
Online Teaching and Learning – Developing and Using an eEducation Environment

Manuel Goetz, Stefan Jablonski, Michael Igler,

Stephanie Meerkamm

Chair for Applied Computer Science IV

University of Bayreuth

Bayreuth, Germany

(manuel.goetz, stefan.jablonski, michael.igler,

stephanie.meerkamm)@uni-bayreuth.de

Matthias Ehmann

Computer Science Education

University of Bayreuth

Bayreuth, Germany

matthias.ehmann@uni-bayreuth.de

Abstract— To support schools in teaching computer

science, we have started the Informatik@School project.

In this project, which is meanwhile funded by

"Oberfrankenstiftung", we communicate computer

science content to beginners and matured students. As the

number of participating students is very large in

comparison to the number of advisors and big distances

have to be bridged, we separated students into two

groups. Students from schools located not far from our

university are taught in common face-to-face lessons,

while far-off students get taught the same content in

online lessons.

In this paper we present the project, its preconditions and

the didactical and content based concepts. We will

introduce a web based technical environment which

fulfills these issues and facilitates realization of afore

mentioned online courses. Finally, we present lessons

learned from this project and draw conclusions especially

concerning the technical platform which consists of

hardware and software used.

Keywords: e-learning; online teaching; online

education environment

I. INTRODUCTION

Since the German curriculum at secondary schools
was reformed, computer science is an independent
subject. Teachers skilled in this discipline are rare as
education of computer science teachers has just begun.
Furthermore, computer science is a broad area and
schools are limited with respect to time they can spend
on computer science education. Consequently many
interesting fields of computer science cannot be
addressed.

Therefore a project named "Informatik@School"
was set up (funded by "Oberfrankenstiftung") which
supports schools in computer science education and
should increase students' interest in computer sciences
[1]. As this project is not limited by a curriculum, topics
are freely selected; they should be of major interest for
the students. Limitations of this project are the amount
of time the advisors can spend and the distances
between schools and the advisors. According to that

some schools are taught remotely while others can be
taught in common classes. In this paper we present our
online teaching approach consisting of a technical and
didactical part and compare success to traditional
learning methods.

The rest of the paper is structured as followed: In
Section II we give an overview about the didactical
teaching and learning concept used in our approach.
Section III provides a collection of requirements and
their technical implementation needed for realization of
the didactical concept. In Section IV we describe an
application of our didactical and technical concept in
computer science teaching and learning. Finally,
Section V summarizes our experiences and provides
and outlook to future improvements and research.

II. TEACHING AND LEARNING CONCEPT

Our final goal is the development of an online
environment for teaching and learning. To find an
adequate solution it is necessary to analyze the situation
of online teaching and learning and the development of
a fundamental learning concept. After these steps are
done, it will be possible to identify necessary parts of a
software solution.

A. Teaching and learning situation

From the time of Johann Friedrich Herbart on, the
didactic situation of teaching and learning can
classically be described by the didactic triangle [23]
(Figure 1).

It covers the interdependencies between teacher,
learner and content. This figure visualizes the
dependencies of the main factors of teaching and
learning. Analyzing the didactic triangle can lead to
different didactical concepts.

Brain research and psychology made large progress
in understanding the human learning process and the
underlying cerebral structures during the last century
[30]. According to these results learning must be
understood as an individual process. A learner builds
his own cerebral web and embeds new knowledge into
his web. The connections between “chunks” of
knowledge are built during the learning process. The

139

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

stronger these usage dependent connections are the
better the fetch of the chunks works.

Figure 1. Didactic triangle

Taking all previous points into account we can
conclude that learning is more successful if students
play an active part in the learning process. The teacher
is not the main person; he is in the role of an organizer
of the learning environment. These results are similar to
the constructivist learning theory.

The student centering is the most important part of
our didactic concept.

B. Demands on the Future Generation

In didactics, demands on the future generations are
often used to classify the content of teaching and
learning. But demands on the future generation also
influence the way of teaching and learning – the
methodology.

Live long learning is one key word in our society.
We must enable our students to learn self-dependently.
They need didactical tools to make new fields of
knowledge accessible to themselves. This is another
motivation (see II.A) for a student centered learning
concept.

Another key word is key skills qualifications / soft
skills [26]. Employers and educators criticize that
graduates are not well equipped with basic general
skills which are necessary for their future professional
life and full participation in society. Standardized
assessments like TIMSS [17] or PISA [20] are tools to
get an objective result concerning knowledge and key
skills qualifications of students. They partially confirm
the criticism.

The resulting demand on the future generation is the
ability to solve problems. All other key skills
qualifications are tesseras to succeed in problem
solving. According to that we identify the main
qualifications to develop a didactical model for
sustainable learning and teaching:

Communication. Communication is the fundament
in our work-sharing society. Students need to practice
communication with others. They also need method

competence in selecting and using communication
tools.

Cooperating with others. Communication is just
the key to cooperate with others. Students must learn
concepts of cooperation like team play, constructive
arguing and taking responsibility. They have to
combine these skills with communication.

The concept of pair programming, for instance,
from the extreme programming approach contains good
ideas of cooperation in computer science tasks [3].

Presenting. Presenting work results becomes more
and more important in all areas of work life. Students
must acquire presentation techniques and get used to
giving presentations in front of an audience.

Improving own learning and performance. As
requirements will change much faster in future, we
must equip our students with techniques of self
dependent learning to give them the chance to adapt to
any kind of changes. They must be able to identify
targets and work towards them.

Acquiring these previously listed skills works best

in social situations. They are all requirements for
problem solving. Problem solving is and was an
important qualification for any generation. Today the
world-wide-web supports finding solutions for many
issues. It is the most comprehensive knowledge base in
history of mankind. But problem solving is more than
investigating the web. Students need to gain an insight
in problem solving strategies. A possible process for
solving problems can be adapted from computer
science. It consists of 4 steps: modeling, processing,
interpreting and validating [9] (Figure 2).

