized “Static KG (SKG) for 
neglecting temporal information” [41][42]. Others have 
critiqued Temporal KG (TKG) for neglecting spatial 
information [41][43]. Accordingly Spatio-Temporal KG 
(STKG) seems promising, and Ye notes that for the 
associated “KG Completion (KGC),” such as that of STKG 
Completion (STKGC), “discriminative methods (a.k.a., 
conditional methods that discern boundaries among labels, 
classes, etc.) endeavor to, by way of example, ‘predict the 
possible label’ (e.g., node name, line segment name, etc.)” 
[44]. Wei further clarifies this by noting that “discriminative 
methods focus on discerning elements of the” involved 
Triples, Quadruples, and/or Quintuples (TQQ) to 
“‘efficiently construct large-scale’ KGs, ‘which often 
require’” “an ensemble,” “multiple models” “and/or 
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cascading succession of models” [41]. According to Zeb, the 
objective is to “undertake KGC” (e.g., STKGC) to 
“determine the ‘unobserved” and/or complete the observed 
TQQ, thereby facilitating sufficient/efficient inference” [45]. 
Along this vein, “robust KGC can, potentially, facilitate 
reducing the inference load and the associated AEC” [41]. 

F. Spatio-Temporal Representation with a Quintuple 
With regards to the referenced STKGC, “Nayyeri 

suggests that ‘spatio-temporal facts can be represented as a 
quintuple’ (s/h, p/r, o/t, l, !), ‘where l reflects the location 
information (spatial)’” rather than simply using the triple or 
quadruple representation [43]. “Nayyeri further notes that 
the ‘quintuple representation in the form’ (?, p/r, o/t, l, !),( 
s/h, ?, o/t, l, !), (s/h, p/r, ?, l, !), (s/h, p/r, o/t, ?, !) or (s/h, 
p/r, o/t, l, ?) ‘is especially suitable because for each 
incomplete quintuple, four of the five elements are always 
present’” [43]. In support of Nayyeri’s assertion, “Dihedron 
algebra” is known to be ‘a rich 4D algebra of hypercomplex 
spaces’ that can operationalize geometric operations in 
higher dimensions” [43].  

G. Type-Sensitive (TS) for RWS  
The TQQ issue (e.g., the extraction potential, or lack 

thereof, of the triples, quadruples, and quintuples of the 
TQQ amalgam) is further explored, and “according to 
Zhang, many of the ‘current models have difficulty 
distinguishing representations of the same entity or relation 
at different timestamps’” [46]. He refers to this phenomenon 
as an “entity type information gap” [2]. As a very simplistic 
example, the relation ‘invent,’ ‘devise’,” modify, hybridize, 
etc., “could connect head entities of type ‘AI company’,” 
tech startup company, ML firm, etc. “to tail entities of type 
‘AI algorithm’,” ML algorithm, AI/ML technique, ML 
method, etc. [2]. Pertaining to “cases such as this, He [et al.] 
points out that this apriori knowledge” regarding “entity 
type information” and/or “relation” connectors can provide 
insights into the likely and apropos “entity type 
information” for the unknown tail entity. After all, “its 
position in the vector space should not be far away” [47]. 
This paradigm constitutes the essence of being “Type-
Sensitive” (TS),” and a correlation is made by He et al. that 
for RWS, “an entity tends to belong to multiple types’” 
[2][47]. Accordingly, the TS approach, such as TS-STKGC, 
“might better lend towards RWS” [2]. 

H. The Consideration of Influence Dominating Sets (IDS) 
As noted in Sections III E through G, boundary, spatio-

temporal, and TS distinctions help to clarify the sets at play; 
this is vital for the consideration of IDS, which are typically 
divided into two groupings: Positive Influence Dominating 
Sets (PIDS) and Negative Influence Dominating Sets 
(NIDS). Both PIDs and NIDs must be taken into 
consideration for the overarching IDS, which is often 
contextualized by “the Bak–Tang–Wiesenfeld (BTW) 
sandpile effect of non-equilibrium systems” [41]. Particularly 
in the case of “Multi-Layer Networks” (MLN),” which 

pervades RWS, “Grilli had found that HON-related IDS” 
“interactions have a stabilizing influence within LSCN, and 
the existence of HON nicely explains many RWS” 
[41][48][49]. While understanding HON-related IDS, it is 
useful to undertake the resolving of certain problems to 
progressively contextualize the state of and/or the 
prospective controllability. In the course of understanding 
HON-related IDS, it is useful to undertake the resolving of 
certain problems to progressively contextualize the state of 
and/or the prospective controllability. Of note, this involves 
the progression from the resolving of the Minimum 
Dominating Set Problem (MDSP) (which centers upon 
“determining the smallest dominating set of a given graph”) 
to that of the Minimum Controllability Problem (MCP) 
(which centers upon ascertaining a pragmatic dominating set 
— that might not necessarily be the smallest — for a given 
graph). 

I. Minimum Controllability Problem (MCP) 
First, with regards to MCP, Nguyen articulates the 

distinction that MDSP is “more suited for a static” Large 
Scale Complex Network (LSCN), and in contrast, Terasaki 
points out that solving the MCP is “more suited for dynamic 
LSCN” [41][50]. Lin adds to this by discussing the notions 
of a connection condition, which is referred to as a “Critical 
Connection Component” (CCC) and represents “an infimal 
strongly connected component” as well as rank condition; 
the rank equates to the number of singular values and the 
condition is the ratio of max:min singular values 
[41][51][52]. According to Lin, the involved/studied “system 
is structurally controllable if and only if [iff] a connection 
condition…and a rank condition…are both satisfied” 
[41][51][52]. However, as noted by Alizadeh, an approach 
that “ensures controllability” that is “equivalent to solving a 
combined maximum matching” (for which Berge’s Lemma 
might put it best—maximum matching is achieved if and 
only if [iff] there is no augmenting path) is a different matter 
entirely [41][53].  

J. Efficient Controllability Problem (ECP) 
Second, progressing from MCP to ECP, Gokler notes 

that ECP might be the more practical problem to contend 
with [41][54]. According to Lindmark, the ECP “contends 
with minimizing the number of requisite CS” and “the 
requisite Control Energy Cost (CEC)” [41][55]. CS and CEC 
should be considered in tandem, for “Chen asserts that ‘if the 
number of” CS ‘is small, the’ CEC ‘demanded…could be 
prohibitively high’” per CS [41][56]. In contrast, “the CEC 
‘is reduced exponentially as the number of’ input CS 
increases” [41][56]. An extraordinarily elevated CEC would 
not be practical to achieve, and “controllability for only a 
limited temporal span” or window may not meet the mark 
for the envisioned sustained C2 [41][56]. For all intents and 
purposes, “practical controllability has the criteria of 
persistence over an Elongated Temporal Span (ETS) so as to 
be able to effectuate actual/effective control when 
needed/desired” [41][56]. As noted by Gao, “the optimality 
problems at hand” “could be construed to center upon” “an 
optimal number of CS (CSopt)” functioning as IDS “on an 
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optimal number of Key Control Driver Nodes (KCDN) 
(KCDNopt)” at a reasonable/sustainable “optimal CEC 
(CECopt) over an ETSopt” for effective/efficient control of a 
LSCN [41][57]. To effectively discern CS, KCDN, CEC, 
and ETS, the various MLNs and involved HONs should be 
posited. This discernment pathway leverages: (1) the 
informative nature of Co-Evolution Networks (CEN), and 
(2) the insights provided by complex manifolds” [41][56]. 

