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Abstract— With increasing capabilities today robots get more
and more complex to program. Not only the low-level skills and
different strategies for different subgoals have to be specified,
which by itself is not a trivial task even for simple domains.
Both, the skill set and the strategies, also have to be compatible
with each other. This turns out to be a major hassle as they are
designed and implemented under assumptions about the future
environment and conditions the robot will be faced with, that
usually do not hold in reality.

The Evolving Societies of Learning Autonomous Systems
architecture (ESLAS) is targeted to this problem. With minimal
need for specification, it is able to learn skills and strategies
independently in order to accomplish different goals, which
the designer can specify by means of an intuitive motivation
system. In addition, it is able to handle system and environ-
mental changes by learning autonomously at the different levels
of abstraction. It is achieving this in continuous and noisy
environments by 1) an active strategy-learning module that
uses reinforcement learning and 2) a dynamically adapting
skill module that proactively explores the robot’s own action
capabilities and thereby provides actions to the strategy module.
We demonstrate the feasibility of simultaneously learning low-
level skills and high-level strategies in a Capture-The-Flag
scenario. Thereby, the robot drastically increases its overall
autonomy.

Index Terms— autonomous framework, strategy learning,
skill learning, robotics

I. INTRODUCTION

Whenever a robot has to be programmed, its designer has
to make many assumptions about the future environment to
keep the task tractable. Even more so, if the behavior that the
robot will have to exhibit is so complex that it needs different
levels of abstractions. The assumptions typically decrease
the robot’s autonomy and robustness in later application. A
learning robot architecture is therefore desirable that places
a minimum of assumptions into its algorithms in order
to increase its robustness and autonomy. This architecture
should combine top-down goal specification with bottom-up
exploration of its own capabilities. The desired characteris-
tics of such and architecture are the following:
• The ability to learn and apply continuous actions (skills)

in noisy domains.
– The skill learner should find out by itself what types

of capabilities actually are learnable before it starts
trying to learn specific skills.
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– Skills should be able to be adapted while being
executed.

– The ability to find a “good enough” action to be
executed “fast enough”.

– Skills should provide enough data, methods, and
means to categorize observed performance of other
robots in order to learn from them for increased
learning speed.

– Skills should abstracted from the strategy and be
visible to it only by some kind of handle.

• The capability to find state abstractions that are able
to distinguish between sufficiently distinct states from
the view of the learned skill set while maintaining good
generalization.

– It should account for continuous time.
– It should support multiple possibly contradicting

goals.
– It should be able to learn from delayed feedback

from the environment.

This naturally leads to an architecture consisting of three
layers: the motivation, the strategy, and the skill layer. The
overall goal can be specified intuitively by different drives
that make up the robot’s motivation layer. Each drive is
representing one sub-goal. The strategy layer has the task to
group the infinitely large state space into a small number of
abstract regions in order to escape the curse of dimensionality
and determine the optimal action for each one of those sub-
goals. As the environment can change during runtime, the
strategy layer also has to maintain a model about its behavior
in that environment. The low-level skills that make up the
overall behavior is the task of the skill layer. It has to find
out, which actions the robot is actually capable of. It is in
charge not only of exploring its own capabilities, but also to
optimize them while normally executing them.

Our approach is thus providing a framework that combines
strategy learning with Developmental Robotics principles to
satisfy the different sub-goals of the overall motivation. In
this article, we present a significantly extended version of our
previous work [1]. The strategy layer is more autonomous
and robust to environmental change in that it does not rely
anymore on standard model-based Reinforcement Learning.
Instead, it deploys intertwined state abstraction with model-
based Reinforcement Learning. The skills are not anymore
restricted to fixed models. Instead we fully revised our skill
system that allows now for arbitrary models and includes
developmental robotics principles in that it is able to learn
what is actually able to learn [2], [3].
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II. RELATED WORK

When ignoring the need for action recognition, which is
necessary for perception-based imitation and coordination,
there seems to be a lot of research done in the area of
continuous state and action spaces.

A. Model-free approaches

Hasselt and Wiering devised the Continuous Actor Critic
Learning Automaton approach, which empowers reinforce-
ment learning to operate on continuous state and action
spaces [4]. They calculate real valued actions by interpolating
the available discrete actions based on their utility values.
Therefore, the performance is highly dependent on initial
assumptions about the value function.

It is obvious that a full search in continuous state and
action spaces is infeasible. For reinforcement learning ap-
proaches to be applied in realistic domains, it is therefore
vital to limit the search to small areas in the search space.
One approach to do that is the Actor-Critic method [5].
It separates the presentation of the policy from the value
function. The actor maintains for each state a probability
distribution over the action space. The critic is responsible
for providing they reward from the actions taken by the
actor, which in turns modifies its policy. As this relieves
the designer from assumptions about the value function, it
introduces new assumptions about the underlying probability
distribution. To overcome this problem Lazaric et al. devised
Sequential Monte Carlo Learning [6], which combines the
actor critic method with a nonparametric representation of
the actions. After initially being drawn from a prior distri-
bution, they are resampled dependent on the utility values
learned by the critic.

Bonarini et al. developed Learning Entities Adaptive Par-
titioning (LEAP) [7], a model-free learning algorithm that
uses overlapping partitions, which are dynamically modified
to learn near-optimal policies with a small number of param-
eters. Whenever it detects incoherence between the current
action values and the actual rewards from the environment it
modifies those partitions. In addition, it is able to prune over-
refined partitions. Thereby it creates a multi-resolution state
representation specialized only where it is actually needed.
The action space is not considered by this approach. In their
grid world experiment, they use a fixed set of predefined
actions.

B. Model-based approaches

The Adaptive Modelling and Planning System (AMPS)
by Kochenderfer [8] maintains an adaptive representation
of both the state and the action space. In his approach,
the abstraction of the state and action space is combined
with policy learning in a smart way: states are grouped
into abstract regions, which have the common property that
perception-action-traces, previously performed in that region,
“feel” similar in terms of failure rates, duration, and expected
reward. It does so by splitting and merging abstract states
at runtime. AMPS not only dynamically abstracts the state
space into regions, but also the action space into action

regions. This is, however, done in a very artificial way that
could not yet been shown to work in real world domains.

