
Dynamic Service Synthesis on a Large Service Models
of a Federated Governmental Information System

Riina Maigre1, Peep Küngas2, Mihhail Matskin3,4, Enn Tyugu1

1Institute of Cybernetics at Tallinn University of Technology, Tallinn, Estonia
2SOA Trader, Ltd, Tallinn, Estonia

3Royal Institute of Technology – KTH, Stockholm, Sweden
4Norwegian University of Science and Technology – NTNU, Trondheim, Norway

riina@cs.ioc.ee, peep@soatrader.com, misha@imit.kth.se, tyugu@cs.ioc.ee

Abstract

In this paper we describe our experiments with large
syntactic Web service models of a federated governmental
information system for automatic composition of services.
The paper describes a method for handling syntactic service
models for synthesis of compound services. The method’s
implementation as a visual tool developed in software en-
vironment CoCoViLa is explained on an example from e-
government domain. Given a specification and a goal, the
tool automatically synthesizes a program that generates a
required composite service description in BPEL or OWL-S.

Keywords: automatic service composition; large service
models; e-government services.

1. Introduction

The present paper describes experiences of composition
of Web services on very large syntactic Web service mod-
els, and it is an extended version of the paper [1] at the 3rd
International Conference on Internet and Web Applications
and Services. The lessons learned presented here are based
on a work with software developed for providing services
to citizens by a number of governmental agencies. A fed-
erated e-government information system [2], complying to
service-oriented architecture, has been developed in Esto-
nia during the recent years. A syntactic service model of
a part of the system exists and can be used for automating
composition of new services. However, this process is still
too complicated for end users and can only be useful, first
of all, for software experts developing and maintaining the
system.

Developing the federated information system has been a
complicated task that has required cooperation of a num-

ber of government agencies that already provide services
for citizens. Analysis of the system has resulted in a uni-
fied service model which includes about three hundred of
atomic services [3], including a number of rather primitive
data transformers needed for interoperability of databases.
Totally more than a thousand atomic services are available,
which could be included in the service model and com-
posed into complex services. To determine a structure of
a new complex service we are going to use a syntactic ser-
vice model that describes only inputs and outputs of atomic
services and includes references to the semantics of these
services.

Although there does not seem to be any literature avail-
able considering usage of automated composition tools
for federated governmental information systems, many EU
countries have started their public sector semantic interop-
erability initiatives.

The primary aim of this work is development of a tool for
automatic composition of Web services that involve atomic
services from several governmental institutions. It is easy
for the end user to get a service from a governmental agency
through the agency’s portal. Operations get more compli-
cated when one needs to use services from several agencies,
i.e., from multiple providers. Currently an end-user has to
get information from one provider and forward the results
manually to the second provider’s service. The user has to
know exactly which data has to be passed from one portal
to another.

Manual construction of a new complex service from
atomic services is a challenging task even for the soft-
ware developers, because service descriptions from differ-
ent providers are published on different servers and the
number of possible inputs, outputs and their combinations
is large. Our tool is intended to automate this process for
software developers. To achieve our goal we use a visual
programming environment CoCoViLa [4] that uses auto-

181

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



matic synthesis of algorithms and can generate Java code
from both visual and textual specifications. The syntactic
service model is presented as a specification to the tool de-
veloped in CoCoViLa. For each requested service, a goal is
given that specifies the input and output data of the service.
From this information, an algorithm of the service is com-
posed, and a service description is generated in BPEL (or in
OWL-S, if requested).

The paper is structured as follows. The process of ser-
vice composition is described in Section 4 and Section 5 af-
ter discussing the federated e-government information sys-
tem and its service model in Section 2 and Section 3. Re-
lated work is presented in Section 6 and concluding remarks
in Section 7.

2. X-road

The central part of Estonian e-government information
system is the infrastructure, called X-Road, guaranteeing
secure access to nearly all Estonian national databases over
the Internet [2]. It is the environment through which hun-
dreds of services are provided to the citizens, entrepreneurs
and public servants on the 24/7 bases. These services are
available through domain-specific portals to a variety of
user groups (citizens, entrepreneurs, public servants). All
Estonian residents having a national ID-card can access
these services through X-Road. The number of requests per
month exceeds currently 3 million. For brevity we are go-
ing to call the whole information system from now on as
X-Road.

Figure 1. X-Road connects public and private
information service providers.

Integration of databases developed by different develop-
ers at different times has been a difficult task that started
in 2001 and has resulted in a widely used system at the
present. During this time a number of standard tools have
been developed to enable the creation of e-services capa-
ble of simultaneously using the data from different national
and international databases. These services enable to read
and write data, develop business logic based on data, etc. In
X-Road data exchange is handled by SOAP messages, Web
services are described in WSDL and service descriptions
are published at a UDDI repository.