Figure 2. Problem solving

Modeling is necessary to make a problem
processible:

 Analyzing the structure

 Identifying main objects, their properties and
relationships

 Defining operations within a model

A model is a miniworld view of a given problem.

Students need mechanisms like analyzing, structuring
and abstracting to succeed in modeling.

Creating a model is just a first – but important –
step. The model itself is not the solution of a problem –

Learner Teacher

Content

140

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

for example – just as little as an entity relationship
model is the final implementation of an enterprise
resource planning system. Creating and working with
the model helps to structure a problem and find a
solution.

Processing the model leads to a first solution,
which is produced based on the model created in the
previous phase. In computer science, the processing
phase can be an implementation in a programming
language.

Interpreting the solution is a kind of inverting the
modeling. It re-translates the solution from the
miniworld's “language” back to the “language” of the
entire problem. Considering an implementation, we
interpret the result delivered and draw conclusions.

Validating the interpreted solution is the final step.
It helps to identify errors in the whole process and is a
kind of quality measurement. It is necessary to go
through all steps to get a validated solution.

This process of problem solving has a recursive

structure and is valid for problems from many
disciplines. It can be applied to widespread problems;
included smaller problems can be identified and solved
using the same strategy.

Taking all results of our previous analysis into
account, we have to implement a didactical concept for
individual as well as cooperative problem-oriented
teaching and learning in an electronic environment.

C. Structuring the learning process

We will introduce our teaching and learning concept
by describing the structure of the learning process.
Later on we will go into further details of important
phases.

1) Teaching usage of communication tools
As education via online courses is uncommon to

German students, first an introduction to the technical
environment has to be given. Although some students
were used to parts of our environment because of free
time activities, no student was familiar with all tools of
our online teaching environment (see III.D, III.F).

Independently of the tools that should be
introduced, we could observe a huge cooperativeness of
students to help each other in this phase.

2) Introduction to theoretical and practical

concepts of teaching content
Basic concepts of the application domain are

introduced. In case of computer science and web
technologies, important concepts are the OOP (Object-
Oriented Paradigm) [16] and especially the structuring
and modularization of problems. Furthermore, an
introduction to the applications that should be used for
applying the learned theoretical concepts was given
(Squeak [31] and Scratch [18] for beginners and Java
with Eclipse WTP [7] or jMonkey Engine (JME, [25])
for advanced students). In this phase, consequent
feedback from students is extremely important to

achieve a good learning curve. Also direct and fast
support is essential for motivating students.

3) Applying concepts learned in simple exercises
In order to train transfer and problem solving

techniques, the introduced concepts are applied to
simple problems. With supervised implementation of
simple applications, students are forced to think about
the concepts learned.

Although this is an extra phase, it cannot be
completely separated from the previous phase as there
is an overlapping; distinction is done concept and
content based and not because of the timeline of
teaching.

We found two factors which are especially
important for success of this phase. Firstly, there is a
need to avoid a higher degree of frustration at students.
Therefore, consequent encouragement for asking
questions concerning their (probably not working)
solution has to be done. This has to be combined with
fast and clear answers, when support is needed (see also
[22]). Secondly, the possibility to "revisit" a lesson with
watching a video-on-demand containing the lesson is
used broadly.

4) Solving a daily problem single-handed
After applying the concepts learned on simple

problems in a supervised environment, students work in
teams to solve a daily and more complex problem. They
should get a feeling for the complexity of common
domain problems and a rough understanding for the
different modules a structured solution is composed of.
As a real problem of a domain can mostly not be solved
from one lesson to another, about two months are given
for finding a solution. Also the character of lessons
changes. Advisors no longer have an active part, but
answer questions on special problems. Furthermore,
support should not be that detailed as in the previous
phase, but only give a rough solution that then should
be detailed by the students. This way a self dependent
working style is trained.

D. A basic concept for individual and cooperative

problem-oriented teaching and learning

Especially the realization of step 3 and 4 cannot be
covered by traditional teaching. Here our approach for
individual and cooperative problem-oriented teaching
and learning is applied. A concept that fulfills the
requirements is the “I-You-We” approach (Figure 3). It
is a problem-oriented way of teaching and learning with
three stages of individuality [33]. We adopted this
concept to online learning and teaching (see IV.C,
IV.D).

In the “I phase” the students are confronted with a
problem and have to explore the situation by
themselves. They should try to find an individual
solution. In contrast to common teacher centered
education, the students take an active part in the
learning process: They go their own ways and they
make their own decisions and experiences. The

141

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

solutions may not be perfect, but also mistakes help
them to improve understanding. For example, they are
asked to create an object diagram to visualize the
objects and relationships regarding the online chat. The
advisor becomes some kind of coach or tutor.

Figure 3. I-YOU-WE Concept

Cooperation characterizes the “You phase”.
Together with a partner, students rethink their solutions.
Discussing about the problem and explaining their ideas
support this process. They put thoughts into words to
communicate with the partner. This is another active
learning process. Errors can be identified and different
solutions can be combined.

The collaboration with the partner is a kind of dress
rehearsal for the presentation in the whole group and
helps them to overcome their inhibitions.

The two phases of individual exploration culminate
in the common presentation of the students' work, the
“We phase”. Some learners show their ideas to the
whole group with reporting their results and difficulties.
The listeners complete the remarks. As every student
was engaged in the given problem in the two phases
before, he should be familiar with it. The teacher is the
moderator. He leads the discussion and he combines the
gathered work with new content. Discussing and
communicating about a situation deepens the
understanding of the problem and opens each students
mind for manifold approaches.