1) Informative Nature of CEN 
First, information derived from adjacent networks or 

those at other levels (e.g., MLN) “can be quite informative” 
from a CEN perspective, particularly if network 
enlargements/enhancements were made to support the other 
involved network(s). Likewise, if an outage of one network 
affected another, certain other suppositions can be made 
[41]. RWS include KGC facilitation “by, say, knowledge of” 
adjacent network(s) (e.g., communications network) 
“interoperating”/co-evolving “alongside an involved” LSCN 
(e.g., “power grid”). Other examples of intertwined networks 
(which might be mutually reinforcing and/or opposing) 
include that of a milk kinship network and tribal political 
network (i.e., CENs) [41]. Oftentimes, “knowledge of the 
involved networks across various jurisdictional/functional 
demarcation boundaries” can be invaluable for STKGC [41]. 

2) Informative Nature of Complex Manifolds (CM) 
Second, researchers, such as Battiston, have examined 

both “the informative nature of CENs” and “the stabilizing 
influence of HON” [58]. Battiston, Vazquez, and Sun & 
Biaconi note that “HON topologies can be” expressed by 
hypergraphs, even more “complex hypergraphs 
(‘hypergraphs of hypergraphs’ or chygraphs),” and 
“multiplex hypergraphs (‘a set of hypergraphs…with the 
same set of vertices’),” respectively 
[41][58][59][60][61][62]. Extending this point, Ding 
suggests a more “robust characterization” of “HON 
topologies” can be effectuated by an amalgam of CMs 
[41][63]. The CM is described by Voisin as having 
“‘complex-valued coordinates (called holomorphic 
coordinates)’ assigned to positions on a manifold” [41][64]. 
As noted in [41], “CMs can provide invaluable insights, and 
‘a physical system embedded on a twisted topological 
complex manifold’ can bring out ‘fundamental physical 
properties of an unknown system,’ such as ‘if and when’ a 
‘system is undergoing a phase transition’” [41][65]. When 
CMs are considered against the “BTW principle and set 
against the described LSCN controllability/uncontrollability 
optimality problems,” such as CECopt, “the impact of existing 
HON topologies” becomes much clearer [41][63][64]. 

K. Controllability Gramian 
Prior to arriving at CECopt, it is often useful, certainly for 

quality assurance/quality control purposes, to obtain “the 
minimum CEC (CECmin), which Klickstein asserts, “can be 
characterized by the controllability Gramian” [41][66]. For 
the discussed case, wherein C2 can be achieved, the 
“Gramian matrix should be well-behaved” [41][67]. In other 
words, the “sensitivity to perturbation” (i.e., “the condition 
number”) and the CEC is not prohibitively large [41][67]. In 
contrast, when the Gramian matrix is ill-conditioned, C2 is 

not able to be effectuated, and the condition number is 
indeed prohibitively large [41]. In essence, “for the latter 
case, the LSCN is not able to arrive at the ‘final state in the 
prespecified time within a predefined precision’” [41][67]. 
Lindmark notes that the handling of the “Gramian matrix is 
paramount, as some strategies involve ‘comput[ing] in 
closed form...when the time of the transfer tends to infinity’ 
and physical controllability will not manifest” [41][55]. As 
noted by Zhou, this “accentuates the case for CS 
augmentation and/or accelerant approaches” to enhance the 
probability of actual C2 ‘as contrasted to theoretical, 
mathematical controllability’” [41][67][68]. The 
expectations for more robust and accurate controllability are 
particularly high for the case of dense/homogeneous LSCN 
(vice sparse/heterogeneous LSCN) with similar sub-LSCN 
[41][68]. Along the same vein of moving to quintuples to, 
potentially, operationalize the spatio-temporal aspect, 
“Zhang noted that temporal LSCN, which exhibit link 
temporality”  — something akin to “‘attaching a virtual 
driver node to that link’— tend to be more physically 
controllable” [41][69]. The sequitur thought is that spatio-
temporal LCNS will likewise, ostensibly, be more physically 
controllable. Taking these collectively, in essence, from the 
vantage point of CS, “if one set of Key Control Driver Nodes 
(KCDNs) “can influence another set of KCDNs” so as to not 
only influence the involved LSCN, “but also peer LSCN,” 
higher/lower-order LSCN, and/or HON “to a particular 
interim state, it then follows that the ultimate desired state is 
more likely to be attained” [41]. 
L. Inverse Gramian 

Continuing the point of CS, according to Ludice, the 
likelihood of success for CSopt (e.g., “CS base candidate set 
and/or CS augmentation set”) is intricately tied to the 
“diffusiveness/permeability of the LSCN,” which 
“constitutes a potential indicator of the susceptibility for 
LSCN controllability” [41][70]. As another indicator, when 
the susceptibility for LSCN controllability is high, the 
inverse Gramian exists [41]; when the susceptibility for 
LSCN controllability is low, the inverse Gramian does not 
exist [41].  On this latter note, “a corresponding Vanishing-
Moment Recovery Matrix (VMRM) is a suitable 
approximation of the inverse Gramian,” as it “guarantees n 
vanishing moments of wavelet tight framelets” [41][71]. 
Abebe further notes that “as the number of vanishing 
moments increases, the polynomial degree of the wavelet 
also increases,” so there are lockstep characteristics [41][72]. 
Grochnig asserts that “the potential advantage of this is that” 
“‘wavelet tight frames can,’ therefore, ‘be derived from any 
multiresolution analysis’” [41][73]; “this segue[s] to the 
discerning of” the collective phenomena regarding the 
LSCN, and two other aspects are also important in this 
regard: (1) Percolation, and (2) Giant Component. 

1) Percolation of a LSCN 
Sun defines Percolation as positing “the fraction of nodes 

in the Giant Component’ of a LSCN” [41][61]. In essence, 
Percolation is evidenced when the average node degree >1 
and is indicative of the manifestation of the “Giant 
Component.” 
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2) Giant Component of a LSCN 
Sun notes that a “Giant Component” is a CCC that 

encompasses a substantive portion of the involved graph’s 
vertices, and a “non-zero Giant Component” is required for 
the discerning of “‘collective phenomena…emerging from’ 
diffusiveness/permeability, etc.” [41][61].  