Figure 1 shows the simplified structure of Estonian in-
formation system based on X-Road. As demonstrated in the
figure, X-Road connects besides public databases also some
private ones. These are, for instance, main banks and some
privately owned infrastructure enterprises. Some services
are provided by the X-Road infrastructure itself that in-
cludes PKI infrastructure, help-desk, monitoring, etc. Users
connect to the system through portals where they can exe-
cute predefined services. All queries have to be done one by
one, even if semantic connections exist between services.

Figure 2. X-Road service model.

This large system is continuously changing and also its
maintenance requires often new software updates. When
new organization is joining the X-Road it means that they
will make their services available through X-Road and/or
need to access services offered through the X-Road. In the
former case number of new services will be published and
in the latter case specialized queries may be needed. This
accentuates the problem of automation of composition of
services on the service model of X-Road.

182

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



Figure 3. Zoomed-in part of X-Road service model.

3. X-Road service model

Analysis [3] of already operational X-Road resulted in a
service model that included about 300 atomic services and
about 600 unique references to semantic resources. These
services have been annotated and descriptions of their inter-
faces constitute the syntactic service model shown in Fig-
ure 2. This figure shows a visual representation of the whole
service model visualized by Java graph editor yEd. It is a
large graph where nodes are atomic services and resources.

A small part of the model shown by a rectangle in Fig-
ure 2 is enlarged in the in Figure 3. List in the left pane
of the user interface fragment shows a scrollable list of all
resources. One can see atomic services as rectangles and
inputs and outputs as circles (e.g., GraduationCertificate,
Student, etc.) connected to services. The highlighted re-
source GraduationCertificate is input for the atomic ser-
vices select 4 1 5 and ehis.kod loputunnistus, and output
for the service ehis.loputunnistus. This is shown by partic-
ular arrows. Size of a circle of a resource shows its relative
importance (connectivity to services). A resource with the
largest value in the current model is NationalIdCode that is
not surprising, because it is used in most of the services.

The model presented here is the basis for automatic syn-
thesis of services. However, it must be transformed into
another format in order to be applicable as a specification

for the synthesis. This format is prescribed by the tool we
use. It will be discussed in Section 5 on an example. Be-
fore going to explain the tool, we present the logical basis
of synthesis in the next section.

4. Automatic handling of a Web service model

In the present section, we describe a logic-based method
of automatic composition of services that is the basis of the
tool we are using. The method is based on structural synthe-
sis of programs (SSP) [5] and has been in use in several pro-
gramming tools [4]. In this setting, a service is considered
as a computational problem – computing a desired output
from a given input. The problem is described for SSP by a
set of formulas automatically extracted from a specification,
and a goal that the expected result is computable is formu-
lated as a theorem to be proven. A proof of solvability of
the problem is built, and a program for solving the problem
is extracted from the proof. SSP uses intuitionistic logic
that is a constructive logic, i.e., a logic where any proof of
existence of an object also is supported by an algorithm that
enables one to construct the object [6].

Let us explain the synthesis of services on an example.
The problem is to find an estimate of total value of a com-
pany’s vehicles that we will denote by RESULT from the
company’s official registry number RNR. The first and sim-

183

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



ple task can be to start with a license number LNR of a ve-
hicle, find its type T and production year Y, and to calculate
an estimated value VAL of a car for T and Y.

To be able to represent complex services with control
structures (loops, choices, etc.) we are using higher order
workflow (HOWF) with data dependencies [7]. We trans-
late workflows in a logic that enables us to reason about
the reachability of goals on workflow models. Workflow
with data dependencies includes explicitly represented in-
puts and outputs of every atomic service – data items. An
ordinary workflow graph and the respective workflow graph
with data dependencies for our simple task are shown in
Figure 4.

Figure 4. Two representations of a workflow.

In a workflow with data dependencies one does not
need extra arrows for representing the order of execution of
atomic services, because the data dependencies determine
the required order. (If no data are passed between two ser-
vices and their execution order is still important, then one
can add a dummy data item to determine the execution or-
der.)

To solve the whole example problem, one has first to find
a list of all vehicles VEH from a given registry number RNR
of a company. Let us call the respective node all vehicles.
Thereafter, in order to compute RESULT, one has to repeat
the task shown in Figure 4 for each vehicle found for the
company. This requires introduction of some control in the
composed service. This control will be represented by a
node called loop that will pass LNR to the workflow shown
in Figure 4 and collect VAL as the result of the task per-
formed by this workflow. It is important to note that the
data items LNR and VAL are not input and output of the
node loop. They are input and output for the part of the
workflow that solves a subtask – computes VAL from LNR,
and they are bound with the loop node by dotted arrows,
see Figure 5. The complete workflow for solving the ex-
ample problem is shown in Figure 5. The node loop is a
higher order node – one of its inputs is a subtask “compute
VAL from LNR” and the workflow is a higher order work-
flow (HOWF). More on using HOWF for representing Web
services can be found in [7].