In our concept there are two possibilities for the last
phase. The presentations can take place in on site
lessons in every school. Then the local teacher
moderates the session. The online alternative uses web
technologies.

We apply this concept also to the on site lessons of

the project. It can also be used in traditional teaching in
different subjects as “islands” of self dependent and
cooperative learning [6]. This can be the beginning of a
new way of teaching and learning.

The duration of units covering the concept reaches
from parts of a single lesson up to projects lasting
several weeks.

III. TECHNICAL ENVIRONMENT

After introducing the teaching and learning concept,
our concrete realization is described in detail.

A. Preconditions

Goal of our project is to support schools in
computer science education [10]. Participation of
students is optional and they can leave the project every
time. The curriculum should be interesting and directed
to students' interests in order to increase their
motivation to deal with and apply computer science
techniques. This means we can communicate content
concerning computer science in a form students
appreciate.

In this project more than 200 students per year from
15 schools participate and are attended by only three
advisors. Three of these schools with about 30 - 40
students can be visited directly; students of the other
schools need to be taught remotely because of the local
distance which is up to 70 kilometers. For online
teaching we use an internet based e-learning approach
[4].

In our online schools local mentoring is needed,
especially for setting up and introducing students to the
online environment. Therefore a teacher of every
participating school is prepared for usage of technical
environment and is taught basics of the lessons' content.

B. Requirements to an online teaching environment

There are manifold requirements for an online
teaching environment (OTE). During the first two years
of our project Informatik@School we gained much
experience in the field of e-teaching and gathered
information for a requirements review. We can
categorize the demands in three scopes: functional
requirements from students, functional requirements
from advisors and technical requirements. The
functional requirements take into account the demands
of our learning concept (Section II).

Functional requirements from students. From
students’ point of view, an OTE has to be a tool easy to
use. In our project students have the chance to
participate in online lessons in all places. Consequently
an OTE should be available at school and at home. It
has to combine several single applications in just one
user interface and should cover several use cases.

We offer live online lessons. During these lessons
students should see advisor’s desktop and hear his
voice. Students should also have the possibility to ask
questions during a lesson (see II.B). This requires
unidirectional video and bidirectional audio
transmission. To arrange an almost face-to-face
learning situation for our students it would be nice to
have a web cam transmission of the advisor.

During online lessons, students work with their own
project files. These files are normally stored on their
local PC, but in our use case more flexibility is needed
as students may start a project at school and finish it at

142

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

home. To enable seamless portability of files, an OTE
should offer an online storage solution for students’
files called data pool. This data pool has to be
accessible from anywhere and should be independent
from the computer students currently use. The online
storage solution is also important for collaboration of
students (see II.B). We want to encourage our students
to exchange their ideas and work together in groups
(see II.B, II.D). So they need the possibility to provide
access to their files for other students. An OTE should
offer a simple right management solution for the data
pool.

The cooperation between students can be real or
virtual. For virtual cooperation we need forums and
online chat functionality. Some students do not have the
chance to participate in the live online lessons; other
students want to revisit a lesson. For these participants
we should offer video streams of all online lessons.

Functional requirements from advisors. The
requirements of communication during and after online
lessons are also valid from advisor's view. The live
audio communication should be under advisor´s
control. He manages the voice rights and grants voice
privileges to students after a request. This is a way to
offer the possibility of asking questions and giving a
lesson in a controlled way.

Many questions of students can be answered easily
without watching what students have done at their PC.
But especially in the phases in which student’s work on
larger projects (see II.C.3, II.C.4), questions and
problems become more and more complex. In these
situations qualitatively good and fast support can only
be given if the advisor can see and also access students’
desktop. The advisor also needs a storage solution for
his files. He has to publish project files and scripts for
all students.

An OTE has to provide a tool where students’
exercise solutions can be collected. It should be a
central repository where the advisor can access the files,

correct them and provide some comments for the
students.

Technical requirements. Beside the functional
requirements of the users we also have to keep the
technical requirements in mind. Especially the available
hard- and software equipment at schools can be a
limiting factor.

The client environment is very heterogeneous.
Students use different PCs with different operating
systems at school and at home. We can meet with this
obstacle by using portable client software on students’
side.

Also security restrictions at school have to be faced.
The client software has to run with standard
permissions. Network applications have to use standard
ports.

Taking all this into account, a web application is the
best solution to fulfill the technical requirements.

Furthermore the client application needs a user-
friendly installer to support PC administrators at
schools in the best possible way and facilitate
installation for students at their PCs at home.

C. Technical Environment at schools

Main limitation in designing the technical
environment was a heterogeneous technical
infrastructure at the participating schools. We had to
consider very different hardware configurations ranging
from up to date computers to PCs that are aged more
than 10 years. The same applies to the used screens, i.e.
we needed to be compatible to quite low resolutions on
students' side. Additional to the hardware, already
installed software on the computers had to be regarded.
On the one hand, schools work with different operating
systems (and some schools even use very special
configurations of an operation system). On the other
hand, compatibility of our software to installed security
software needs to be provided. Especially schools have
very hard restrictions concerning security which leads
to school environments where students cannot save files

Figure 4. Overview of first topology

143

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

or just have very restricted access to the internet (which
we need to use to provide communication).
Consequently, we had to realize a platform spanning
solution on client side.

As we are in the second run of our
Informatik@school project meanwhile, we have a first
implementation of this software (Figure 4) which was
used in the first term and an improved second version
which we are using currently (Figure 5). Both versions
will be presented in the following and the lessons
learned during usage of our first version will be
discussed as these lessons lead to the implementation of
our second version.