Although our strategy layer is inspired by AMPS, we differ
from it in the following important points: AMPS applies the
splitting and merging also to the action space, which works
fine in artificial domains but will not cope with the domain
dependency one is typically faced with in real environments.
In contrast to that, we use goal functions as the strategy’s
actions, which have to be realized by a separate skill-learning
layer. This leads to a perfect separation of concerns: the task
of the strategy layer is to find sequences of actions and treats
actions as mere symbols. The skill layer by means of data
driven skill functions then grounds these symbols.

Another aspect is the supported number of goals. Take for
example a system, which has to fulfill a specific task while
paying attention to its diminishing resources. While, on the
one hand, accomplishing the task, the resources might get
exhausted. If it, on the other hand, always stays near the
fuel station, the task will not be accomplished. Approaches
like AMPS, which do not support multiple goals by multiple
separate strategies, have to incorporate all different goal
aspects in one reward function. This leads to a combinatorial
explosion in the state space and implicates a much slower
learning convergence.

As already described, we use abstract motivations, which
the designer has to specify. These motivations may also con-
tain competing goals. The major advantage of our approach
is that the robot can learn one separate strategy for each
motivation. Depending on the strength of each motivation, it
has now a means to choose the right strategy for the actual
perception and motivation state.

C. Discussion

All these approaches have the following underlying re-
stricting assumptions. First, they assume that optimal actions
are either possible to be predefined or effectively learnable
within the reinforcement learning framework. That means
that prior to using these approaches a careful analysis of all
occurring events in the environment has to be carried out by
the designer. Except for AMPS, they are all based on Markov
Decision Processes (MDP). Time varying actions, which are
the norm in realistic scenarios, however require a semi-
Markov Decision Process (SMDP), which complicates the
search in continuous action spaces. Arguing that models are
difficult to approximate at runtime the model-free approaches
do not learn a model on which the policy is approximated but
only the value function. Furthermore, they always solve only
one goal and it is not intuitively clear, how multiple possibly
contradicting goals could be integrated using the same state
and action space for all goals. The biggest problem of all,
however, is that these approaches are solely aimed at learning
from scratch. It is not clear how those could be combined
with imitation or coordination – aspects, which are vital to
application multi-robot scenarios. The ESLAS architecture,
which will be described in the following, was designed with
these aspects in mind.
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Fig. 1. The architecture of ESLAS consists of three layers. Every layer
can read the perception and send its output to the module below itself

III. THE ESLAS ARCHITECTURE

Vital to the multi-robot imitation approach is the Evolving
Societies of Learning Autonomous Systems (ESLAS) archi-
tecture that supports it by means of its layered recognition
approach [9]. Thereby, we extend our previous layered
architecture [1] to be usable for imitation in multi-robot
scenarios.

The ESLAS architecture is based on three layers of
abstraction as shown in Fig. 1. At the top level, a moti-
vation layer provides a motivation function for the learning
algorithm being the overall goal of the robot. This function
determines which goal is the most profitable one to reach at
each moment. With different motivations, the learning algo-
rithm is able to handle changes in the environment without
the need of relearning everything. At the medium layer is
the Reinforcement Learning algorithm, which incorporates
the method from AMPS of state space revising in parallel to
SMDP policy calculation. It receives input from the interface
and decides which skill is executed. A skill is described
by a goal function and handled in the lowest layer. Skills
can be simple, like driving forward, but also quite complex,
depending on this function. Using this function, a skill is
also capable of recognizing whether a skill similar to itself
has been executed in the observations.

A. Motivation layer

For the evaluation of the robot’s overall state, we use
biologically inspired evaluation methods similar to emotions.
With that, we specify all high-level goals in the form of a
motivation system (Fig. 2):

µ = (µ1, . . . , µn)T , µi ∈ R+ . (1)

Each motivation µi corresponds to one high-level goal,
which is considered accomplished or satisfied if µi < µθi ,
with µθi defining the threshold of the well-being region
(Fig. 3). By specifying µi : S → R as a mapping from
the strategy’s state space to the degree of accomplishment
of goal i and µθi as the satisfaction-threshold of that goal
the designer is able to intuitively define the robot’s overall
goal, which it accomplishes by minimizing each motivation’s
value. When it is adapting its strategy or skill set, it does so
with only this urge in mind.

drive 3

drive 1

drive 2

desired 
drive area

current
drive state

current
motivation 

used for drive
prioritization

Fig. 2. The motivation system: each drive measures the status of
accomplishing one sub-goal with zero being fully accomplished. The current
motivation is the vector to the point of origin

Fig. 3. An example of specifying a sub-goal by means of the motivation
system’s drive. The excitation function describes the force the current drive
state is subject to. By specifying it dependent on the perception and on the
internal state of the robot the user is “programming” the final behavior

If the vector of the current drive state to the point of
origin is interpreted as the current motivation, it serves two
functions in the ESLAS framework: on the one hand −µ̇
is used as a reward for the strategy layer, which will be
described in the next section. On the other hand, it supports
imitation in multi-robot scenarios: the motivation value in
this motivation layer can be used to express the robot’s
overall well-being to the other robots and guides them when
they are observing each other to imitate only obviously
beneficial behavior.

B. Strategy layer

In order to satisfy the motivation layer the robot has to
learn a strategy that is able to keep µ < µθ, given only the
experience stream

. . . , (o, a, d,µ, f)t−1, (o, a, d,µ, f)t, . . . (2)

where ot is the raw observed state, at the executed action
triggered in the last time step, dt the duration of that action,
ft signals whether the action has failed, which will be
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described later on. To keep this learning program tractable
the strategy layer is not trying to learn one strategy for
the whole motivation system. Instead, it is generating one
strategy for each motivation. The system then selects the
strategy to follow dependent on the dynamic drive prioriti-
zation max(0,µ − µθ). In the current approach it chooses
the drive with the least satisfied motivation.1

In the following, we will restrict the description to one
strategy. It will have to generalize the actual state observa-
tions into abstract regions on which it then uses Reinforce-
ment Learning to find a sufficiently good strategy, as operat-
ing on the raw state space would be unfeasible. Thereby,
it can be used with any form of abstraction method. In
this work, we use nearest neighbor [10]. The environmental
model is updated during runtime as new experience is made
by the robot and thus subject to change. A model-based
Reinforcement Learning with prioritized sweeping [11] is
used to derive an optimal policy by means of semi-Markov
decision processes (SMDP) [12], [13]. Model-free Rein-
forcement Learning methods like Q-learning [14] are not
practicable in this case, because all experience gets lost each
time the underlying model changes.