Figure 5. Higher order workflow.

We have not yet discussed the synthesis of services –
only their representation by means of HOWF has been de-
scribed. Now we will show that a HOWF in its turn can
be represented in a propositional logic. Let us consider any
data name X in a workflow as a proposition “there is a way
to find the value of X”. Then a service that computes, for in-
stance, VEH from RNR, can be encoded in the intuitionistic
logic as an implication

RNR ⊃ V EH{all vehicles},

because this implication says “from the fact that there is a
way to find the value of RNR follows that there is a way to
find the value of VEH”. The name in curly brackets denotes
in constructive logic a function that realizes the implication.
In our case it is the atomic service all vehicles. The general
rule is that a service can be represented by an implication
where its inputs are conjuncts on the left side and outputs
are conjuncts on the right side. This is also how all services
from a service model can be represented in the logic. But
we have higher order nodes as well. In this case one has
to consider a subtask as an extra input. A subtask itself is
represented by an implication, in our example it is

LNR ⊃ V AL{ϕ},

where it has an unknown realization denoted by a functional
variable ϕ. Adding this implication to inputs of loop node,
we get the following formula for the loop:

(LNR ⊃ V AL){ϕ} ∧ V EH ⊃ RESULT{loop(ϕ)}

A logical description of the complete workflow from
Figure 5 is the following:

RNR ⊃ V EH{all vehicles}
(LNR ⊃ V AL){ϕ} ∧ V EH ⊃ RESULT{loop(ϕ)}

LNR ⊃ T ∧ Y {find vehicle}
T ∧ Y ⊃ V AL{find value}.

 (∗)

In our implementation, the whole service model (hundreds
of atomic services) is represented in the logic as above.

184

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



RNR⊃V EH{all vehicles}

(LNR⊃V AL){ϕ}∧V EH⊃RESULT{loop(ϕ)}

LNR⊃T ∧Y{find vehicle} T∧Y ⊃V AL{find value}

LNR ⊃ V AL{find vehicle; find value}
(SSP2)

V EH⊃RESULT{loop(find vehicle; find value)}
(SSP1)

RNR⊃RESULT{all vehicles; loop(find vehicle; find value)}
(SSP2)

Figure 6. Proof of RNR ⊃ RESULT .

When a new composite service with inputsX1, . . . , Xm and
outputs Y1, . . . , Yn has to be built, a goal is given in the form
of an implication

X1 ∧ . . . Xm ⊃ Y1 ∧ . . . Yn{ψ},

where ψ is a functional variable denoting the composite ser-
vice that has to be found. Let us have the goal

RNR ⊃ RESULT{ψ},

and assume that the formulas (*) are included in the service
model as a part of the model. Then our tool searches for a
proof of the goal, and after finding it, translates the proof
into required form of the service description. The proof in
our case includes only three steps as we see in Figure 6. The
first step is derivingLNR ⊃ V AL fromLNR ⊃ T∧Y and
T ∧ Y ⊃ V AL using a rule of structural synthesis denoted
by SSP2, and described below, etc.

One can see that at deriving a new formula also
its realization is built, and the whole program ap-
pears gradually step by step: first find vehicle;
find value, then loop(find vehicle; find value) and fi-
nally ψ=all vehicles;loop(find vehicle; find value).

A special feature of this proof is that its every step cor-
responds to an application of at least one atomic service
(shown in bold font in Figure 6). This is achieved due to
a special form of inference rules – the SSP rules. These
rules are admissible rules of intuitionistic logic, i.e., they
enable one to construct only logically correct proofs. From
the other side, these rules are very good for proof search, be-
cause there is no need to make a separate step for every log-
ical connective (conjunction or implication). A notation of
a respective rule is shown at each derivation step. The SSP
rules are shown here with metasymbols A,B,C,D,G,Z,W de-
noting conjunctions of propositional variables and X denot-
ing a conjunction of propositional variables and implica-
tions that represent subtasks:

(A ⊃ B) ∧X ⊃ Z : f A ∧W ⊃ B : g
X ∧W ⊃ Z : f(g) (SSP1)

A ⊃ B ∧ C : f B ∧D ⊃ G : g
A ∧D ⊃ C ∧G : f ; g (SSP2)

This is a brief explanation of the logic used for synthesis
of compositions of atomic services. The tool for automatic
composition of services has been implemented in the soft-
ware environment CoCoViLa that includes an SSP-based
algorithm synthesis part and is able to handle specifications
given in the visual or textual form [8]. Internal representa-
tion of logical formulas in CoCoViLa is not a text, i.e., not
formulas as we see them here, but a complex data structure
with cross-references, designed with the aim of providing
the required performance even in the case of a large number
of atomic services. However, the implementation respects
precisely the logic explained here. An example in the next
section demonstrates the usage of this tool in more detail.