D. Online Teaching Environment Version 1.0

To provide an audio communication channel during
online sessions, we decided to install a VOIP (Voice
Over IP) environment. After evaluating different
systems, our decision fell to the free application (for
non commercial entities) “Teamspeak” [32]. This
solution is available on common operating systems like
Microsoft Windows, Apple OS X and Linux. It
provides a spanned solution for the most configurations
on the client side. Due to the web based administration
control panel and the highly scalable user permissions
system, it is very flexible and comfortable to
administrate the accounts in our server environment.
During the online course all students hear the advisors
voice and we can grant a student the right to talk if he is
requesting voice for a question. All other participants in
the online course can hear his question.

Screen content of the advisor's computer is
transmitted via a VNC-server [27] to the VNC-clients
on the classroom side. Students can watch the
transmission live on their own screens or on a video
projection in the classroom. Accessing the transmission
is possible via the VNC server's integrated web service.
So a connection using a java-capable browser is

possible, which avoids installing a VNC client on
classroom computers.

Online lessons are recorded containing advisor's and
students' voice as well as screen content of the advisor.
It is saved in the windows media format WMF [36]
which are provided as on-demand video streams. Video
streams are accessible on our website and students can
use them for postprocessing the online lessons at home.

Resources of the online lessons like PDF [1] files of
presentations or programming libraries are
downloadable through our website. So they are readable
and presentable for any later references.

As data exchange tool between students and the
advisors at university, we use a WebDAV [35] system
in this version. WebDAV is an extension of the
Hypertext Transfer Protocol (http). It allows
bidirectional file transfer. The WebDAV service is
accessible with login and password through the Internet
Explorer [13] by entering the URL [34] of our
WebDAV server. WebDAV folders are mapped to the
file explorer of windows automatically. So this
procedure presents the folder structure in a well-known
way.

All necessary files of each lesson (WMF, PDF,
project resources) are also stored on the WebDAV
system; so the online lessons can be reused later for
reference. Consequently the WebDAV system is a
central storage unit for all course resources.

Questions occurring after a lesson can be asked by
email or phone. Especially questions addressing
students' problems with their current implementation
are mostly asked by email as students can send their
current source code in the attachments or as a link to
their WebDAV folder.

E. Lessons learned

Almost every school network has a high bandwidth
asynchronous DSL [29] connection to the internet,
which is mostly secured by a firewall [21]. Although

Figure 5. Overview of the eEE topology

144

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

there is no standardized bandwidth of schools' internet
connection, the minimal configuration of approximately
1 MBit/s downstream was sufficient to receive voice
and screen content transmission during our online
sessions without latencies.

The upstream bandwidth of 128kBit/s with
asynchronous DSL connections was adequate to receive
students' questions during online lessons in good
quality. Additionally, it is desirable to switch to the
computer of a certain student in order to help him
solving a problem with his development environment or
source code during the online lesson. Our didactical
concept could be realized better if this kind of feedback
would be available, too.

In the beginning of the project most common
problems in initiating connections between schools and
our server came up from different policy restrictions of
the firewalls installed at schools. As long as there is a
stateful firewall [21] it is not necessary to open any
incoming ports. For more restrictive firewalls some
configuration effort has to be done to enable a problem-
free transmission.

Students had no basic problems concerning the
usability of our environment. Switching between the
windows of several stand alone applications (Web
Browser Window for WebDAV, Web Browser
Window for VNC video transmission, Teamspeak) was
a bit unpleasant sometimes.

Based on our experience during the first run of the
project "Informatik@School", we designed and realized
an all-embracing solution. This new environment helps
to minimize client side software installation effort by
using web services. Furthermore it offers a single user
interface for all services to avoid switching between
several applications.

F. eEE – The next step in online teaching

Finally, the developed system for online teaching
called eEE (eEducation Environment) is presented and
discussed. In comparison to the version presented in [1]
and III.D, progress regarding of some important
features could be done. Firstly the functionality offered
to the user could be integrated into one single web
application which facilitates and accelerates the access
to the available functionalities and makes learning and
teaching more comfortable. Furthermore we succeeded
in implementing the access to student's desktop by the
advisor, which improves the quality of teaching a lot.

1) Conceptual layout of eEE
We decided to deal with the requirements

mentioned in Section III.B by creating a web
application. This application is deployed on a dedicated
server which is connected to the internet and provides
the server components of a client-server architecture.
Students and advisors log in to this environment by
login name and password through a web browser. eEE
can be accessed from all schools and from students’
homes.

Figure 5 gives an overview of the technical aspect
of the architecture of our eEE. Students' computers are
placed in the top part of this diagram. Students can be
connected to the internet directly or through a local area
network using a router. When a connection to our
server is established and users are identified, students
can use all services provided by our server software like
audio conference, desktop transmission or functions
independent of online lessons like chat or forums. In
comparison to the first version (see 3.5.) now all
services are integrated in one single environment.
Regarding the additional functionality the advisor
needs, it is valid as well. He just needs to connect to the
server to give a lesson or use other features the software
is providing.

eEE itself is now based on the tool Moodle [19].
Moodle is a learning management system focused on
course management, but lacks most features needed for
live online teaching. It provides a widespread plugin
structure, i.e. some components can be added or
exchanged easily without having any effect on the rest
of the system. We developed a new plugin that supports
online lessons to adapt Moodle to our needs. As we
used this plugin structure we established a loose
coupling. Updates or other extensions do not interfere
with our plugin and vice versa, i.e. we are not restricted
to one special version of Moodle.

With Moodle and the additional plugin for the
online lesson we have an integrated concept for online
teaching and a direct and facilitated access to all the
functionality is possible.

2) eEE for students
As already mentioned, in this version of our online

teaching system the entire functionality is offered in
one single system. Other systems are not necessary
anymore.

At first, students need to select a course to login.
After authentication, students can select many different
options and have access to all working materials like
scripts etc.