M. Phase Transitions for HDD Clustering Discernment 
The IDS traits and stabilizing effect of HON underpin 

many RWS phenomena. These HON are comprised of 
“‘both hypergraphs and Simplicial Complexes’ (SC)” 
[41][61]. Zhang asserts that HON interactions (HONi) 
“‘shape collective dynamics differently in hypergraphs and’ 
SC” and points out that HONi “‘increase[s] degree 
heterogeneity in’ SC” while HONi ‘decrease[s] degree 
heterogeneity in [random] hypergraphs’” [41][74]. Of 
significance, “the amalgam ‘insights provided by these two 
constituent elements of HON are not dissimilar to the 
insights gleaned via the paradigm of CEN.’” [41]. Lee 
focuses upon SC and notes that it “has been ‘shown to reveal 
a rich phase [transition] diagram’ for ‘link percolation’” 
(e.g., the impairing of network connectedness via the 
deactivating of the involved link/node) [41][61][75]. Insights 
into the “likeness in structure” (i.e., homological) and into 
the activation/de-activation of nodes/links temporally (i.e., 
percolation) is indicative of the involved HON topology. 
Accordingly, Lee notes that the Homological Percolation 
Transition (HPT) is also insightful since it denotes the 
emergence of a burgeoning cluster as the number of SCs 
increases [41][61][75]. Lee also notes that the CM 
expression for the hypergraph can also be insightful, and it 
can be combined with the “the value-added proposition of 
the SC and hypergraph interplay (in a ‘CEN’-like fashion)” 
for revealing the HON phenomena [41][61]. 

N. HDD-centric Cluster Validity Index (CVI) Measures 
(HCM) 

Axiomatically, robust HDD clustering is central to VSNO 
ascertainment. In turn, CVI are vital measures in assessing 
the resultant “optimal” number of clusters. The CVI 
measures suitable for HDD (i.e., HDD CVI Measures or 
HCM) are categorized into: “External Measures (EMs), 
Internal Measures (IMs), and Relative Measures (RMs)” [1]. 
EMs have the value-added proposition of capitalizing upon 
“cluster structures/resultants from data sources not 
necessarily intrinsic to the clusters and data at-hand” [1]. IMs 
have the advantage of capitalizing upon the affinity aspect 
(e.g., cohesion/compactness) that “exists predominantly 
within the clusters and data at-hand” [1]. Researchers, such 
as Vendramin posit that “RM can be construed to be a subset 
of IM” [1][76] [77][105][106]. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 
Section IIIA described how a key goal of the involved 

MA is the derivation of the OCGLfSFN, and this process is, 
in turn, heavily dependent upon the precursor non-OC 
Generalized “‘f’-gonal FN/SFN form(s) selected (e.g., P-
GLfSFN). This choice is very much informed by the 
ranking method leveraged (informed by the involved 

MODM, such as OSNS), as discussed in Section IIIB. 
Underlying the ranking method are the validity measures 
utilized, and this typically involves SimMs, such as for SFS 
(“‘the generalized structure’ over’ ‘IFS, PFS, and NFS’”) 
[7][38]; this aspect is described in Section IIIC. Section IIID 
furthers this by noting that SimMs are used in conjunction 
with DMs for both SFS and the more robust T-SFS 
extension. Accordingly, experimentation involving 
SimMs/DMs for SFS/T-SFS seems apropos, and this is 
reviewed in Section IVA. 

Likewise, Section IIIE notes that the SimMs/DMs should 
necessarily be accompanied by boundary detection (e.g., 
among classes, etc.), such as via STKGC discriminative 
methods. Section IIIF notes that the quintuple representation 
can well capture spatio-temporal information that the 
quadruple (i.e., temporal information only) and triple (i.e., 
no temporal information) are unable to; hence, the quintuple 
representation is well suited for STKGC. Section IIIG then 
discusses the “entity type information gap” and introduces 
the notion of TS. While Sections IIIE/F/G helped to clarify 
the sets at play (via boundary, spatio-temporal, and TS 
distinctions), Section IIIH notes the consideration of IDS, 
via PIDS and NIDS. Section III I/J reviews the various 
considerations, such as IDS (for the MCP and ECP), and 
articulates the notion of CEC. Section IIIK notes that prior 
to determining CECopt, the ascertainment of the precursor 
CECmin can be useful, and it is well reflected by the 
controllability Gramian. Section IIIL notes that if the 
involved LSCN is indeed controllable, the inverse Gramian 
will exist; along this vein, the VMRM is an accepted 
approximation of the inverse Gramian, and this sets the 
stage for the architectural construct to be utilized. It is also 
noted that as the prospective controllability LSCN becomes 
clearer, the Percolation and Giant Component lend toward 
that understanding. Section M notes that the SC and 
hypergraph interplay also well contribute to that 
understanding. While the multiplex hypergraph is quite 
revealing regarding the collective phenomena, SC is quite 
revealing with regards to phase transitions, and the HPT 
(which provides further transition insights) is particularly 
informative. Overall, the use of phase transitions for HDD 
clustering discernment is articulated. Section IIIN delineates 
HCM and notes that it is a critical facet for gauging HDD 
clustering, which is at the core of VSNO determination. 
Accordingly, experimentation involving the choice of HCM 
seems fitting, and this is reviewed in Section IVB. 

Finally, the architectural construct is reviewed in Section 
IVC. There were two principal reasons for certain 
experimental testbed architectural modifications: (1) the 
consideration of DCNN performance degradation amidst 
large intra-class variations, and (2) the necessity of shifting 
to a GBGRDH-1,2,3,4 construct so as to leverage the “more 
task-specific H-IICMNN infimal convolution mechanisms 
to serve as ‘efficient solvers’” for the 1,2,3,4 functional 
roles [41][116]. Central to the overarching architectural 
construct was the LHM, as it impacted the use of the 
involved Non-Operational Data (NOD), Situational 
Awareness Data (SAD), and Operational Data (OD). The 
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baseline NOD data contextualizes the OD [5]. Likewise, 
SAD also contextualizes the OD “in an ongoing fashion,” 
such that when sufficient OD enriches the IHP repository, 
the LHM may decide that it is not necessary “to actuate 
upon” further OD under CDC conditions [5]. When OD is 
contextualized “by SAD as well as NOD,” it lends to the 
IHP [5]. The IHP, in turn, is underpinned by an Inherent 
Uncertainty Construct (IUC). The items of this paragraph 
are all discussed in Section IVC with an accompanying Fig. 
7. 