We will now present the three main components of the
strategy layer and their interaction (Fig. 4): the processed,
filtered and purified perception is stored as an interaction
sequence, which we will call experience. It is modified by
several heuristics to build a model upon which the policy
is generated. We will start explaining how the strategy is
learned, if the model has already been built so that it reflects
the experiences and abstracts the raw state observations o to
abstract state regions s ∈ S.

1) Policy: A policy is a mapping

π : S→ A (3)

that assigns each state s ∈ S an action a ∈ A. Let V π :
S → R be a value function that estimates “how beneficial”
it is for a robot to be in a given state. A policy π is called
optimal, if V π(s) ≥ V π

′
(s) ∀ s ∈ S. Thereby, it maximizes

the expected long-term discounted sum of rewards [13] and
is denoted by π∗. The reward is discounted, as it is wise to
give a smaller weight to reward that is further away in the
future.

As in real-world scenarios the duration of actions are
variable, the discounting is done continuously by β ∈ (0,∞):
a reward r received after time t thus leads to a net reward
of e−βt. If β = ∞ the robot is said to be myopic, as the
future reward is discounted by e−∞t ≈ 0 and the robot
thus is concentrating only on the immediate reward. With β
approaching zero the robot is paying more and more attention
to reward that is farther in the future.

The reward in our work is composed of two reward
elements. The lump sum reward r specifies the one time
reward for transferring the robot from the abstract state s

1In addition, we are investigating methods, which try to detect situations
in which compromises are made by choosing a possibly suboptimal action
for one motivation, if others can be pleased with that action as well.

Fig. 4. Processes involved in the strategy layer

with action a to the abstract state s′. The reward rate ρ
is given continuously for staying in state s while executing
action a until the robot arrives at state s. This is necessary to
provide the most general form of goal specification via the
motivation system. Both components can be extracted from
the motivation by means of

r, ρ =
{

(−µ̇i, 0) if |µ̇i| > ρθ
(0,−µ̇i) otherwise . (4)

That means that the reward is interpreted as lump-sum
reward, if it exceeds the reward rate threshold ρθ, otherwise
it is received as reward rate.

In the following, we will stick to the notation of Kochen-
derfer regarding the learning of strategies on abstract state
spaces with SMDPs. With Pt(t | s, a, s′) being the proba-
bility that it takes at most t time to move from s to s′ by
means of executing action a the discounted value of the unit
lump-sum reward is calculated as2

γ(s, a, s′) =
∫ ∞

0

e−βtdPt(t | s, a, s′) . (5)

The average cumulative discounted sum of the reward re-
ceived continuously while executing action a in state s until
arriving at state s′ is calculated as

λ(s, a, s′) =
∫ ∞

0

∫ t′

0

e−βt
′
dt′dPt(t | s, a, s′) . (6)

2Not to be confused with the discount factor γ in MDP problems.
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interactioninteraction

action duration reward failure

observationobservation

state
region

… …
observationobservation

state
region

Fig. 5. The interaction sequence forms the experience flow

The expected discounted reward when started in state

Vπ(s) ≡ E
{ ∞∑

k=1

[
e−βtk+1rk +

∫ tk+1

tk

e−βtρkdt

]∣∣ (7)

s1 = s, ak = π(sk)
}
. (8)

To find the optimal value function V ∗(s), the robot is
updating recurrently the value function each time a new event
occurs using

V (s)← max
a∈A

[
R(s, a) +

∑
s′∈S

P (s′|s, a)γ(s, a, s′)V (s′)
]
.

(9)
Eventually, V (s) will then converge to the true value func-
tion V ∗(s) [8]. The optimal policy can then be computed
similarly:

π∗(s) = arg max
a∈A

R(s, a) +
∑
s′∈S

P (s′|s, a)γ(s, a, s′)V ∗(s′)

(10)
The only thing left to do is to estimate R(s, a) (“(s, a, s′)”

omitted):

R(s, a) =
∑
s′∈S

P (s′ | s, a) (γr + λρ) (11)

Kochenderfer showed that this can be done with non-
parametric estimation [8]. For that it is first necessary to
estimate γ(s, a, s′), as λ(s, a, s′) simplifies to λ(s, a, s′) =
(1 − γ(s, a, s′))/β. If n(sk, ak, sk+1) is the number of
(sk, ak, sk+1) transitions, then γ is estimated after the kth

transition as follows:

γ̂(sk, ak, sk+1)← γ̂(sk, ak, sk+1)+
e−βtk − γ̂(sk, ak, sk+1)

n(sk, ak, sk+1)
(12)

If σr(s, a, s′) is the accumulated lump-sum reward and
σρ(s, a, s′) the sum of the reward rates received when going
from s to s′ with action a, then the estimated expected reward
for executing a in s can be calculated as

R̂(s, a) =
1

n(s, a)

∑
s′∈S

(γ̂(σr − σρ/β) + σρ/β) (13)

2) Experience: To arrive at a tractable number of mean-
ingful states, the raw states have to be abstracted first. The
ESLAS approach works on interactions that describe the
action in and the reaction of the environment (Fig. 5). An
interaction encodes the following data:
• action: This is the output that was delivered to the action

tower in the last step.
• duration: The strategy is not informed every time new

information is available. Instead, it is triggered using
intelligent heuristics, which will be described later on.

• reward: The return of the last action in the form of the
motivation vector.

• failure: This is retrieved from the skill layer and denotes
whether the skill executed in the last step estimates the
outcome as success or failure. It will be described in
more detail in Sec. III-C.