Now they can download these resources or open
them in their browser. Additionally communication
tools like a forum or a chat are available. This all time
available communication platform raises collaboration
between students and establishes a community in our
project, although students may be separated by
potentially big distances.

Students often need to switch their PC and working
place (they may work at home, at school or meeting at a
team member). Having the right data at the right
moment on the right place was not easy to organize and
handicapped the work a lot. Thus in this version we also
offer an online storage which is accessible with our
application. Students can upload and download files in
their personal folder. They can also share files with
other students; this sharing is based on the accounts, i.e.
for every file or folder that should be shared the
privileges to access this file or folder can be given to

145

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

other students individually. That way teamwork in
small groups is facilitated a lot.

The features presented so far deal with the
administrative part of our environment, i.e. with the
distribution of data and students' communication
between the lessons. Lessons are available in two
modes: students can participate in currently given
online lessons or they can watch videos of former
lessons. All lessons are recorded with sound and
desktop of the advisor. These videos are available as
streams and can be watched directly in the students'
browsers. In older browser versions additional plugins
need to be installed to play these video streams. Current
versions of Internet Explorer or Mozilla Firefox, for
instance, can start the videos directly as necessary video
plugins are already integrated. To support a broad
variety of systems, also links are given to access each
stream from any potential player.

Figure 6. Screen of students during online lessons

While an online course is given by an advisor,

students can participate without prerequisite software

installations (see Figure 6). In order to minimize

requirements and to guarantee portability between

systems, all components needed for online lessons on

client side are based on Java Applets [12]. First,

students can watch the advisors desktop. This is done

via VNC streaming [27] and a Java client on students’

side which is started automatically as an applet when

students participate in an online lesson. Using the same

approach, students can see the advisor as a webcam

stream is delivered to the students. Lastly, students can

listen to the advisor. This is managed using an online

conference tool called Java Voice Bridge [14] which

was developed by Sun. We integrated this tool and

implemented a new user interface. Joining an online

course, a student also joins the corresponding audio

conference. This happens automatically so that

students do not realize it. By default, students have no

voice privileges, i.e. they can listen, but their voice is

not transmitted to the other listeners. Therefore,

students also have a button to ask for voice privileges.

When this permission is granted by the advisor,

students can ask questions; all other participants can

listen to that question and the advisor's answer.
As we teach computer science, software on students'

side is needed (currently JDK [8], Eclipse [11] and
Scratch [18]). To provide this software, we offer an
installer created with InnoSetup [28]. This installer also
contains a VNC server which is needed for the optional
access of an advisor to a student's desktop.

3) eEE for advisors
After discussion of the students' options in our

system, the features for the advisors are presented. As
for the students, in this version all features can be
offered on one single platform which makes teaching
much more comfortable. Furthermore we succeeded in
implementing the access to students' desktops for the
advisor during an online lesson. This was one of the
requirements regarded as very helpful.

First, advisors can create courses. A course
complies with a subject in school in our understanding.
Courses may have one or more advisors who have the
privileges to add scripts or new videos of lessons.
Furthermore they can initiate online lessons.

After an advisor started an online lesson, his
desktop is transmitted to the students automatically.
This happens with a VNC client that streams the
desktop to all registered clients. If a student participates
in an online lesson, this registration is done
automatically. The advisor can observe which students
are currently visiting the lesson (see Figure 7).

Figure 7. Screen of advisor during lesson

Via the same interface, the advisor is informed
when students ask for voice privileges. Then he is able
to grant this privilege to one or more students. He can
also revoke this privilege individually after answering
the question.

A feature that is extremely helpful, but technically
hard to implement is the access to the students' desktop
for the advisor during an online lesson. It is helpful as
problems students currently have can be identified more

146

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

effective if the advisor can really have a look on
students' manuals. Consequently frustration for students
is diminished. Usually access to students' desktops is
forbidden by security restrictions. Furthermore, most
students' PCs are placed behind some firewalls and/or
routers and they do not have an own public IP address
that could be addressed. Therefore, there is only one
solution to provide this feature: the connection has to be
established from the student's side, but without any
action that needs to be done by the student himself. The
advisor is the initiator.

If an advisor wants to access a student's desktop, a
flag in a database is set. The database containing that
flag is polled periodically from all participating clients.
If this flag is set, then the student's browser starts a
VNC streaming server and streams the students desktop
to the advisor. As the connection is established from
inside the student's network, there are no problems with
firewalls. When the connection is not needed anymore,
the flag is reset in the database and the connection is
closed from the student's side. So there are no security
gaps remaining.

4) eEE User interface
Finally we present the eEE user interface integrating

the entire functionality. Layout for students, advisors
and administrators is quite similar to facilitate usage
with a clearly defined structure; the workplace is
divided into three columns (see Figure 8):

Figure 8. Screen of the workplace

 The left column offers a list of different
activities and navigation possibilities. It is
classified into "Course Menu", "Data
Manager", "Participants" and "Administration".
With the "Course Menu" the functions for the
online-teaching are offered, as for example the
courseware, the online session or the video
recording. The "Data Manager" handles
uploads and downloads of data files together
with sharing of files between users. An
overview about who is attending the course is
given by the entry "Participants", whereas
"Administration" offers general configuration
possibilities.

 The middle column displays the content of each
navigation topic. This can be all currently
available scripts or, during an online lesson, the
advisor's desktop.

 The right column contains additional
information like news or next appointments.
During an online lesson, the web cam shows
the advisor.

This layout structure is always the same, whereas

the offered activities in the left column change due to
the role a person is logged in with. For instance, an
advisor has the possibility to start an online lesson
whereas students have the possibility to participate in a
running lesson.