A. Experimentation with SimMs/DMs and SFS/T-SFS 
Preliminary experimental forays involved an examination 

of certain SimMs and DMs discussed in this paper and 
within the literature [78]. Table II depicts some of the 
affirmed resultants, and with regards to the color coding, 
“green denotes comparable performance, and orange 
signifies that the comparison was inconclusive” [7]. The 
entries include experimentation by Gundogdu & Kahraman 
as well as Sharaf, who collectively leveraged “Hwang & 
Yoon’s Technique of Order Preference by Similarity to an 
Ideal Solution (TOPSIS) and Opricovic’s VIseKriterijumska 
Optimizacija I Kompromisno Resenje (VIKOR) methods” 
[7][79]. 

TABLE II. EXEMPLAR AFFIRMED SIMM AND DM RESULTANTS [7] 

 
 
Then, TOPSIS and VIKOR as well as other MMSO methods 
were organized into their relevant categories. For example, 
“with regards to MADM SM, Ortega et al. proposed using 
SFS with Saaty’s Analytic Hierarchy Process (AHP)” 
[7][80]. For MADM OM, apart from TOPSIS and VIKOR, 
Kahraman’s use of “SFS with Diakoulaki et al.’s CRiteria 
Importance through Intercriteria Correlation (CRITIC) 
method” is presented along with Akram’s use of “Roy et 
al.’s ÉLimination Et Choix Traduisant la REalité 
(ELECTRE) method as pertains to Complex SFS (CSF)” [7]; 
“the extended method is referred to as CSF-ELECTRE I” 
[7][81].   For MODM SM, Gundogdu’s use of “SFS with 
Brauers & Zavadskas’ Multi-Objective Optimization by a 
Ratio Analysis plus the Full Multiplicative Form 
(MULTIMOORA)” is listed [7][82]. For MODM OM, 
Hanine put forth that “Mathematical Programming Methods 
(MPM), ML, as well as Integrated Approaches (IA)” should 
be incorporated into the considered approach [7][83][84]. 
Along this vein, as the utilized GBGRDH-1,2,3,4 
architectural construct “qualifies as such (e.g., 
MPM/ML/IA), it was utilized for the MCDM OM” [7]. As 
noted in [83], the construct was devised such that the 
“MODM solution set (MODMss) facilitates the MADM input 
set (MADMis) to MADMss progression” [83]. In the spirit of 
open-source experimentation and leveraging open-
architecture and various open-source pathways, various 
packages (e.g., frameworks/libraries/toolkits) from “Github 

and other repositories were experimented with” [7], and a 
sampling of the various MMSO packages/sortings are shown 
in Table III.  

TABLE III. EXEMPLAR MMSO IMPLEMENTATIONS [1][7] 

 
 
As indicated in [7], it was non-trivial “to appropriately adapt 
FNs to SFNs and SFSs,” and for “several cases, 
modifications of the involved method had to be” scrutinized 
against the ongoing work delineated in the literature. Among 
other exemplars, the “modification of CRITIC to a fuzzy 
paradigm was based upon, among others, Pamucar’s work” 
[7][85]; “modification of ELECTRE I to a fuzzy paradigm 
was predicated upon, among others, Sevkli’s work” [7][86]. 
For other instances, various “conversion guides” (e.g., 
“Amidi & Amidi R-Python”) and “online converters” (e.g., 
“CodeConvert’s Online R to Python Converter”) were 
utilized, such as for the “FuzzyMMoora function” (e.g., 
“R/FuzzyMMOORA.R”) [7]. Then, for the ensuing 
examination, three key metrics were utilized: (1) 
Performance (P) (“which is highly dependent upon the” 
Numerical Stability Architectural Construct or NSAC), (2) 
Consistency (C) (a useful indicator for both NSAC and the 
Number of Function Evaluation (NFE) (an indicator of the 
convergence rate — “e.g., a small NFE depicts a faster 
convergence rate”), and (3) Flexibility (which can be 
indicative of the potential for  “adaptation, hybridization, 
etc.”) [7]. Certain “comparative evaluations” were 
conducted, and some “interim findings are reflected in” 
Table IV [7].  

TABLE IV. EXEMPLAR MMSO BENCHMARKING [7] 

 
 
For Table IV, the color coding (is as follows. Red denotes 
worse performance while the darker shade of green denotes 
better performance; the progression of colors follows the 
ROYGBIV sequence and indicates the gradations of 
performance. With regards to the interpretation of Table IV, 
“for the conditions set within this paper, as delineated in 
Table IV above, it seems that SFS-MULTIMOORA and 
the” GBGRDH-1,2,3,4 (which supplanted the prior 
construct) “warrant further investigation” [7]. “For those 
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cases, wherein the MMSO conjoined multiple packages, the 
various pairings were designed to be well counterpoised” by 
way of “complementary structures (e.g., PA is matrixed 
while AHP is hierarchical) and/or roles (e.g., criteria weights 
can be derived by CRITIC and, subsequently, ranked by 
TOPSIS)” [7]. The value-added proposition of an ACWS has 
long been put forward by researchers, and a well-
counterpoised MMSO construct operationalizing an ACWS, 
which might buttress STKGC (a weight-aware task) is 
invaluable. 

B. Experimentation with Selecting Apropos HCMs  
Laborde, Vitelli, and others have asserted that Sparse 

Solution Discernment (SSD) has not been sufficiently 
“explored prior to the writing of this paper” and that SSD, 
such as that pertaining to VSNO “subspace clusters” in 
HDD, remains in a “fairly nascent state” [1][87][88]. With 
regards to VSNO clusters in HDD (i.e., HDD VSNO SSD or 
HVD), SSD is NP-Hard. This should be of no surprise 
since, throughout the years, researchers have articulated 
(“and the literature is rife with examples”) the “sensitivity of 
prototypical clustering classifiers” “to the placement of the 
initial seeds, noise, and the lackluster efficacy when 
confronted by varying cluster sizes, densities, shape[s], etc.” 
[89][90][91]. The robustness of the HVD is based upon the 
buttressing “workflow sequences, the involved measures,” 
and “the efficacy by which similitude is gauged” [1]. Along 
this vein, Wang, Govaert, Nadif, etc. posited that “insight 
could be gleaned from the relationships among the subspace 
elements, such as that of submatrices (e.g., homogeneous 
subsets of data)” [1][91]. Taking a different approach, 
Majdara, Li, Xianting, etc. “proposed density-based 
approaches” [1][92]. Different still, Zhao, Du, Lu, etc. “put 
forth grid-based approaches,” and “still others have 
introduced hybridized approaches [1][92][93]. For example, 
Agrawal et al. introduced a density-based and grid-based 
approach referred to as Clustering in QUEst (CLIQUE),” 
and “as a follow-on enhancement to CLIQUE,” Nagesh et 
al. introduced “Merging Adaptive Finite Intervals And 
(MAFIA)” [1][93][94]. Yet “other approaches include those 
that are Wavelet Transform (WT)-based,” and this should be 
of no surprise, since WT are a recognized method “to 
summarize high-dimensional data in a few numbers” 
[1][83].  