An interaction is always connected to its starting and
ending states (Fig. 5) provided by the perception. All the
experience is saved in an experience list, which consists
of interactions. We define an interaction to describe the
important data of one time frame

It2t1 = (ot1 , at1 , dt1 , rt1 , ft1 , ot2) , (14)

where ot1 and ot2 are the raw state observations at the
beginning and end of a time frame (state in Fig. 5). at1
is the executed action, rt1 the reward vector received by the
motivation layer and dt1 = t2 − t1 the duration. Finally,
ft1 denotes a failure of the last step. This can be e.g. the
skill layer signalling that the previously executed skill has
not performed as expected, because the robot is trying to
drive against a wall. For realistic applications, it must be
taken care that the robot is not spammed with uninteresting
information. A new interaction is generated if one of the
following heuristics holds:
• The perception signals a sufficiently different state by

some distance metric: d(ot1 , ot2) > θo.
• The motivation layer has signaled a sufficiently inter-

esting motivation change: rt1 = |mt2 −mt1 | > θr
• A certain amount of time has passed: t2 − t1 > θt

3) Model: At the beginning, all states belong to only one
region, as the robot has no reason to believe otherwise. While
interacting with the environment the model is modified by
several heuristics, which are invoked recurrently to maintain
a mapping of observations in the perception space Rd (state
in Fig. 5) to states in the abstracted region space S (region
in Fig. 5). d is the number of dimensions of the perception
space3. The heuristics split or merge regions so that the
model and underlying statistics reflect the world experience.
The following heuristics are found to be necessary.

a) Transition heuristic: As mentioned above, the con-
tinuous state space is split into regions so that for each raw
state belonging to the same region executing the same action
“feels” similar to the robot. That requires that Q(s, a, s′) as
the value for transitioning from s to s′ with the greedy action
a = π(s) can be estimated with a sufficient confidence. This
is calculated using interaction sequences starting in s and
arriving in s′ while only executing the greedy action a:

Q(s, a, s′) = γ(s, a, s′)(r(s, a, s′) + V (s′)) (15)
+λ(s, a, s′)ρ(s, a, s′) (16)

Let succa(s) = {s′ | P (s′ | s, a) > 0}. If raw states are
mistakenly grouped into the same abstract region the variance
of the Q(s, a, s′) values calculated for all the greedy traces

3In the experiments nearest neighbor is used. Practically any abstraction
mechanism can be used that supports add/remove/query at runtime.
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belonging to the same region will increase. A high variance
indicates that splitting that region will likely lead to better
transition estimates in the split regions:

V ar ({Q(s, a, s′) | s′ ∈ succa(s) }) > θTV (17)

This is done by clustering the traces so that traces with
similar Q(s, a, s′) grouped together. For each cluster, one
region is created.

The challenge lies in determining θTV . AMPS requires the
designer to analyze the scenario and empirically determine
that value beforehand. This is apparently no possibility for
groups of robots, which have to learn the proper behavior
autonomously themselves. As the distribution for Q usually
cannot be foreseen it happens that θTV is either to low,
which results in too fine state abstraction and slows down the
learning speed, or too high which leaves too much aliasing
in the strategy. The competing forces for determining θTV
are as follows:

1) The more often the robot is experiencing aliasing and
the higher the variance of the resulting regions’ values
is, the higher the inclination to split should be.

2) The lower the variance is compared to the maximum
region value the lower the inclination to split should
be.

The first point is solved by using QV ar which weights
the deviation from the mean by the region’s transition
probability. The second is handled by normalizing both mean
and the Q-values to the maximal region value Vmax =
max({V (s) | s ∈ S}). With the following definition for
QV ar the threshold θTV can be set to a fixed value without
having to bother about the future development of the region
values:

QV ar (Q(s, a, s′)) ≡
∑

s′∈succa(s)

P (s′ | s, a)
V 2
max · |succa(s)|

·
(
Q(s, a, s′)−Q(s, a, s′)

)2

(18)

The inclination to split is thus adapting with the changing
value function at run-time.

b) Experience heuristic: This heuristic limits the mem-
ory horizon of the robot to θM interactions. It removes
interactions that are too far in the past in order to keep
the robot’s model and policy more aligned to the recent
experience of the robot. Basically, it removes those old
interactions from its memory and adds the new experience
to it. Thus, it is modifying the experience of at most two
regions, which might cause an update of the model and of
the policy.

c) Failure heuristic: A failure rate is associated with
each region. It describes the ratio of failure signals when the
greedy action of the corresponding region has been executed
to the number of success signals. These signals are emitted
by the strategy and skill layer which will be described later
on. They are encoded as ft in the interactions (Eq. (14)).
Failure signals are scenario specific and can be emitted if
e.g. the robot bumps into a wall or if it has not encountered

something interesting for a longer period of time. The failure
heuristic splits a region if its greedy action’s failure rate is
not homogeneous enough:

θf < f < 1− θf , (0 < θf < 1/2) (19)

The lower the user defined threshold θf is, the more eager
the failure heuristic is trying to split a region. This forces the
state abstraction to arrive at regions that have failure rates
with which a more deterministic strategy can be computed.
For both resulting new regions individual greedy actions can
then be determined by the reinforcement learning algorithm.

d) Reward heuristic: Especially in the beginning of the
robot’s lifetime, when there is not yet enough information for
the transition and simplification heuristic to adapt the state
space based on sufficient statistical data, the reward heuristic
is of importance. It allows a region s ∈ S to be split if the
reward rate variance is too high. This indicates that the action
performed in that region gives a too diverse feedback. A split
of that region will then lead to multiple regions, which are
more consistent with regard to the expected reward rates.
This also is vital in cases where the failure signal is too
seldom, as it provides the only other possibility to initially
split a region.