5. Implementation

We have implemented a prototype tool for automatic
composition of services in the software environment
CoCoViLa that includes an SSP-based algorithm synthesis
part and is able to handle specifications given in the visual
or textual form.

A visual language for representing Web services, control
nodes, data resources and their connections has been devel-
oped. By using the visual language, visual service models
can be constructed. Known inputs and desired outputs from
which the goal is formulated can be defined on the model.
A visual model and the goal are automatically translated
into a textual specification that is used to generate a Java
program if the proof of solvability of the problem can be
built. By running the Java program, we can generate BPEL
or OWL-S description of the complex service or execute
complex service from the Java code.

Figure 7 shows the order of steps that are done by our
composition tool in order to compose a new complex ser-
vice. To use the composition system, developer of new
complex service has to know how to define the goal, i.e., de-
sired outputs and needed inputs of the complex service. Af-
ter inputs and outputs have been defined, a service composi-
tion algorithm will be synthesized automatically. The struc-
ture of this algorithm already represents the structure of
the complex service to be generated. However, CoCoViLa

185

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



Figure 8. Specifying a compound X-Road service on CoCoViLa service model.

produces only a Java code, but we need a representation
in BPEL or OWL-S. Therefore the steps of the code use
preprogrammed generators of BPEL or OWL-S. When this
code is run, a service description corresponding to the struc-
ture of the synthesized algorithm is generated using addi-
tional information from the initial specification.

All intermediate steps, that is steps between defining a
goal on the model and getting complex service description
as an output, are done automatically by the composition
tool. However, if necessary, intermediate steps (e.g., a struc-
ture of the complex service or a generated Java code) can
be visualized for the developer, for instance, for debugging
purposes.

We have visualized a syntactic service model for X-Road
services with our service composition tool. Model used in
our composition tool is generated from the one described
in Section 1. Figure 8 shows a small part of the X-Road
model and data properties window for a resource. Services
are represented by ovals and data resources by squares in
our visual language.

To illustrate the composition process described in
previous section, let us consider a task where an official has
to identify graduate’s home address, occupation area and
some attributes of its car, e.g., license number and color
of the car. Input is the graduation certificate of the person.

Getting a required service includes the following manual
steps.

1. Using an ontology/dictionary, find the name of the
considered data items in the service model. These
names in the present case happen to be the following:
GraduationCertificate, EstonianAddressString, Occu-
pationArea, RegistrationMark, Colour. Note that these
data items belong to different databases managed by
different organizations.

2. Mark the input (GraduationCertificate) and requested
outputs (EstonianAddressString, RegistrationMark,
Colour, OccupationArea) on a visual representation of
the service model.

3. Define the settings for formatting output (e.g., BPEL)
and some information related to the generated complex
service, for instance, its name, filename the service de-
scription is written to, etc. The rest will be done by our
composition tool.

A developer can define output by marking it to be a goal
as shown in the Figure 8. The model can be zoomed in and
adjusted for more detailed analysis. Composition tool in-
cludes a search window, to ease the finding of data resources

186

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



Figure 7. Automatic steps in composition
process.

or services. If a goal of getting output data from the input
data is provable, a complex service and its specification in
BPEL will be generated.

The proof of reachability of the goal is constructed au-
tomatically by CoCoViLa as described in Section 4. The
proof obtained gives the structure of the service to be con-
structed, this is also an algorithm to construct the service. In
the present example, the algorithm includes 1434 lines, and
part of it is visualized by CoCoViLa in a separate window
shown in Figure 9. Algorithm gives an order in which ser-
vices should be executed. Lines starting with service name
(e.g., RR RR40isikTaielikIsikukood, select 739), are repre-
senting services that need to be invoked in order to compute
the goal. After the service name there is an implication and
a function implementing it:

text ,name, indata, output− > outdata{getWs}.

This line specifies that having an input (text, name, indata,
output), we know that output – outdata, is computable using
a function getWS. Functions referred to from the algorithm
are Java functions that will be used in Java code and are
executed when the code is run.

Figure 9. Synthesized structure of a complex
service.

Some checks about availability of relevant information
(service name, output filename, etc.) necessary for com-
posed service description are also done. This is shown in
the last line (starting with spec), which shows that given
goal is provable (this is indicated with process goal as out-
put), if the following inputs are given: text generated so
far (outputBPEL) and information about complex service
(process name, process comment, process namespace). To
compute the goal, method createProcess will be used. Lines
starting with spec contain assignments that need to be done
in order to prove the goal.

Java code is extracted from the synthesized structure
of the complex service and data from the initial model
(e.g., grounding of services and requested composition de-
scription language). Screenshot of a piece of the Java code
made visible to the service developer can be seen in Fig-
ure 10. Program includes more than 1600 lines of code.