The HVD mechanism is also “underpinned with soft 
clustering,” (“this is contrasted to ‘hard clustering, wherein 
there is classification into only one cluster’”), and “this 
provides the requisite versatility of more granular and 
variegated classification” [1]. This “characterization of soft 
versus hard clustering should be reminiscent of” Type-2 
Fuzzy Set (T2FS), as opposed to Type-1 Fuzzy Set (T1FS), 
“which only accommodates membership invariableness” [1]. 
With regards to the soft clustering, “Three-Way Soft 
Clustering (TWSC) ‘nicely suffices for the [HVD] purposes 
at hand,’” as it has the nuance of having “samples in the 
positive region as belonging to the cluster, samples in the 
boundary region as partially belonging to the cluster, and 
samples in the negative region as not belonging to the 
cluster” [1][96].  

Moving from HVD to HCM, Tavakkol et al. have noted, 
“to the best of our knowledge, there is not any” HCM “in the 
literature that is designed for uncertain objects and can be 
used for validating the performance of uncertain clustering 
algorithms” [1][104]. To set the stage for the HCM 
exploration, Section IIIN noted that “RM can be construed to 
be a subset of IM, which can be construed to encompass 
‘Optimization-like Criteria’ (OLC) and ‘Difference-like 
Criteria’ (DLC), and ‘RM can refer, in particular, to DLC, 
wherein a baseline reference can be established and utilized 
to determine relative improvement(s) over a certain time 
frame’” [1][105][106].  

Along this vein, previously, Milligan and Cooper had 
undertaken an examination “the IM/RM of ‘McClain-Rao’ 
(MR) as an OLC,” but in a potential difference of findings, 
“Vendramin et al., among others, found that MR ‘performed 
significantly better (eight times more accurately)’ when 
transforming DLC to OLC (e.g., better results) prior to any 
evaluation” [1][106]. Along this vein, an exploration was 
initiated to determine “which HCMs have been considered 
for facilitating the DLC Candidate List (DCL)” [1]. The 
premise is that “if the classification related to DLCs can be 
augmented, and the involved transformations, such as that of 
DLC to OLC, can be accelerated,” then HVD can be 
enhanced [1]. “The need for a robust HCM apparatus is 
underscored by Tavakkol, Vendramin, and others,” and some 
of the findings are reflected in Table V [1]. 

TABLE V. HCM EXPERIMENTATION FACETS FOR DLC TO OLC CANDIDACY 
[1][5] 

 
 

Regarding Table V, Column I lists certain HCMs: MR, 
Ball-Hall (BH),” Dunn Index (DI), “Pakhira-
Bandyopadhyay-Maulik (PBM), Trace(W) (TW), and Point-
Biserial (PB)” [1]. Then, Column II lists “the DLC/OLC 
presort, as presented by Vendramin and Liu” [1][106][107]. 
Column III indicates the leveraged method to determine 
optimality, via “Min” (“the smallest index value”) and 
“Max” (“the largest index value”) [1][108]; regarding 
“Max,” “Maxdiff refers to the optimal K segueing to the 
maximum difference ‘between…successive slopes’” 
[1][63][107][108][109]. Column III also notes various 
“inflection points;” these inflections are denoted by 
“elbows” (e.g., positive concavity) and “knees” (e.g., 
negative concavity), as applicable. Then, Column IV 
indicates “Within-cluster (W), Between-cluster (B), and full 
Dataset (D),” in accordance with “Powell’s 
convention/nomenclature,” and Column V provides the 
“computational complexity” [1][109][110][106][111]. 
Those columns with relatively strong performance “for the 
various normal distributions, increasing degree of overlap, 
global optimum, as well as paradigms that are generally 
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affirmed (and/or are affirmed by other benchmarks) are 
checked off for the pertinent cells of Columns VI, VII, VIII, 
and IX, respectively, and commonalities are green 
highlighted” [1]. 

C. Experimental Testbed Architectural Modifications 
As noted in Section IV, the VMRM had set the stage for 

the architectural construct to be utilized. Section IVB had 
also noted that HVD approaches included density-based, 
grid-based, and WT-based. As Continuous WT (CWTs) “are 
particularly amenable to time series analysis,” can well 
handle “wavelet tight frames with n vanishing moments,” 
and have “successive convolutional layers (which contain the 
cascading of ever smaller ‘CWT-like’ convolutional filters),” 
“CWTs are the preferred WT embodiment” for the 
experimentation within this paper [1][41][71][83]. It is also 
readily operationalized aboard the GBGRDH-1,2,3,4.  

Other considerations included the fact that the very 
nature of HVD involves VSNO and “large intra-class 
variations,” and “Jin noted that when a prototypical Deep 
Convolutional Neural Network (DCNN) is confronted with 
‘large intra-class variations, the performance of the 
traditional [D]CNN models degenerates dramatically’” 
[41][112]. Thus, as one principal reason, the prior 
instantiation was modified to that of a GBGRDH-1,2,3,4 was 
to take the DCNN performance degradation aspect (amidst 
large intra-class variations) into consideration. This rationale 
will be addressed in segments. Also, given the C2/CS 
impetus and the notions of HON as well as MCP/ECP, it was 
more pragmatic to supplant the prior DCNN approach “with 
the more task-specific H-IICMNN infimal convolution 
mechanisms to serve as ‘efficient solvers,’ as noted by 
Lambert” [41][116]. Thus, as a second principal reason, the 
original instantiation was modified to that of a GBGRDH-
1,2,3,4, wherein the H-IICMNN-1 would now fulfill the role 
“as the key solver for the involved RCR optimization 
problems,” H-IICMNN-2 would now fulfill the role “as the 
key solver for the non-convex problems inadvertently 
spawned by the RCR,” H-IICMNN-3 would now fulfill the 
role “as the key solver for certain modified involved 
functions,” H-IICMNN-4 would now fulfill the role “as a 
numerical stability stabilizer for the construct,” “and a 
DCGAN” would now fulfill the role  “as a mitigator against 
mode failure” [41]. This paradigm is shown in Fig. 5 below. 
Hence, the RCR-DCGAN-[H-IICMNN]-1,2,3,4 aspect has 
been addressed. 