IV. REALIZING THE CONCEPT WITH COMPUTER

SCIENCE CONTENT

A. General organization of our project

We offered two courses for students aged between
14 and 19. While younger students participated in a
Squeak eToys [31] or Scratch [18] project, the older
ones took part in a Java (e.g. [8]) project using the
Eclipse developing framework [11]. In every group we
had approximately 100 students at the beginning.

Due to introduction of a new curriculum, students
participating in the Squeak / Scratch group already had
some basic knowledge concerning OOP (Object-
Oriented Paradigm) [16] and control flow modeling.
The members of the Java group had no preliminary
knowledge in computer science. In the face of the
different precognition levels, the teaching concept
described above was applied to both courses.

We offered one session for every course in two
weeks at local schools which could be supervised
directly. For online schools, an hour every week with
one repetition was offered, i.e. every second week was
a repetition of the preceding week. As we had different
time slots at repetitions, more online schools could
participate.

B. Preparation of teachers

Although most courses are held online there is at
least one teacher in every participating school for
supporting the students on site. On the one hand this
assistance is necessary because of the differences in
software installations, network environments and rights
management. On the other hand technical problems
concerning the infrastructure in schools during an
online lesson can be solved much easier on site which is
an important factor for success of an online teaching
project ([37]). In order to enable teachers to deal with
these problems, they were prepared in a one day face-
to-face course at university.

First the course concept and the technical
preconditions were introduced to them. In the second
part teachers got to know the technical environment and

147

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

the installation of the necessary software products. The
final and most extensive section of the in-service
teacher training addressed the computer science content
of the project.

Brief presentations gave a first overview about the
aims. The content of our lessons was introduced and
teachers dealt with the exercises of the first third of the
online courses.

C. Courses with Squeak / Scratch

The curriculum for our younger students
emphasizes basic, long lasting computer science
concepts. As these students already have basic
knowledge in Object Oriented Modeling (OOM) we use
this as a connection point. We want to improve their
knowledge in OOM and introduce object oriented and
general programming concepts. To keep motivation
high we have to combine the concepts with an attractive
topic. The last two years we have chosen the field of
computer games. All students have experience with
computer games and we offer the possibility to look
behind the scenes.

We used Squeak eToys during the first year and
Scratch in the second year. Both development
environments are based on Smalltalk [15] and offer an
aged-based user interface for (object oriented)
programming.

We apply our concept presented in 2.3. and 2.4. to
our courses. During the first lessons we introduce the
technical environment to the students together with
basic computer science content. This makes the
introduction of the tools more target-oriented. For
instance, students have to download a draft of an
animation film project from the central file repository;
they “program” their own animation film and upload it
as an exercise. The advisor provides a comment in the
eEE and students can retrieve this comment. During the
online lessons students use audio communication and
chat to interact with the advisor. We observed no
problem of the students concerning usage of eEE.

Also during introduction of new computer science
concepts we try to make the online lessons student
centered. They are always called upon to try out new
concepts. They have time to work on their own and
asked to give feedback. Always students have to
present or describe their solutions. We also use
exercises where students have to cooperate. For
example, they have to model the concept of a car racing
simulation and write a to-do list.

We inure students to be in a more active role during
lessons. So the step to the third stage of our concept
(II.C.3, II.D) is not that big. In this phase tasks become
more complex and students have to apply and acquire
knowledge. One of the tasks is to develop their own
version of the arcade game “Pong” [24]. We offer a
version they can use for playing but they cannot look
behind the scenes. Each student has to develop a model
of the game (I phase). He discusses and improves the

model together with a partner (You phase). The “pair”
implements the model together. Some of this work is
done during online lessons. Students can ask the advisor
for help if they have problems. They continue at home
and ask for feedback using eEE tools. Finally the
groups present their results (We phase). The
presentation can be offline in their class or online with
all students. The problems students solve in this phase
help them to acquire new computer science concepts
related to their present knowledge, i.e. they discover
different kinds of condition-controlled loops and learn
to use them. The kind of working according to II.C.3,
helps students to improve their key skills qualifications.

Figure 9. Student's solution – Video player

In the fourth phase (II.C.4) students work in a
project for about two months. One of the problems they
have to solve is the development of a video player in
Squeak (Figure 9). The task is constructed in a way that
teamwork is necessary. Students organized themselves
in teams with two or three members. They were
responsible for the whole project management. Most of
the work is done at home. We offer online lessons in
this phase as well. Students have the chance to ask
questions. The access to students’ PCs is very helpful
for the advisor so he can identify problems much faster
and provide more precise help. In the last runs of our
project, students' solutions partially exceeded
requirements. We recognized that students really
cooperated and applied previous learned computer
science skills as well as soft skills.

D. Courses with Java

For students in higher grades the Java course is
offered. Goal of this course is to give an introduction
into computer science contents through usage of
professional tools and concepts.

In the first phase (see II.C.1), students need to get to
know the communication tools which in our case is eEE
(III.F). There are 3 sections that are especially
interesting for students at the beginning:

 Resources that contain teaching material can be
downloaded

148

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

 Online lessons can be participated through the
system

 Communication functionality to the advisors
and other students is provided by chat, forum,
private messages etc.

Students get introduced to the environment by their

teachers after they visited the preparation course. This
introduction is mostly quite short in time as many
students are used to work with some kind of electronic
communication tools. Therefore, they succeed by
mainly following their intuition.

In the second phase, students are taught theoretical
and practical concepts of the course content. In this
course, they learn basic OOP concepts like information
hiding, modularization or generalization /
specialization. These theoretical concepts are directly
used in the 3

rd
 generation programming language "Java"

in order to visualize them and show the effects. Java
code is created in the professional IDE Eclipse [11]. Of
course, a basic introduction to such a powerful tool also
must be given to the students. All this content is also
taught remotely in the online courses, i.e. we are just
using our environment eEE to communicate to the
students as advisors.