Extracted Java code is not the code of complex ser-
vice, but a complex service description generator. Functions
shown in curly brackets, e.g., getWs, as realizations of im-

187

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



plications in Figure 9 are part of the generated Java code.
See for example line number 1615, where object select 739
has function getWs, with arguments that were given as in-
put for the implication shown in Figure 9. Function getWs
is taking BPEL construct given in text, includes informa-
tion specific for the given service (given in name, indata
and output) and adds generated construct to the BPEL out-
put generated before. Similarly process goal will be com-
puted with createProcess function. This is shown in
line 1631.

Figure 10. Extracted Java program.

The final step of the composition is generation of the
Web service description in the final form, e.g., in BPEL as
requested in the example. This is done by compiling the
synthesized Java code and running it. Figure 11 shows a
fragment of the BPEL output (about 50 lines totally) of the
generated service. Figure includes first half of the BPEL se-
quence with nine service invocations to different databases
(four of which are shown), that need to be done in order to
satisfy the simple goal that we were using as an example.
In addition to BPEL sequence, represented in the figure, it
is possible to generate other BPEL constructs (e.g., while,
condition). It is also possible to create generators for other
languages. So far we have only experimented with BPEL
and OWL-S. It is important to notice that the steps of prov-
ing, compiling and service text generation are performed
automatically, without interference of the user.

The synthesis algorithm has linear time complexity and
can be applied to very large syntactic models. The time
spent for solving the example here was about one second
on a laptop with 1.2 GHz Intel processor.

...
<sequence>
<receive createInstance="yes" name="start"
operation="getComplexService"
partnerLink="XRoadClientPL"
portType="wsdl:XRoadClientP"
variable="Request" />
<invoke name="select_4_1_5"
partnerLink="XRoadClientPL"
operation="select_4_1_5"
inputVariable="getselect_4_1_5"
outputVariable="select_4_1_5Response"/>
<invoke name="TRAFFIC_paring22"
partnerLink="XRoadClientPL"
operation="TRAFFIC_paring22"
inputVariable="getTRAFFIC_paring22"
outputVariable="TRAFFIC_paring22Response"/>
<invoke name="RR_RR40isikTaielikIsikukood"
partnerLink="XRoadClientPL"
operation="RR_RR40isikTaielikIsikukood"
inputVariable=
"getRR_RR40isikTaielikIsikukood"
outputVariable=
"RR_RR40isikTaielikIsikukoodResponse"/>
<invoke name="RR_isikTaielikIsikukood"
partnerLink="XRoadClientPL"
operation="RR_isikTaielikIsikukood"
inputVariable="getRR_isikTaielikIsikukood"
outputVariable=
"RR_isikTaielikIsikukoodResponse"/>
...

Figure 11. BPEL fragment of a composed ser-
vice.

6. Related work

A number of methods for dynamic composition of Web
services have been proposed since the introduction of Web
services standards. Majority of them fall into one of the
following two categories: methods based on pre-defined
workflow models and methods, which build the workflows
from scratch. For the methods in the first category, the user
should specify the workflow of the required composite ser-
vice, including both nodes and the control flow and the data
flow between the nodes. The nodes are regarded as abstract
services that contain search templates. The concrete ser-
vices are selected and bound at runtime according to the
search recipes (see [9] and [10], for instance).

The second category includes methods related to AI
planning, automated theorem proving, graph search, etc.
They are based on the assumption that each Web service is
an action which alters the state of the world as a result of its
execution. Since Web services (actions) are software com-

188

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



ponents, the input and the output parameters of Web ser-
vices act as preconditions and effects in the planning con-
text. After a user has specified inputs and outputs required
by the composite service, a workflow (plan) is generated
automatically by AI planners or other tools from the scratch.

Theoretically any domain-independent AI planner can
be applied for Web service composition. In [11]
SHOP2 planner is applied for automatic composition of
DAML-S services. Other planners, which have been
applied for automated Web service composition, in-
clude [12],[13],[14],[15], just to mention a few of them.

Waldinger [16] proposes initial ideas for a deductive ap-
proach for Web services composition. The approach is
based on automated deduction and program synthesis and
has its roots in the work presented in [17]. Initially available
services and user requirements are described with a first-
order language, related to classical logic, and then construc-
tive proofs are generated with Snark [18] theorem prover.
From these proofs workflows can be extracted.

Although only conjunctions are allowed for describing
services and user requirements in most cases of deductive
composition methods, Lämmermann [19] takes advantage
of disjunctions in intuitionistic logic as well. Disjunctions
are used to describe exceptions, which may be thrown dur-
ing service invocations.

McDermott [20] tackles the closed world assumption in
AI planning while composing Web services. He introduces
a new type of knowledge, called value of an action, which
allows modeling resources or newly acquired information
– entities, which until this solution were modeled extra-
logically. Anyway, while using resource-conscious logics,
like linear logic, applied by Rao et al [21], or transition
logic, this problem is treated implicitly and there is no need
to distinguish informative and truth values. Since linear
logic is not based on truth values, we can view generated
literals as references to informative objects.