In particular, the reward heuristic is looking in the reward
rate stream for a clear switch from low to high variance
areas, where both areas are of sufficient length. Only such a
switch in variance indicates clearly that a split is advisable.
Therefore the reward heuristic considers the reward rates
of the last n interactions made in the current region. The
lump sum rewards in that time frame are not considered, as
they will show non-zero values only in rare occasions. Let
ρt2t1 = (ρt1 , . . . , ρt2) and t be the time at which the split is
considered. The reward heuristic is searching for an index
k that splits ρtt−n into the two sequences ρt−k−1

t−n and ρtt−k,
such that the following condition holds:(
V ar(ρt−k−1

t−n ) ≈ 0 ∧ V ar(ρtt−k) > θRV ∧ |ρt−k−1
t−n | > θl

)∨
(20)(

V ar(ρt−k−1
t−n ) > θRV ∧ V ar(ρtt−k) ≈ 0 ∧ |ρtt−k| > θl

)
The minimum variance threshold θRV is dependent on the

motivation system design. Recall from Sec. III-B.1 that the
reward received by the motivation system is interpreted as
a reward rate, if |µ̇i| ≤ ρθ. With θRV = k · ρθ, (0 < k <
1), a switch is easily detected by the reward heuristic. The
minimum low variance sequence length θl ensures that the
reward heuristics does not find trivial splits. Naturally it is
set to be a fraction of the considered time horizon n.

e) Simplification heuristic: As splitting might lead to
overly complex models a means is needed that again merges
regions once the robot has gathered new experience that sug-
gests a simpler model. This is the task of the simplification
heuristic, which analyzes sequences of regions connected by
greedy actions. Similar to AMPS we consider here chain and
sibling merges. Let a behave nearly deterministically in s,
then succ(s, a) denotes the region the execution of a leads
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to:
succ(s, a) ≡

{
s′ if P (s′|s, a) ≈ 1
None otherwise (21)

A chain merge of two regions s′ and s′ is performed if

succ(s′, π(s′)) = s′′ ∧ succ(s′′, π(s′′)) = s ∧ π(s′) = π(s′′) .
(22)

In this case the region s′′ is superficial and can thus be
merged with s′ into the new region s′′′ = s′ ∪ s′′, with
succ(s′′′′, π(s′′′)) = s and π(s′′′) = π(s‘) = π(s′′). All
other regions that resulted into either s′ or s′′ are updated
accordingly.

In the same vein a sibling merge is triggered if

succ(s′, π(s′)) = s ∧ succ(s′′, π(s′′)) = s ∧ π(s′) = π(s′′) .
(23)

In this case s′ and s′′ have similar expectations about the
future region if the same action is executed.

So far we have assumed that A is always provided
beforehand and that the strategy simply has to choose the
right action at each state. For real-world scenarios it would
be advantageous if also A could be learned at run-time.
AMPS does this by applying to A the same abstraction
heuristics that helped to organize the state space S. The
actions learned in this way, however, are limited to simple
domains, where the real-world dynamics can be presented
by simple hypotheses. In the next section the Automatic
Modular Action Framework (AMAF) is presented, which is
able to learn reactive actions that are robust to noise and can
handle complex dynamics.

C. Skill layer

The skill layer provides a generalized learning method for
learning reactive low-level skills. It offers to the strategic
layer two working modalities, one for training new skills
and one for executing one of the learnt skills. As long as
no skills are available, the skill layer explores the space of
the low-level actions by composing with random values the
output vector that will be sent to the actuators.

Each learnt skill allows to control the perceived properties
of the environment by continuously associating an error value
to the input data. The learnt skills are communicated to the
strategic layer through the identifier that will be used to
handle the skill and the definition of the skill.

When the execution of a skill is requested, the skill layer
reacts to the received inputs with low-level actions (output
vectors) that minimize the error described in the definition
of the skill.

For our strategy-learning algorithm, we assume that all
skills have finished building hypotheses and are ready for
execution.

There are two major benefits with the skill layer over
using atomic actions. First, it gives the possibility to auto-
matically create quite complex actions that evolve and adapt
to changes. Second, a skill can recognize itself out of a trace
of observations by monitoring the value of the error. If this
decreases, it is reasonable to deduce that the action was in
execution. This is how we solve the correspondence problem

between observed execution of foreign behavior and own
capabilities in our scenario [15].

The skill layer has been implemented using AMAF (Au-
tomatic Modular Action Framework), a framework for the
automatic creation of abstract actions. The generated abstract
actions will be used as skills by the strategy. What follows
is an overview of the framework.

IV. AMAF SPECIFICATION

A. Working modalities

AMAF can work in two modalities: the passive (or exe-
cution) and the active (or training) modality:

• Execution: during the execution modality, AMAF is
passive because the robot decides which action to
execute.

• Training: during the training modality, AMAF is active
because it decides which action to execute in order to
experiment new actions.

This distinction has not to be confused with the one
between learning and acting. Learning and acting are parallel
processes indeed: AMAF supports the learning phase during
both the execution and training modalities. During both
modalities, AMAF has to react to the input data with an
output vector, so the acting is always enabled.

B. Environment structure

AMAF works with structured data in order to have more
abstract and powerful actions and to make a faster and more
general learning possible. The robot’s perception has to be
structured in objects and properties in order to be used by
AMAF. A property is an attribute of an object recognized
in the environment. It is composed by an ID and a value,
expressed by a real number. An object is an element of the
environment characterized by an ID and a set of properties.

The input data has to be structured as a list of tuples
〈ido, idp, v〉 where ido is the identifier of an object o in
the environment, idp is the identifier of a property p of o
describing one perceived attribute of that object, and v ∈ R
denotes its value.

C. Output representation

AMAF generates abstract actions starting from the ac-
tions of the lowest level of abstraction. Usually in robotic
applications, the low-level action is the set of intensities of
the electrical signals sent to the actuators or, in the case
of servomotors, the sent value. A general way to interpret
the information sent to an actuator is the effort that actuator
will make. AMAF represents a low-level motor action by
the output vector M = (m1, . . . ,mn), with mi ∈ R,
−100 ≤ mi ≤ 100, indicating the effort that a certain
actuator will make, and n being the number of actuators
the robot controls.
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Fig. 6. AMAF interaction with the other components. The row input data is
supposed to be elaborated by a specific component called “input abstractor”

D. Interfaces

The strategy communicates with AMAF by sending the
action to be executed. There is just one pre-built action with
ID train that switches AMAF to the active modality. All
the other actions are learned by AMAF during its execution.
The robot executes a learned action by sending to AMAF the
action ID and the list of the targets of the action. These are
expressed by the IDs of the objects that the action is applied
to. During this phase, the robot can monitor the status of the
current action. When the action is set, the status is starting.
After the first low-level interaction with the environment the
status can be failure if it is not possible to execute the action,
execution if the action is executed at low level but the success
condition is not verified or success if the success condition
has already been reached. During both active and passive
phases, AMAF can decide that an action executed during
the training phase is mature. This indicates that it is ready to
be immediately used by the robot. In this case, the action is
notified to the robot by sending the action ID and the action
definition.