In the third phase, students practice concepts they
have already learned during the second phase in order
to raise the learning effect. Therefore, small examples
are programmed which include a “HelloWorld”
program or some kind of Banking Account example. In
this example, for instance, students need to program an
account at a bank as a class which fulfills several
requirements. It needs to provide data fields for the
account number or the account balance, which should
be hidden in the implementation (information hiding).
Furthermore, different kinds of sub-accounts should be
implemented for families or companies (generalization /
specialization). While implementing these small
examples, students mainly reflect actively what they
learned before and this deepens their understanding.

In the last phase, students should use all the contents
of the course so far to manage one big problem.
Typically, they have 8 to 10 weeks to provide a
solution; teamwork is favored a lot in this phase. As an
example, we wanted the students to implement a multi-
user MP3 player which could be controlled through
many workstations. Before, we taught them the usage
of the web framework JSF [5] with the programming
tool Eclipse WTP [7]. Figure 10 presents a screenshot
of one of our students' solution. Different paths to the
folders containing music can be configured.
Furthermore, different strategies can be chosen to
merge different playlists from different users. It is
possible to merge them having equal rights or setting
priorities as well as to configure the number of songs
that needs to be waited until a song can be repeated.

In the end, students had to present their solutions in
order to get feedback from other students or (through

watching other solutions) getting more insights what
could have been solved more elegantly in their own
solution.

Figure 10. Multi-user MP3 Player

Altogether, we observed a very high level of the

provided solutions. Furthermore, the students' ability to
structure and solve problems was obviously very
considerable and they only needed very little help to
build up own solutions.

V. EXPERIENCE OF REMOTE TEACHING

A. Technical Environment

Main goal of a technical environment used in a
school project must be usability. We increased usability
a lot by designing and developing eEE. Using this
software, most obstacles for students from a technical
point of view were eliminated. Additionally, it enables
us to realize the didactical concept in a more
appropriate way.

B. Preparation and Organization of Online Teaching

The in-service teacher training turned out to be an
excellent preparation of the teachers who care for the
students in the “online schools”. They are integrated in
the project from the beginning. Most of them take part
in the online lessons and some also offer additional
mentoring for the students.

Together with the teachers we organize information
meetings in every school. During these meetings we
introduce our courses to all interested students. This
face-to-face event is very important for the students to
meet their online advisors on site.

The students enrolled for the courses using an
online form on our website. We collected all
registration data in a database; this data was used to
create accounts automatically.

149

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

It is not possible to bring all online students together
on one fixed day. We offer each online lesson twice on
two different weekdays. The video streams of recorded
lessons can be used by students who cannot take part in
online sessions; these streams are also used frequently
to revisit lessons. Additionally students can ask
questions by email, phone, chat or forum.

After the first third of the course we visit all online
schools to intensify the personal contact with the
students. This helps to hold up motivation and it is a
useful feedback for us as online advisors.

C. Assessment of Online Teaching

As mentioned above up to three schools take part in
the project in on site lessons. These groups play an
important role in the online concept. Before an online
lesson is held we use the corresponding on site lesson
as a kind of dress rehearsal. The advisor receives direct
response from the students and recognizes problems in
the learning process. These are important experiences
for the online lesson.

To nearly all students our student centered approach
described in the “I-You-We” was completely new.
They mostly had no experience in solving more
complex problems on their own or in cooperating with
a partner during a lesson. But after some lessons we
observed in the on site classes that students started
working together. Although each student had his own
computer they sat in front of one computer in groups of
two or three students. They started to discuss about the
exercises and began to cooperate. After planning a
strategy for a solution all students of a group returned to
their own computer and started their work on a sub-
problem.

In online classes this process took much longer. In
the beginning it was harder for them to cooperate in
small groups during online lessons. But the less
information they received from the online teacher the
more self-dependent they became. In the end of the
third step “Applying concepts learned in simple
exercises”, described in II.C.3), there was nearly no
difference between the two groups. Some online
students described their way of cooperation during a
meeting at their school. They explained that they also
met in their spare time to solve the exercises in groups.

The on site classes can also be compared with the
online classes directly. At the moment this is more an
informal comparison than a statistical assessment. The
number of participants is too small to receive valid
results. A statistical evaluation is already planned for
the next year project.

But also the subjective experiences show interesting
details.

The solutions of exercises show no significant
differences in quality. Although we expected a
discrepancy in speed of learning between the two
groups we could not confirm that. The withdrawal rates
for the volunteer courses do not differ.

“Online students” had no problems using our
learning environment. Some students seem to have
stoppages asking questions during the lessons using the
voice communication tool. They mostly use the chat
function.

VI. CONCLUSION AND FUTURE WORK

The technical concept of our e-learning environment
follows the content and didactical concept (“I-You-
We”). Each component of our infrastructure plays a
dedicated role in teaching and learning. We use server
based web services to minimize client side problems.
Based on our experiences, we integrated bidirectional
real time audio, web cam and screen content
transmission and file access in one web based e-
learning environment as a Moodle [19] extension.

Our experience shows that student centered learning
is successful in online teaching. To achieve this we had
to lead the students from a more teacher centered to a
self dependent way of working step by step. Our
technical environment builds the base for
communication and cooperation of students among
each other and with the online advisor.

Nevertheless, face-to-face contact between advisors
and students should not be underestimated. It is
necessary for students to hold up motivation and to get
personal feedback. To lessen this disadvantage we
implemented web cam transmission of the advisors
themselves during online lessons to personalize the
contact between students and advisors.

Also an on site contact person is very helpful to
solve problems concerning local conditions. These local
teachers are involved in the whole project, accompany
the students and give feedback to the online advisors.