Hull and Su [22] present a short overview of tools and
models for Web service composition. The models in-
clude OWL-S, the Roman model [23] and the Mealy ma-
chine [24]. While OWL-S includes a rich model of atomic
services and how they interact with an abstraction of the
“real world”, the Roman model and the Mealy machine use
a finite state automata framework for representing work-
flows.

Hashemian and Mavaddat [25] combine breadth-first
graph search and interface automata [26] for automating
Web service composition. While graph search is used for
finding a path with minimum length from identified input
nodes to identified output nodes, interface automata is ap-
plied for composing paths into a composite Web services.
Graph search operates over a directed graph, where edges
represent available Web services and nodes represent in-
puts/outputs of particular Web services.

Although there is enormous amount of literature avail-
able describing different composition methods and method-
ologies, not so many graphical composition environments
such as CoCoViLa have been described and implemented
so far. Sirin et al [27] propose a semi-automatic Web ser-
vice composition scheme for interactively composing new
Semantic Web services. Each time a user selects a new Web
service, the Web services, that can be attached to inputs and
outputs of the selected service, are presented to the user.
Much manual search is avoided in this way. The process
could be fully automated by applying our methodology if
user requirements to the resulting service are known a pri-
ori. CoCoViLa complements this tool by providing a GUI
for supporting specification of user requirements and syn-
thesis of solutions based on them.

Gómez-Pérez et al [28] describe another graphical tool
for Semantic Web service composition. This tool enables
the user to specify graphically the input/output interactions
among the sub-services that constitute the required service.
Once the design has been checked, wrappers perform the
translations from the instances of framework ontologies into
the OWL-S specification.

Rao et al [29] describe a tool for mixed initiative frame-
work for semantic Web service discovery and composition
that aims at flexibly interleaving human decision making
and automated functionality in environments where annota-
tions may be incomplete and even inconsistent. An initial
version of this framework has been implemented in SAPs
Guided Procedures, a key element of SAPs Enterprise Ser-
vice Architecture (ESA). This is a graphical tool for aiding
composition if no or only partial semantic annotations of
Web services are given.

Hakimpour et al [30] present a tool based on the model
that supports a user-guided interactive composition ap-
proach, by recommending component Web services accord-
ing to the composition context. This tool is based on a
model for composition of Web services, which comple-
ments the WSMO orchestration in IRS-III – a framework
for semantic Web services based on WSMO specification.

Since service composition is an application and an inte-
gral part of semantic interoperability, we shall enlist here
some of these initiatives as well. In addition to German
initiative Deutschland Online [31], Italian initiative in pub-
lic administration [32] there are Finnish semantic initiative
FinnONTO [33], and Semantic Latvia project [34]. The
scope and accent of these initiatives are quite different –
some focus on consolidating semantic assets in several gov-
ernmental institutions already in place into semantic portals,
some on building full-scale national semantic web infras-
tructures, others target syntactic or semantic descriptions of
data schemas, some are on the level of human-oriented de-
scriptions of assets, others try to reach automatic use. Esto-
nian semantic interoperability initiative [35] is focused on

189

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



providing semantic descriptions of public Web services and
thus provides a valuable source for evaluating automated
composition tools in large scale.

There are also pan-European initiatives, which include
SEMIC (SEMantic Interoperability Centre Europe) [36],
led by the European Commissions IDABC program [37],
and semanticGov [38]. This shows a real need for automa-
tion of composition of governmental Web services.

7. Concluding remarks

We have shown in the present work the feasibility of au-
tomatic composition of Web services on a very large syntac-
tic service model of governmental services. This approach
can be used without any changes for composition of ser-
vices for large companies as soon as a federated syntactic
service model can be built. It could be useful, first of all,
for software developers who are extending and modifying
a large existing information system that in the present case
provides Web-based services for citizens. The advantages
of this approach are, first, provable ease of introduction of
new services and, second, guaranteed correctness of the ser-
vices. This approach is scalable to very large service mod-
els as can be seen from the synthesis time of services and
space requirements of the service model. The available tool
supports easy maintenance of the service model – it can be
modified on the fly.

In principle, the described tool, after adjusting its user
interface, could be given to end users, so that they could
develop wanted services by themselves. However, in the
present form it is impossible, because it would require more
skills that an average citizen has. Making composition of
services publicly available may include also security risks.
Our experience shows that the main difficulty that a user
would have is the unsolvability of the synthesis task – more
inputs will be needed than given in the initial service de-
scription. This is a semantic debugging problem where par-
tial evaluation could give some help. The partial evalua-
tion on models similar to syntactic service models has been
investigated in [39]. The presented work concerns only
stateless services. In the case of stateful services, several
services have to work simultaneously and have to be or-
chestrated respectively. Experiments based on CoCoViLa
support this by means of higher-order service schemas [7].
However, in the present work the services are stateless, and
we do not use this feature.