 

 
Figure 5.  GBGRDH-1,2,3,4 Construct with H-IICMNN 
functional roles [1][14] 

With regards to Fig. 5, H-IICMNN-1 was tasked with 
ensuring high Quality of Service (QoS) for the involved 
RCR optimization problems, which require consistent 
numerical stability. For this reason, PyTorch v0.4.1 was 

chosen. H-IICMNN-2 was tasked with handling additional 
non-convex problems that were inadvertently spawned via 
H-IICMNN-1. H-IICMNN-3 was tasked with handling 
various modified functions that have been previously shown 
to produce errant results due to signature and dependency 
issues. PyTorch v1.7.0 was deemed to be acceptable in this 
regard. However, H-IICMNN-4 was tasked with internal 
training for the GBGRDH-1,2,3,4 construct’s overall 
stability, thereby mitigating against known numerical 
instability issues arising from the use of PyTorch v1.7.0; 
hence PyTorch v0.4.1 was utilized for H-IICMNN-4. As a 
TensorFlow v2.0 DCGAN implementation has been shown 
to exhibit consistent stability, it served in a complementary 
fashion (as an additional generator) so as to assist in 
mitigating against “mode failure” (a.k.a. “mode 
failure/collapse” or the “Helvetica Scenario”), which occurs 
when adversarial NNs, that are undergoing contemporaneous 
training, experience an aberrant convergence or simply fail 
to converge [2][1].  

With regards to the GCN-BiLSTM-GAT, researchers 
have affirmed the various facets of the amalgam. For 
example, “Zhang affirmed the ‘expressive power’ of GCN” 
[118]. “Siami-Namini affirmed the use of the BiLSTM for its 
‘better predictions,’ such as ‘in longer prediction horizons’ 
over ‘regular LSTM-based models’” [2][119][120]. Hou had 
found that Graph-Attention-Networks (GATs) well serve as 
“neighborhood aggregators to learn the entity and relational 
features of the central entity neighborhoods” [2][121]. 
“Hamilton affirmed the use of the GAT for its computational 
efficiency” [122]. “Hou furthers this by noting that the 
BiLSTM-GAT amalgam can ‘capture the interaction 
features between multi-relational facts and…temporal 
information’ along with a relation-specific weighting schema 
(as an encoder-decoder structure)” [2][121]. 

Along the vein of Explainable AI (XAI), a contribution 
of the bespoke task-specific H-IICMNN was to enhance 
discernment via a more balanced operationalization since, in 
the case of RWS, “the Gaussian assumption usually does not 
hold” [41][123]. In contrast to the [moderate-tailed] 
Gaussian distribution, the long-tail distribution tends to be 
prevalent “in KGs”, and “strongly unbalanced data with a 
long-tail is ubiquitous in numerous domains and problems” 
[41][124][125][126].  Moreover, “learning with unbalanced 
data causes models to favor head classes,” and this is indeed 
the case for the long tail in RWS [41][125][126]. Hence, the 
utilized STKG Embedding (STKGE), to achieve the 
STKGC, needs to be well balanced across both classes (i.e., 
head and tail), and Table VI demonstrates a possible layered 
approach. 

TABLE VI. PREDICTING HEAD/TAIL ENTITIES FOR KGE TECHNIQUES [2] 

 Predicting Head 
Entity  

Predicting Tail 
Entity 
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For Table VI, the color coding (like that of Table IV) is as 
follows. Red denotes worse performance while the darker 
shade of green denotes better performance; the progression 
of colors follows the ROYGBIV sequence and indicates the 
gradations of performance. In it of itself, Table VI only sets 
the stage, for there are more Complex Relationships (CR) 
that “extend beyond 1-to-N, N-to-1, and N-to-N,” such as 1-
1-N, N-1-1, 1-M-1, N-1-N, N-M-1, 1-M-N, and N-M-N [2]. 
Lin points out, such as in the case of one exemplar dataset, 
“there are 485,661 triples of 1-1-N, 520,476 triples of N-1-
1, 211,457 triples of 1-M-1, and 26,943 triples of N-1-N, 
and the number of head entities with 1-M-N…is 10,143” 
[2][127]. Therefore, the Table VI relationships of 1-to-1, 1-
to-N, N-to-1, and N-to-N must be re-examined in the 
context of the CRs “to better discern the varied ‘relations 
between a pair of entities’” [2][127]. In addition, “as noted 
by Cai, ‘generating discriminative negative samples is 
essential since failing to do so may hardly improve the 
model or even cause gradient vanishing’ (wherein the 
associated gradient may become so small and tend toward 
the point of ‘vanishing,’ which then obviates any weighting 
schema to effectuate updates)” [2][42][129]. 

Ultimately, certain promising techniques were extended, 
via He et al.’s framework, the “Type-augmented Knowledge 
[Graph] Embedding (TaKE),” which “can be combined with 
any traditional KGE models” “under no explicit type [of] 
information supervision” and can facilitate “both type 
constraint and type diversity with low time and space 
complexity” [2][41][128]. Leveraging this approach, the 
STKG Embedding (STKGE) “with a Type-Sensitive (TS) 
extension” becomes TS-STKGE (a.k.a., T2S2KGE). With 
T2S2KGE as the “generic form,” wherein the involved 
“KGE is replaced with the extended model,” T2S2-DistMult 
and T2S2-ComplEx (“wherein ComplEx is an extrapolation 
of DistMult”) are formulated [2][41][129][130]. In a similar 
fashion, “T2S2-HyTE (an extension of HyTE, which is an 
extension of TransH) was inferior to that of T2S2-Hybrid-TE 
(wherein Hybrid-TE is a hybridization of TransD and 
HyTE)” [41][129][130]. Ultimately, T2S2-ComplEx and 
T2S2-Hybrid-TE were utilized for the T2S2KGE, and the 
performance is noted in Table VII [41][130]. 

TABLE VII. HEAD/TAIL PERFORMANCE FOR T2S2KGE TECHNIQUES [41] 

 
 
For Table VII, the color coding (like that of Tables IV and 
VI) is as follows. Orange denotes worse performance while 
the darker shade of green denotes better performance; the 
progression of colors follows the ROYGBIV sequence and 
indicates the gradations of performance of the listed STKGE 
Techniques against various types of KG relationships (e.g., 
1-to-1, 1-to-N, N-to-1, and N-to-N) [41]. 

The application of the pertinent KGE technique and the 
ensuing KGC that is construed to be a part of the IUC rubric 
for informing “the HVD, which further informs the IHP” is 
part of the ongoing Validation/Dynamic Fine-Tuning 

(VDFT) process employed [5]. As noted in [5], central to 
the described workflow is the utilization of “Zadeh’s Fuzzy 
Systems Theory” with regards to “T2FS (a.k.a., IUC-1a)” 
and “‘Rough-Fuzzy Set’ (RFS) ‘(a.k.a., IUC-2a)’,” “which is 
an extension of IUC-1a and “Pawlak’s Rough Set (a.k.a., 
IUC-1b)” [5]. Significantly, “IUC-2a can well accommodate 
the notion of an affiliation, ‘but not necessarily absolute 
inclusion’” [5][130]. In furtherance of this, “Deng’s Grey 
Systems Theory (a.k.a., IUC-2b) can enhance the precision 
of IUC-2a” [5]. With regards to utilization, IUC-2b can be 
utilized, “if the relationship/membership (e.g., entity, 
attribute, etc.) is discontinuous” [5]. 