At the interface to the environment, AMAF receives the
abstract input data and returns the output configuration that
realizes the abstract action. It has to compute the solution in
a certain time interval that is dependent on the frequency of
interaction with the environment. In order to react meaning-
ful in time, AMAF receives in addition to the abstract input
the timeout for searching the best low-level action. After the
timeout, AMAF has to return the best output configuration
found by then, even if it is not globally the best for the last
received input.

Fig. 7 gives an example of a low-level interaction. The
sensors send the raw input data to an external component,
called “Input Abstractor”. This processes the raw input and
computes information usable for AMAF in a certain time
interval. A timeout determines how much time AMAF has
for calculating the output configuration. Finally, the output
configuration is sent to the actuators. The interaction cycle
starts again when a new input is perceived from the sensors
and sent to the Input Abstractor.

Fig. 7. Example of low level interaction

For each interaction with the environment, AMAF as-
sumes that the next input is the effect of the returned output
on the actual input. This can be a good approximation only
when the time interval between the initial input perception by
the sensors and the execution of the output configuration by
the actuators is not relevant in comparison to the time interval
between the two input perceptions. We can usually consider
unimportant the latencies of the sensors, of the actuators
and of the communication between the components. It is
sufficient to take into account just the computational time of
the Input Abstractor ∆TI and of AMAF ∆TM , and the time
interval between two inputs ∆Ti. More formally this means
that ∆TI + ∆TM � ∆Ti.

E. Actions

The aim of AMAF is to automatically generate abstract
actions that allow the robot to move easily in the state space
and accomplish its tasks. Each robot, however, can have a
different state space representation. The way, in which the
input variables are interpreted and combined together, varies
significantly from the different implementations of the robot.
I.e., AMAF cannot directly control the robot state through its
actions. The AMAF solution is to control the input variables.
The robot state space is directly built on their values so
actions that control the input variables, indirectly allow any
kind of robot to move freely in its state space.

Each perceived property of an object is controlled by a
“basic action”. In addition, AMAF is able of generating
“complex actions” that coordinate the execution of different
basic actions. The actions generated by AMAF are multi-
target because it is possible to specify the list of identifiers
of the objects that are target of the action. In this way,
the complex action can control the value of the properties
of different objects at the same time. We will now give a
detailed definition of basic and complex actions.

1) Basic Actions: The elementary blocks of the actions
supplied by AMAF are the “basic actions”. A basic action
is defined by a tuple 〈c, p〉 where p is a property of the
object specified as target and c indicates a control. A control
is a function fc : R2 → R+ that associates an error to
each tuple 〈ivp, avp〉 where ivp is the value of p when
the action was started and avp is the current value of p.
The function fe : R → R+ obtained by fixing the value
ivp is called error function of the basic action. During the
execution of the basic action, AMAF tries to decrease as
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much as possible the value of the error so different controls
determine different behaviors. E. g., if fe is proportional to
the value of the property, the basic action decreases its value.
On the opposite if fe is inversely proportional to the value
of the property, the basic action increases its value. It is
even possible to have actions that control the variation of
the value of the property. E. g., in order to specify an action
that increases ivp of an interval ∆p it is sufficient to use a
control fc(ivp, avp) = |ivp + ∆p− avp|.

2) Complex Actions: Basic actions allow the robot to
move in the state space but sometimes there can be per-
formance requirements that cannot be satisfied by simply
executing basic actions in sequence. It can be for instance
necessary to execute two basic actions at the same time or
to start executing one action when another one is going to
finish. Imagine a task that requires to get close to an object
and to shoot it. In this case it is necessary at first to reduce
the distance to the object then it is necessary to center the
object and finally to shoot. The result can not be efficient
if the actions are executed in sequence, but if the object is
reached while centering it, the chances of success increase.
In AMAF it is possible to coordinate different basic actions
through the “complex actions”.

The number of targets and the ordered sequence of steps
define a complex action. Each step is defined by a tuple
〈lR, tR, sR, lA〉 where lR is a list of references that determine
the reference error, tR ∈ R+ is the success condition
threshold, sR ∈ R+ is the precondition threshold and lA
is the list of the weighted basic actions. The elements of the
list lR are tuples 〈c, p, t, w〉 where c is a control, t ∈ N+

indicates the index of the object o of the target list, p is a
property of o and w ∈ R+ is the weight of the reference.
The reference error is computed by linear combination of
the errors obtained by applying the controls on the input
data. The weights are used as coefficients of the linear
combination. The value of reference error Vr determines the
value Vpl of the progress level:

Vpl =


0 if Vr > sR
sR−Vr

sR−tR if tR < Vr < sR
1 if Vr < tR

(24)

When the value of the progress level is one, the success
condition of the step is reached and the execution of the step
can be considered completed.

The elements of lA are weighted basic actions a defined
by the tuple 〈ca, pa, ta, cfa〉 where ca is a control, ta ∈ N+

indicates the index of the object o of the target list, pa is
a property of o and cfa : [0, 1] → [0, 1] is the coefficient
function that determines the value of the coefficient for
each value of the progress level. The coefficient function
cfa(Vpl) = start + fs(Vpl) · scale is defined by the tuple
〈ids, scale, start〉 where ids is the identifier of the shape
function fs : [0, 1]→ R, scale ∈ R is the scaling factor and
start ∈ R is the starting value of the coefficient. The value
of the coefficient ca of the basic action a is determined by

Fig. 8. A complex action is composed by a sequence of steps

Fig. 9. The structure of the definition of a complex action

coefficient function and the progress level:

ca(Vpl) =

 0 if cfa(Vpl) < 0
cfa(Vpl) if 0 ≤ cfa(Vpl) ≤ 1
1 if cfa(Vpl) > 1

(25)

Calling A the set of basic actions a executed during the
step, the error function of the step is

fs =
∑
a∈A

ca(Vpl)ea(pa) , (26)

where ea is the error function of a.
The action starts with the execution of the first step. When

the success condition of the step is reached, the second step is
executed and so on until the last step. The success condition
of the complex action is reached when the last step is in its
success condition as shown in Fig. 8. The structure of the
definition of a complex action is shown in Fig. 9.