Acknowledgments

This work is partially supported by the Estonian Science
Foundation Grant No. 6886 and Estonian Information Tech-
nology Foundation’s Tiger University program.

References

[1] R. Maigre, P. Küngas, M. Matskin, and E. Tyugu. Handling
large Web services models in a federated governmental in-
formation system. In ICIW ’08: Proceedings of the 2008
Third International Conference on Internet and Web Ap-
plications and Services, pages 626–631, Washington, DC,
USA, 2008. IEEE Computer Society.

[2] Information technology in public administration of Estonia.
Yearbook 2006, Estonian Ministry of Economic Affairs and
Communication, 2007.

[3] P. Küngas and M. Matskin. From Web services annotation
and composition to web services domain analysis. Inter-
national Journal of Metadata, Semantics and Ontologies,
2(3):157–178, 2007.

[4] P. Grigorenko, A. Saabas, and E. Tyugu. Visual tool for gen-
erative programming. ACM SIGSOFT Software Engineering
Notes, 30(5):249–252, 2005.

[5] G. Mints and E. Tyugu. Justifications of the structural syn-
thesis of programs. Sci. Comput. Program., 2(3):215–240,
1982.

[6] S. C. Kleene. Introduction to metamathematics. Elsevier,
1980.

[7] M. Matskin, R. Maigre, and E. Tyugu. Compositional logi-
cal semantics for business process languages. In Proceed-
ings of Second International Conference on Internet and
Web Applications and Services (ICIW 2007). IEEE Com-
puter Society, 2007.

[8] M. Matskin and E. Tyugu. Strategies of structural synthesis
of programs and its extensions. Computing and Informatics,
20:1–25, 2001.

[9] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-
C. Shan. Adaptive and dynamic service composition in
eFlow. In Proceedings of 12th International Conference on
Advanced Information Systems Engineering (CAiSE 2000),
volume 1789 of Lecture Notes in Computer Science, pages
13–31. Springer-Verlag, 2000.

[10] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker.
Modeling and composing service-based and reference
process-based multi-enterprise processes. In Proceeding
of 12th International Conference on Advanced Information
Systems Engineering (CAiSE 2000), volume 1789 of Lec-
ture Notes in Computer Science, pages 247–263. Springer-
Verlag, 2000.

[11] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automat-
ing DAML-S Web services composition using SHOP2. In
Proceedings of the 2nd International Semantic Web Confer-
ence (ISWC 2003), 2003.

[12] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and
P. Traverso. Planning and monitoring web service compo-
sition. In Proceedings of the 11th International Conference
on Artificial Intelligence, Methodologies, Systems, and Ap-
plications (AIMSA 2004), volume 3192 of Lecture Notes in
Computer Science, pages 106–115. Springer-Verlag, 2004.

[13] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Auto-
mated synthesis of composite BPEL4WS Web services. In
Proceedings of 2005 IEEE International Conference on Web
Services (ICWS 2005), pages 293–301, 2005.

190

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/



[14] M. Sheshagiri, M. desJardins, and T. Finin. A planner for
composing services described in DAML-S. In Proceedings
of the AAMAS Workshop on Web Services and Agent-based
Engineering, 2003.

[15] P. Traverso and M. Pistore. Automated composition of se-
mantic web services into executable processes. In Proceed-
ings of 3rd International Semantic Web Conference (ISWC
2004), volume 3298 of Lecture Notes in Computer Science,
pages 380–394. Springer-Verlag, 2004.

[16] R. Waldinger. Web agents cooperating deductively. In Pro-
ceedings of FAABS 2000, volume 1871 of Lecture Notes in
Computer Science, pages 250–262. Springer-Verlag, 2000.

[17] Z. Manna and R. J. Waldinger. A deductive approach to pro-
gram synthesis. ACM Transactions on Programming Lan-
guages and Systems, 2(1):90–121, 1980.

[18] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and
I. Underwood. Deductive composition of astronomical soft-
ware from subroutine libraries. In Proceedings of 12th
International Conference on Automated Deduction (CADE
1994), volume 814 of Lecture Notes in Artificial Intelli-
gence, pages 341–355. Springer-Verlag, 1994.

[19] S. Lämmermann. Runtime service composition via logic-
based program synthesis. PhD thesis, Department of Micro-
electronics and Information Technology, Royal Institute of
Technology, Stockholm, 2002.

[20] D. McDermott. Estimated-regression planning for interac-
tion with Web services. In Proceedings of the 6th Interna-
tional Conference on AI Planning and Scheduling. AAAI
Press, 2002.