On the contrary, if the relationship/membership is 
continuous, “then other Probability [& statistics] Systems 
Theory approaches might be utilized, such as Information 
Entropy Methods (a.k.a., IUC-3), whose strength resides in 
ascertaining ‘unknown attribute weights’” [7][131]. Simply 
put, “whether the relationship/membership is discontinuous 
or continuous (e.g., pulsed, rather than continuous), it can 
still be construed as a Relationship/Membership Stream 
(RMS)” [5]; the RMS, in the context of MCDM (e.g., 
MADM/MODM), is shown in Fig. 2. In addition, the 
“Dempster-Shafer framework” can be useful for considering 
multiple membership functions, and “Debois and Prade” 
extend this to “family of membership functions” [132][133].  

 

 

Figure 6.  RMS Paradigms for the IUC [5] 

Overall, the utilization of Zadeh’s T2FS, Gundogdu’s 
“rendition of SFS” (“which is quite useful for multi-
dimensions”), and Yao’s approach collectively segue to 
TWSC, which is one of the constituent elements of T2FS-
SFS-TWSC (TST) amalgam [5]. This is contextualized 
within Fig. 7.  

 

Figure 7.  IUC with Constituent Elements [5][14] 

The NSAC is a mainstay of the GBGRDH-1,2,3,4 construct, 
and the utilized SOT progresses from “a Nonnegative 
Matrix Factorization (NMF) to a Gaussian Composite 
Model (GCM), which then proceeds to a Multiresolution 
Matrix Factorization (MMF) that is characterized by its 
intrinsic ability to ascertain the multiscale structure and 
appropriately characterize the wavelets for a multi-
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resolution representation” [5][134][135]. This then 
progresses “to yield MMF’s Corresponding WT (CORWT) 
and the ensuing Enhanced CORWT (ECORWT),” and a 
“‘translation-invariant CWT PyWavelet schema is utilized 
to implement/transform the ECORWT to the desired CWT’ 
(‘which is then used for the wavelet space-based mapping in 
preparation for HVD’)” [5]. This segues to “a more robust 
IUC,” IHP, ACWS, and “MMSO construct” [5]. Fig. 7 
depicts the described IUC. 

Finally, a review of Section IV is best summarized as 
follows — the posited construct consists of an interesting 
amalgam of (1) a LHM, (2) apropos HCM that are data 
uncertainty-centric, (3) an ICSM2 to gauge similitude, via 
the discernment of VSNO clusters in HDD (a.k.a., HVD) 
(wherein HVD is supported by TST), that is informed by the 
LHM (and vice versa), and (4) a MCDM2, underpinned by 
an (5) ACWS (operationalized by the MMSO), to leverage 
entropy weights. The LHM-ICSM2 and MCDM2 should be 
of no surprise, as they are denoted within the LHM-ICSM2-
MCDM2-IFM-AECM-MAM amalgam. The significance of 
the ACWS and MMSO have been underscored in Sections 
IC and IVA. Likewise, the import of the HCM and DLC 
have been previously illuminated in Section IVB. The 
relationship between HVD and HCM was reviewed in 
Section IVB, and the role of TST within the IUC was 
delineated in this Section IVC. 

 

 
Figure 8.  MDCM2-ICSM2-HCM Amalgam with Buttressing 
Elements [1] 

 
A scrutinization of the GBGRDH-1,2,3,4 architectural 

construct was conducted to ascertain whether various 
assertions made in the literature were valid. For example, 
Medina posited “that the use of Convolutional Neural 
Networks (CNNs) reduces the False Positive Rate (FPR)” 
[83][137]. As another example, Moradi asserted that “the 
use of LSTMs addresses the gradient vanishing issue” 
[83][138]. The GBGRDH-1,2,3,4 “incorporates these 
lessons,” among others [83]. As in [83], “prototypical ML 
libraries (e.g., Keras, Scikit-learn, etc.) were utilized,” and 
“experimental variations included PT, Tensorflow (TF), 
Caffe, Caffe2, and SciPy” [83]. Consistent with various 
works-in-progress and prior works, “PT and TF” were the 
preferred implementations. The GBGRDH-1,2,3,4 construct 
“was evaluated against” other known conventional methods, 
and a sampling of the “classification results are shown” in 
Table VIII [83]. 

 

TABLE VIII. CLASSIFICATION RESULTS OF VARIOUS ML METHODS [83] 

Methods Models ACC 
“Prototypical 
ML methods” 

“Support Vector Machine (SVM)” 
[139] 

“83.8%” [83] 

“Hidden Markov Models (HMM)” 
[140] 

“87.3%” [83] 

“Random Forest (RF)” [141] “91.43%” [83] 
“k-Nearest Neighbor (KNN)” [142] “97.17%” [83] 

 
“Prototypical 
DLNN methods” 

“CNN, CNN Bidirectional 
(Bi)LSTM hybrid” [143][144] 

“93.3-96.2%” 
[83] 

“RNN, RNN BiLSTM hybrid” 
[145][146] 

“95.5-97.8%” 
[83] 

 
Posited bespoke 
GBGRDH-
1,2,3,4 construct 

GCN-BiLSTM-GAT & RCR-
DCGAN- 
[H-IICMNN]-1,2,3,4 

98.4% 

 
Although “N-fold cross-validation,” as a classification 

error measure, “was applied to the” seven “classifiers 
depicted” in Table VIII, since the utilized schema is rooted 
in the use of an ACWS, “the subtle intent of cross-
validation becomes somewhat moot” [83]. By way of 
explanation, “if the involved data samples were utilized to 
train the involved CNN, the ensuing weights and bias values 
would tend to overfit and segue to ‘sub-optimal 
performance against previously unseen data’” [83]. The 
standard approach to offset this overfitting “is to separate 
the data into training data (e.g., 80%) and test data (e.g., 
20%)” and settle upon a suitable counterpoising, but the use 
of ACWS negates this [83]. For the experimentation herein, 
the more conversative approach of “utilizing an artificially 
suppressed number of training iterations (as a higher 
number [of] yields seemingly enhanced performance),” to 
better emulate an RWS, was adopted [83]. 

To assess the GBGRDH-1,2,3,4 construct from the 
vantage point of the “efficacy of [the] RCR, from a layer-
wise and overall perspective,” Fig. 9 serves as a good 
reference point. 