In future, we plan to adapt our teaching and learning
concept in combination with our technical environment
eEE to other domains; for instance, university language
courses or further education at operational level in
companies can be realized with our approach.

REFERENCES

[1] M. Goetz, M. Ehmann, S. Jablonski, and M. Igler,

"Experiences in Online Teaching and Learning", First
International Workshop on Virtual Environments and
Web Applications for e-Learning, with ICIW 2008,
IARIA, Athens, 2008.

[2] Adobe PDF, http://createpdf.adobe.com, last revisited
2009-05-11.

[3] K. Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley Longman, Amsterdam, 1999.

[4] Z. Berge, "Computer - mediated communication and the
online classroom in distance learning", Computer-
Mediated Communication Magazine, Vol. 2, Number 4,
Hampton Press, Cresskill (NJ), 1995.

[5] H. Bergsten, JavaServer Faces, O'Reilly Media, 2004.

[6] D. Bocka, C. Miller, and M. Ehmann, “Teaching and
Learning Mathematics with Dynamic Worksheets”,
International Journal of Continuing Engineering

150

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

Education and Life-Long Learning (IJCEELL), Volume
18, Issue 5/6, Inderscience Publishers, Geneva, 2008.

[7] N. Dai, L. Mandel, and A. Ryman, Eclipse Web Tools
Platform. Developing Java Web Applications, Addison-
Wesley Longman, Amsterdam, 2007.

[8] B. Eckel, Thinking in Java, Prentice Hall, Upper Saddle
River (NJ), 2006.

[9] M. Ehmann, “Roboter zum Anfassen und virtuell –
Problemlösendes Arbeiten im Informatikunterricht“, in
Spektrum – das Wissenschaftsmagazin der Universität
Bayreuth, Universität Bayreuth, Bayreuth, 2006.

[10] D. Frayer and L. West, Creating a new world of learning
possibilities through instructional technology,
http://horizon.unc.edu/projects/monograph/CD/Instructi
onal_Technology/Frayer.asp, last revisited 2009-05-11.

[11] S. Holzner, Eclipse, O'Reilly Media Inc., Sebastopol
(CA), 2004.

[12] K.C. Hopson and S.E. Ingram, Developing Professional
Java Applets, Sams Publishing, Indianapolis (IN), 1996.

[13] Internet Explorer,

http://www.microsoft.com/windows/products/winfamily

/ie/default.mspx, last revisited 2009-05-11.
[14] J. Kaplan, jvoicebridge,

https://jvoicebridge.dev.java.net, last revisited 2009-05-
11.

[15] A. Kay, "The Early History of Smalltalk", History of
Programming Languages Conference (HOPL-II),
Preprints, Cambridge (MA), 1993.

[16] J. Keogh and M. Giannini, OOP Demystified, McGraw-
Hill/Osborne, Emeryville (CA), 2004.

[17] E. Klieme and J. Baumert, TIMSS – Impulse für Schule
und Unterricht, Bundesministerium für Bildung und
Forschung, Bonn, 2001.

[18] Massachusetts Institute of Technology – Media Lab –
Lifelong Kindergarten Group, Scratch,
http://scratch.mit.edu, last revisited 2009-05-11.

[19] Moodle, http://docs.moodle.org, last revisited 2009-05-
11.

[20] OECD, PISA Results, OECD, 2000, 2003, 2006,
http://www.oecd.org, last revisited 2009-05-11.

[21] B. Oberhaitzinger, H. Gerloni, H. Reiser, and J. Plate,
Praxisbuch Sicherheit für Linux-Server und Netze,
Hanser Fachbuchverlag, München, 2004.

[22] R. Palloff and K. Pratt, Lessons from the Cyberspace
Classroom: The Realities of Online Teaching, Jossey-
Bass, San Francisco (CA), 2001.

[23] W.H. Peterssen, Lehrbuch Allgemeine Didaktik,
Ehrenwirth, München, 1983.

[24] Pong Arcade Game, http://en.wikipedia.org/wiki/Pong,
last revisited 2009-05-11.

[25] M. Powell, jMonkey Engine User's Guide,
http://www.jmonkeyengine.com/wiki/doku.php?id=user
_s_guide, last revisited 2009-05-11.

[26] Qualifications and Curriculum Authority, The key skills
qualifications standards and guidance, Qualifications
and Curriculum Authority, London, 2004.

[27] Real VNC, http://www.realvnc.com, last revisited 2009-
05-11.

[28] J. Russell, InnoSetup,
http://www.jrsoftware.org/isinfo.php, last revisited
2009-05-11.

[29] A. Sikora, Technische Grundlagen der
Rechnerkommunikation, Fachbuchverlag Leipzig, 2003.

[30] M. Spitzer, Lernen. Gehirnforschung und die Schule des
Lebens, Spektrum Akademischer Verlag, Heidelberg,
2006.

[31] Squeakland, http://www.squeakland.org, last revisited
2009-05-11.

[32] Teamspeak, http://www.goteamspeak.com, last revisited
2009-05-11.

[33] V. Ulm, Objekte in Grafiken, Z-MNU Universität
Bayreuth, Bayreuth, 2003.

[34] W3C, Architecure domain, Naming and Adressing:
URIs, URLs, …,
http://www.w3.org/Addressing/#rfc3986, last revisited
2009-05-11.

[35] WebDAV, http://www.webdav.org, last revisited 2009-
05-11.

[36] Windows Meta File,
http://www.microsoft.com/windows/windowsmedia/de/f
ormat/default.aspx, last revisited 2009-05-11.

[37] A. Zucker and R. Kozma, The Virtual High School:
Teaching Generation V, Teachers College Press, New
York (NY), 2003.

151

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/