[21] J. Rao, P. Küngas, and M. Matskin. Composition of seman-
tic Web services using linear logic theorem proving. Infor-
mation Systems, Special Issue on the Semantic Web and Web
Services, 31(4-5):340–360, 2006.

[22] R. Hull and J. Su. Tools for composite Web services: A short
overview. SIGMOD Record, 34(2):86–95, 2005.

[23] D. Berardi, D. Calvanese, G. de Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-services that ex-
port their behavior. In Proceedings of the First International
Conference on Service-Oriented Computing (ICSOC 2003),
volume 2910 of Lecture Notes in Computer Science, pages
43–58. Springer-Verlag, 2003.

[24] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specifi-
cation: A new approach to design and analysis of e-service
composition. In Proceedings of 12th International World
Wide Web Conference (WWW 2003), pages 403–410, 2003.

[25] S. V. Hashemian and F. Mavaddat. A graph-based ap-
proach to Web services composition. In Proceedings of
2005 IEEE/IPSJ International Symposium on Applications
and the Internet (SAINT 2005), pages 183–189. IEEE Com-
puter Society, 2005.

[26] L. de Alfaro and T. A. Henzinger. Interface automata. In
Proceedings of the 8th European Software Engineering Con-
ference held jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering(ESEC
2001), pages 109–120. ACM Press, 2001.

[27] E. Sirin, B. Parsia, and J. Hendler. Composition-driven fil-
tering and selection of Semantic Web services. In Proceed-
ings of the First International Semantic Web Services Sym-
posium, AAAI 2004 Spring Symposium Series, pages 129–
136. AAAI Press, 2004.

[28] A. Gómez-Pérez, R. Gonzalez-Cabero, and M. Lama. A
framework for design and composition of Semantic Web ser-
vices. In In Proceedings of the First International Semantic
Web Services Symposium, AAAI 2004 Spring Symposium Se-
ries, pages 113–120. AAAI Press, 2004.

[29] J. Rao, D. Dimitrov, P. Hofmann, and N. Sadeh. A mixed
initiative approach to semantic web service discovery and
composition: Sap’s guided procedures framework. In ICWS
’06: Proceedings of the IEEE International Conference on
Web Services, pages 401–410, Washington, DC, USA, 2006.
IEEE Computer Society.

[30] F. Hakimpour, D. Sell, L. Cabral, J. Domingue, and
E. Motta. Semantic web service composition in irs-iii: The
structured approach. In CEC ’05: Proceedings of the Sev-
enth IEEE International Conference on E-Commerce Tech-
nology, pages 484–487, Washington, DC, USA, 2005. IEEE
Computer Society.

[31] Deutschland Online. http://www.
deutschland-online.de/DOL_en_Internet/
broker.jsp. [May 15, 2009].

[32] Italian initiative in public administration. http://www.
cnipa.gov.it/site/it-IT/. [May 15, 2009].

[33] E. Hyvönen, K. Viljanen, J. Tuominen, and K. Seppälä.
Building a national semantic web ontology and ontology
service infrastructure -The FinnONTO approach. In The
Semantic Web: Research and Applications, 5th European
Semantic Web Conference, ESWC 2008, Tenerife, Canary
Islands, Spain, June 1-5, 2008, pages 95–109, 2008.

[34] G. Barzdins, R. Balodis, K. Cerans, A. Kalnins, M. Op-
manis, and K. Podnieks. Towards semantic Latvia. In
Communications of 7th International Baltic Conference on
Databases and Information Systems, pages 203–218. Tech-
nika, 2006.

[35] H.-M. Haav, A. Kalja, P. Küngas, and M. Luts. Ensuring
large-scale semantic interoperability: The estonian public
sector’s case study. In H.-M. Haav and A. Kalja, editors,
Databases and Information Systems V – Selected Papers
from the Eighth International Baltic Conference, DB&IS
2008, pages 117 – 128. IOS Press, 2008.

[36] SEMantic Interoperability Centre Europe. http:
//www.semic.eu/semic/view/snav/About_
SEMIC.xhtml. [May 15, 2009].

[37] European Commission’s IDABC program. http://ec.
europa.eu/idabc/. [May 15, 2009].

[38] T. Vitvar, M. Kerrigan, A. van Overeem, V. Peristeras, and
K. Tarabanis. Infrastructure for the semantic pan-european
e-government services. In Proceedings of the 2006 AAAI
Spring Symposium on The Semantic Web meets eGovern-
ment (SWEG), 3 2006.

[39] P. Küngas and M. Matskin. Detection of missing Web ser-
vices: The partial deduction approach. Special Issue on
Recent Innovations in Web Services Practices, International
Journal of Web Services Practices, 1(1-2):133–141, 2005.

191

International Journal On Advances in Intelligent Systems, vol 2 no 1, year 2009, http://www.iariajournals.org/intelligent_systems/