 

Figure 9.  MIP to MINLP and MILP Pathways 

 
When H-IICMNN-1 undertakes its task, the associated 
Mixed Integer Programming (MIP) can proceed via an exact 
or relaxed pathway with corresponding verifiers — exact 
(i.e., complete) or relaxed (i.e., incomplete). Exact verifiers 
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are typically predicated upon Mixed Integer Non-Linear 
Programming (MINLP), “Branch-and-Bound, as well as 
Satisfiability Modulo Theories” while relaxed verifiers are 
“typically predicated upon Mixed Integer Linear 
Programming” (MILP) “or Mixed-Integer Convex 
Programming” [83]. In the optimal case, the RCR segues to 
the depicted green convex pathways noted in Fig. 9. If the 
RCR inadvertently spawns a Nondeterministic Polynomial 
(NP)-hard Nonconvex problem, then H-IICMNN-2 is 
assigned to handle that paradigm. Ultimately, “there are two 
core aspects of RCR: (1) the actual RCR implemented at 
each layer,” and (2) “the verifier operationalized to ascertain 
robustness both layer-wise and overall [83][147]. These 
aspects are “central to the” GBGRDH-1,2,3,4 construct, 
“which has the counterpoised goals of the tightest possible 
relaxation” [83][147]. For the experimentation herein, the 
GBGRDH-1,2,3,4 construct “was able to achieve 
comparable [Accuracy] ACC to other well-known 
methods,” such as those presented in Table VIII [83]. As in 
[83], “despite the fact that the posited bespoke method did 
not achieve the 98.9% rate (with a false positive rate of 
4.5%) reported by Alam et al.,” the GBGRDH-1,2,3,4 
construct exhibits sufficient promise to warrant further 
examination [83].  

V. CONCLUSION & FUTURE WORK 
The main output of this synthesis paper is that of a 

posited AI-IS-DE2 construct (i.e., an LHM-ICSM2-
MCDM2-IFM-AECM-MAM amalgam) to illuminate 
desired DEPs; in essence, it introduced an innovative 
approach that contributed towards the analysis of high-
dimensional data and knowledge graph completion. An 
overarching goal was to contribute to the challenge of 
discerning VSNO to better and more efficiently (e.g., AEC 
considerations) perform certain functions, such as 
AAD/AOSA/CSA as well as IF, for the purposes of DE2. 
The related goal was to contribute to the challenge of better 
effectuating STKGC to enhance the discerning of HON. This 
discernment process included leveraging CENs and CMs 
(which both help contextualize HON topologies, for which 
CMs, SCs, hypergraphs, and HPTs lend to transition insights 
and that of “collective phenomena”) for the STKGC task. 
This discernment of HON not only informs the 
AAD/AOSA/CSA as well as IF tasks, but also better 
contextualizes the CS/C2 at play and vice versa. To facilitate 
the aforementioned, an ACWS to inform STKGC (to affirm 
the involved CS, HON, and C2) as well as a H-IICMNN 
approach was used; this approach also assisted in optimizing 
the model averaging/ensemble used to minimize the AEC. 
Also, at the core of the IF is the LHM, which is informed by 
the ICSM2 (and vice versa). In turn, the ICSM2 both informs 
and is informed by the MCDM2. 

The role of the SVs is recapped in Fig. 10, and Section 
I’s Table I may be referenced for the reader’s convenience.  
It illuminates how the SV facilitates the FODM (i.e., MCDM 
problem) to SOP progression. The SOP can then be resolved 
to yield the NS, and this then segues to the OSNS. The 
ICSM2 informs both the FODM (the head of the FODM-
SOP-NS-OSNS progression) as well as the OSNS (the tail of 

the FODM-SOP-NS-OSNS progression). The ICSM2 is 
underpinned by the IsoP, which is, in turn, reliant upon the 
IsoP. The IsoP efficacy is dictated by the OCGLfSFN and 
the P-GLfSFN. The P-GLfSFN to OCGLfSFN progression is 
facilitated by the involved SimMs/DMs/BD and the ACWS 
utilized. The ACWS is operationalized by the MMSO and 
the MA at play. 

 
Figure 10.  MDCM2-ICSM2-HCM Amalgam with Buttressing 
Elements [1] 
 
As alluded to in Section IVB Table 5, HVD and HCM are 
intricately related. Accordingly, only those HCM with 
reasonable efficacy and low computational complexity were 
selected. In this way, practical implementation can be 
effectuated for RWS in a scalable way. This is applied 
throughout; hence, the integration of multiple bespoke 
modules does not introduce any unanticipated significant 
computational complexity (apart from the inadvertent 
spawning of further NP-hard nonconvex problems from the 
RCR). Furthermore, not only do the resource demands not 
necessarily increase, but it can, potentially, contribute 
towards lessening the resource requirements (e.g., energy) 
via an energy-aware computing interference-optimized 
metaheuristic approach, and this was previously discussed 
in [149].  

A. Principal Contributions 
The generalizability of the proposed approach is high, as 

it can be applied to the Observe, Orient, Decide, Act 
(OODA) cycle for various C2 systems. The LHM 
determines whether further observation is necessary and 
undertakes the orientation. The MCDM2 undertakes the 
decision and proceeds accordingly (i.e., facilitates the 
action). The other modules serve in a support role. For 
example, the ICSM2 performs the IsoP comparison and 
informs the LHM. Likewise, the AECM assesses the energy 
needed/available and informs the LHM. The MAM 
underpins the IsoP comparison. For the prevalent case of 
nested MCDMs, the involved MDCM2s inform the IFM, 
which then feeds into the next MCDM construct. Gomes 
and other researchers, such as Elmhadhbi, Aqqad, and 
Zhang note that C2 agility is critical and is “used in a 
variety of situations, such as disaster response, wildfire 
management, and power outage mitigation, to mention a 
few” [4][148][150][151]. They also note that “since 
decision speed is a crucial parameter, human involvement 
should be reduced to the Decision and Action phases of the 
OODA cycle. This segues to the analyses of the involved 
Socio-Technical System [STS] rubric (which encompasses 
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“humans-in-the-loop”); hence, this affords the opportunity 
to scrutinize both human and machine biases.  

B. Future Work 
As Gomes and others note, future “automated systems 

will likely use concepts, such as” AI “to process incoming 
data…and present best option[s]” [148]. These future 
systems are also envisioned to “select optimal networks” 
(e.g., Opportunistic Networks) and adapt according to the 
“operational and network status.” For critical matters, such 
as disaster response and wildfire management, shortening 
decision cycles is vital, and “for this reason, human-
machine interaction is a promising topic for future research” 
with regards to C2 agility [148]. Accordingly, more 
experimentation regarding the LHM, MCDM2, and related 
modules seems warranted to advance the areas of 
information and decision enhancement. Also, more time 
needs to be spent resolve various signature and dependency 
issues for certain packages derived from Github and other 
repositories. To date, this has included implementations in 
PyTorch, Tensorflow, Caffe, Caffe2, and SciPy. 
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