F. Framework structure

The modules of AMAF are divided into two groups: the
learning modules and the performing ones. The former have
to learn from the interaction with the environment and with
the robot. Each learning module represents its knowledge
through specific elements called knowledge units and gives
a score to each of them. The performing modules for the
execution of both passive and active modalities use these
elements.

The performing modules directly communicate through
buffers while the information flow of the learning process is
based on the CENTRAL LOG SYSTEM . This is a component
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Fig. 10. Information flow of the performing modules of AMAF

structured into logs that stores all the information communi-
cated by the performing modules and all the knowledge units
with their scores. All the modules can read from all the logs
of the CENTRAL LOG SYSTEM . This mechanism makes the
communication inside of the framework flexible and permits
the lack of synchronization between the performing modules
and the learning ones.

AMAF works at two levels of abstraction (Fig. 10). At
the high abstraction level, an action is expressed by an error
function. At the low abstraction level, the action is expressed
by the output vector that will be sent to the actuators.

These two divisions determine four subtasks each solved
by a specific module. Finally there are two extra modules that
are not necessary for the functioning of the framework but
allow a significant improvement of the timing performance
by modeling the behavior of the action through a direct
mapping of the low-level action to the input data. For this
motivation, these two modules work at the same time at both
high and low abstraction levels.
• ACTION INTERPRETER learns at the high abstraction

level. It has to transform the abstract action received
from the strategy layer into an error function. If the
action is the special action train, the ACTION INTER-
PRETER has even to decide, which action to execute
between the ones defined by the ACTION MANAGER .
During the execution modality, it has to determine the
status of the abstract action.

• ACTION MANAGER learns at high abstraction level.
It creates new actions and improves the learned ones.
The score of an action indicates how interesting it is
to execute that action during the training modality. The
new actions are initially not sent to the robot. That way
they can be executed only during the training phase. An
action will be notified to the strategy layer only when
its performances during the training are considered
sufficient.

• PREDICTION MODEL MANAGER learns at the low
abstraction level. It creates and updates the prediction
models that will be used by the ERROR MINIMIZER
to predict the effect of a low-level action. A prediction

model is defined by a tuple 〈P,M , p, f〉, where P is a
subset of cardinality m of the perceived properties, M
is a subset of cardinality n of output vector, and p is
the predicted property. f is a function f : Rm+n → R
that predicts the value that p will assume at the next
input perception by knowing the actual values of a P
and M .

• ERROR MINIMIZER acts at the low abstraction level. It
has to transform the error function in an output vector
for each perceived input. The best output vector is the
one that minimizes the error associated to the next
received input. A time constraint can be set in order to
compute the low-level action before the specified time
interval.

• BEHAVIOR MODEL MANAGER learns to create and
update the behavior models. A behaviour model is
defined by a tuple 〈P,M , f〉 where P is a subset of
cardinality m of the perceived properties, M is a subset
of cardinality n of the output vector and f is a function
f : Rm → Rn that computes the values of M by
knowing the values of P . Each model has to reproduce
the behaviour of a step of an abstract action. Its score
indicates the capacity to reach the success condition of
the step.

• BEHAVIOR EXECUTOR acts by using the behavior
model associated to the actual step of the abstract action
in execution to directly compute the output vector. No
search in the low-level action space is needed so the
computational time is drastically reduced. The com-
puted value is sent to the ERROR MINIMIZER that can
use it for finding the expected best output configuration.

G. Configuring AMAF

AMAF can be tailored to the specific application through
a few simple configuration possibilities:

• Degrees of freedom: the number of low-level actuators
of the robot.

• Controls: AMAF requires the specification of the list
of the controls used to generate the basic actions. Each
of them can produce a basic action for each perceived
property.

• Modeling algorithms: the creation of prediction models
and of behavior models can be based on different
modeling algorithms. AMAF requires at least one mod-
eling algorithm. If more then one is specified, AMAF
automatically chooses the modeling algorithm most
appropriate for the current situation dependent on its
prediction quality.

H. Learning Flow

Each learning module continuously generates the defini-
tions of the new knowledge units, updates the definitions of
the previously existing knowledge units, and generates an
updated ranking of the defined elements. A ranking is a list
of tuples 〈idq, sq〉 where idq is the ID of an object q and
sq ∈ R+ its score.
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Fig. 11. Information flow of the learning process

The information flow of the leaning flow is shown in
Fig. 11. The only constraint of the learning flow is that the
definition of the knowledge units has to be compliant to the
protocol specified by the framework.

For what concerns the information exchange, the CEN-
TRAL LOG SYSTEM allows for a great variety in the im-
plementation choices. The most trivial information exchange
inside the learning flow is the one, in which the performing
module uses the knowledge generated by the corresponding
learning one.

The ERROR MINIMIZER has to continuously look inside
the central log for new definitions of the prediction models
and for updated rankings. Each time a perception arrives, the
low level actions are evaluated by computing the expected
future value of the properties controlled by the actual abstract
action. The prediction models used to compute the expected
values are the ones with higher score between the ones whose
P is a subset of the actually perceived properties.

During the active modality, the ACTION INTERPRETER
has to decide which action to execute. It is possible to
exploit the ranking generated by the ACTION MANAGER by
choosing the action with higher score.

Exploiting the knowledge generated by a learning module
could be useful not only by the associated performing
module but also by a different performing module or even
by another learning module. For example, the BEHAVIOR
MODEL MANAGER could build the behavior models by
computing the expected best low-level action for different
input configurations and then modeling the results. The
capability of predicting the effect of the low-level actions
would be supplied by the prediction models generated by
the PREDICTION MODEL MANAGER .

I. Performing Flow

On the performing dimension, a fast and reliable infor-
mation exchange is necessary in order to obtain a good
reactivity. Therefore, it is not convenient to use a centralized

Fig. 12. Capture-The-Flag scenario. The robot has to learn to push the
object to the yellow goal base. It has to learn by itself both the low-level
actions and the strategy using them

system of the information exchange. AMAF manages the
performing information flow by direct connections between
the modules. The information flow is propagated from the
higher abstraction level to the lower one. The work of each
performing module can be monitored by reading its status.

V. EVALUATION

In this section, we will present the use of ESLAS in a
Capture-The-Flag scenario. In the PlayerStage/Gazebo [16]
simulation (Fig. 12) the well-known Pioneer2DX robot is
used. The dynamics are simulated using the Open Dynamics
Engine (ODE) [17]. This scenario consists of a goal base to
which pucks dispersed in the environment have to be trans-
ported. The robot has to find out which skills, autonomously
learned by the skill layer (Sec. III-C), have to be executed
in which order, learned by the strategy layer (Sec. III-B), to
achieve that goal. The results regarding the strategy layer are
averages of 200 experiments, in which the robot had to push
an object 30 times consecutively to the goal. The confidence
interval of 95% is provided. The charts regarding the skill
layer are individual examples.

The strategy’s state space comprised the robot’s relative
angle and distance to goal g and object q:

(αg, dg, αq, dq) ∈ R4

Fig. 14 shows how the robot manages to abstract the 4-D
state space into a small number of abstract regions, on which
the actual strategy is learned.

The robot was equipped with only one drive as always
stated. A positive lump-sum reward of 100 is given if the
robot has pushed the puck to the yellow goal base. The
change of the distance between the nearest puck and the goal
is provided as reward rates. More formally, the motivation
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Fig. 13. Time to push the object to the goal

change was defined as follows:

µ̇0(αg, dg, αq, dq) =


100 if dg < 1m
dq

100 if |αq| < 20◦

−0.01 otherwise

The discount parameter of the strategy was set to β = 0.1.
The state space adaptation heuristics, described in Sec. III-
B.3, were parameterized as follows:
• Transition heuristics: θTV = 0.2.
• Experience heuristic: The number of experiences was

not bounded (θM = ∞), but stayed below 10,000
(Fig. 14).

• Failure heuristic: θf = 0.01.
• Reward heuristic: It considered the reward rates of the

last n = 20 interactions made in the current region and
used the constants θRV = 0.01 and θl = 6.

• Simplification heuristic: An action a in state s was
considered deterministic, if P (a|s) > 0.8.

The configuration settings of the skill layer are described
below.
• Degrees of freedom: 2
• Controls: “decrease” (fc(ivp, avp) = |avp|)
• Modeling algorithms: radial basis interpolation and

polynomial approximation
The robot takes more time in the first run as it also has

to explore its own capabilities and learn the skills, as can
be seen in Fig. 13. From an average time of 1000s for the
first episode the time needed drops quickly to slightly more
than 200s (“learning”). Contrasted to that the “manual” curve
displays the performance, which used the same strategy layer
and same configuration, but replaced the learning skill layer
by a handcrafted skill set of two optimal skills. It shows that
while being faster in the beginning, the learning skill layer
manages to finally converge to the same performance, which
is assumed nearly optimal for this scenario.

The reward per second is displayed in Fig. 15, where the
learning skill layer stays slightly below the optimal, but far
less robust handcrafted skill set.

This shows that ESLAS is capable of autonomously tackle
infinite state and action spaces in a realistic scenarios.
Although the scenario was simple it showed all the charac-
teristics of real-world scenarios, i.e. it was noisy, continuous,
and time-dependent.

Fig. 14. Size of experience and number of abstract regions

Fig. 15. The reward per second

The skill layer has autonomously generated different com-
peting prediction models that determine the behavior of the
learnt skills. We will try to represent in a synthetic way the
behavior obtained by minimizing the angle to one object.
We will use the prediction model based on the radial basis
function approximation that predicts the next value of the
angle by knowing the value of the angle and the distance to
the object and the chosen low-level action. We have created a
grid of 30x30 points in the input space. The input dimensions
are the angle and the distance to the ball, so each point of the
grid is characterized by a certain couple angle-distance. For
each point of the grid, we have used the ERROR MINIMIZER
to compute the low-level action that minimizes the predicted
distance. The result is a pair of 3-D graphs, one indicating
the chosen tangent speed and the other indicating the chosen
rotation speed. We will represent the third dimension (the
actuator intensity) by using colors: red for negative intensity,
white for low intensity and blue for positive intensity.

In Fig. 16 the behavior of decreasing the angle to the ball
is represented. The lower graph indicates the rotation speed.
It is null when the angle is already minimized otherwise it
is set to turn as much as possible toward the ball. The front
speed is shown in the graph above and looks more confusing
then the rotation speed. The only behavior that we can notice
is that the robot goes back when it close to the object. In
effect going on could lead to a continuous rotation around the
object that would make the distance never decrease. When
the distance is not low, there is not a clear behavior for what
concerns the front speed. This makes sense because it does
not affect much the angle to the object so it can even be
chosen randomly without side effects on the performance of
the action.
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Fig. 16. Low-level actions associated to the abstract action of minimizing
the angle to the ball. The red color denotes a full negative value (-100%),
while the blue one a full positive one (100%).

VI. CONCLUSION

In this article we presented Evolving Societies of Learning
Autonomous Systems (ESLAS), a framework that is able
to handle system and environmental changes by learning
autonomously at different levels of abstraction. It is able to
do so in continuous and noisy environments by 1) an active
strategy-learning module that uses reinforcement learning
and 2) a dynamically adapting skill module that proactively
explores the robot’s own action capabilities and thereby
provides actions to the strategy module. We presented results
that show the feasibility of simultaneously learning low-
level skills and high-level strategies while both are adjusting
themselves to each other. Thereby, the robot drastically
increases its overall autonomy.

This architecture is not only designed for individual learn-
ing robots, but also to support imitation in multi-robot sce-
narios as could be shown by the authors previous work [18],

[19]. In the future, the authors are planning to use the ESLAS
architecture also to enable robots to cooperate even if some
of them were not specifically designed to do so. This means,
that the robots will be able to detect behavior patterns in
the performance of robots, which are not aware of the other
robots around them. These patterns are then utilize to align
the observing robot’s own behavior accordingly.
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