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Abstract

Combining end-host, server and router virtualization
could offer isolated and malleable virtual networks of dif-
ferent types, owners and protocols, all sharing one physical
infrastructure. However, the virtualization of the data plane
may lead to performance degradation and unpredictability.
These arise not only due to additional processing, but
also from the sharing of physical resources like memory,
CPU and network devices. This article analyses network
virtualization from the data plane’s perspective. We explore
the resulting network performance in terms of throughput,
packet loss and latency between virtual machines, as well
as the induced CPU cost. The virtual machines act as
senders or receivers, or as software routers forwarding
traffic between two interfaces in the context of Xen and
KVM. Our results show that the impact of virtualization
with Xen has become smaller with its successive versions.
Moreover, compared to KVM, Xen gives better network
performance with less processing overhead. Therefore, Xen
currently seems to be one of the most interesting software
data-plane virtualization technologies.

Keywords-Network virtualization; data plane; perfor-
mance; Xen; KVM

I.. Introduction

System-virtualization technology has been recently re-
defined in the context of distributed systems and enterprise
servers. By running several virtual servers on one physical
machine, organizations and companies can better exploit
the physical resources of one machine in terms of CPU and
energy consumption: often, a server uses only a small part
of the available hardware resources. Moreover, server vir-
tualization allows increasing security, due to the isolation
factor. Also, migration and mobility enhance reliability.
To introduce these benefits into the network itself, an
emerging idea is to implement virtualization not only

on the end-host servers or at link level, but also on
network devices, like routers. This technology could make
coexist networks or autonomous systems of different types,
owners, and protocols over one physical network. Such
virtual IP networks are an emerging approach to provide
virtual network infrastructures as a service, allowing users
to create customized networks with personalized IP routing
paradigms over a shared physical infrastructure. They can
be used for research (implementation and test ”in the
wild” of new protocols) and further to decouple the service
from the infrastructure in the real Internet, rethinking the
backbone architecture.
However, if virtualization could potentially solve the main
issues of the current Internet (security, mobility, reliabil-
ity, reconfigurability), it would nevertheless introduce an
overhead due to the additional layers inserted between the
virtual machines and the hardware. In particular, if the data
plane is virtualized, which allows the greatest customiza-
tion, all network traffic has to cross these virtualization
layers, which impacts performance. Furthermore, in addi-
tion to the routing and bandwidth-allocation problems of
traditional routers, we have to take into account the prob-
lem of local-resource sharing by different virtual networks.
Considering this sharing of resources—e.g., the network
interfaces, the processors, the memory(buffer space), the
switching fabric—it is a challenge to get a predictable,
stable and optimal performance.
To have a better insight into these issues, this article
analyzes the current network data-plane virtualization solu-
tions. We evaluate their properties and potential in terms of
network performance like throughput, packet loss, latency
and the induced CPU cost. End-host network performance
is first analyzed to evaluate virtualization in a simple
sending or receiving scenario with a single network in-
terface, using different system configurations. We propose
our design of a virtual router prototype with a virtualized
plane, and then evaluate virtual forwarding.
This article is an extension to our previous work on Xen’s
network performance [1]. It details the formerly announced
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results and proposes a comparison to the recent KVM
virtualization technology.
The rest of this article is organized as follows. The next
section describes the context and background of network
virtualization. Section III analyses the technology of virtu-
alizing the data plane. Section IV discusses experimental
results on network performance. Finally, section V com-
pares our results to related work, and section VI concludes
this article.

II. Background

A. Towards network virtualization

Virtualization came up to cross the barrier of physical
hardware, and to share a resource between several users,
giving each one the illusion that the resource belongs
entirely to him. It was introduced by IBM in 1973 [2]
and became very popular with the arrival of solutions like
Xen [3] and VMware [4]. This approach is very useful
to enhance isolation, mobility, dynamic reconfiguration
and fault tolerance. It is now widely used by companies
and institutions using only a few physical servers to host
a multitude of virtual servers. Multiplying their servers
this way allows them to isolate services, facilitate re-
configuration and maximize fault-tolerance and flexibility.
They can easily duplicate servers, and thus deal with
hardware problems, as virtual servers can be migrated
from one physical machine to another if necessary. Thus,
virtualization makes institutions less dependent on the
hardware while optimizing their utilization. The emerging
cloud concept currently pushes the level of abstraction
from the hardware even a step further. Commercial cloud
providers (e.g., [5][6][7]) propose to host the company’s
data-centers and services inside virtual machines on the
servers they manage. Hence companies do not need to
maintain hardware servers anymore. By externalizing their
data and services, they can considerably reduce costs,
and enjoy more flexibility, as they can rent the necessary
amount of server resources on demand.
While contents and services moved to a virtual environ-
ment, the network has to take the same direction, to get the
same benefits. By virtualizing not only end-host servers,
but also network nodes and links, the physical network
infrastructure can be shared by several virtual networks,
thus optimizing resource utilization. Users of virtual net-
works have the illusion to manipulate a dedicated network,
and virtual-node and link-migration simplicity can improve
fault tolerance and optimize resource allocation. Hence, the
network becomes a flexible resource which can be booked
on demand, for example by providers, just like companies
rent clouds today. This gives virtual-network providers the
flexibility to allocate resources dynamically over the phys-

ical network and have end-to-end control on their virtual
paths [8]. In this scope, regarding the utilization of virtual
networks on the Internet, isolation is very important to
guarantee confined virtual environments with performance
guarantees to each virtual network operator who wants to
offer a continuous service to its clients.
In this context, research was conducted on infrastructure
virtualization, including virtual routers as a new resource.
As an example, VINI [9] allows several virtual networks
to share a single physical infrastructure. Researchers can
run experiments in isolated virtual network slices with real
routing software they can personalize. Trellis [10] is a
network-hosting platform deployed on the VINI facility. It
is a virtual-network substrate that can run on commodity
hardware. It is built using VServer [11] container-based
virtualization. In this implementation, only the control-
plane is virtualized which enables only limited isolation
between virtual networks. However, these solutions show
interesting new functionalities, hosting several virtualnet-
works with customizable routing paradigms on a single
physical infrastructure. Therefore, data-plane virtualization
is required in addition to control-plane virtualization toadd
the right level of confinement and enable fairness.

B. Data-plane virtualization techniques

Virtualizing the data plane means having a separate
and independent data plane and virtual hardware in each
virtual machine. To manage the virtual hardware, each
virtual machine runs a separate OS and the virtualized
hardware is shared among the virtual machines. Basically,
this sharing can be performed by software emulation of
the hardware, exposing emulated hardware to each vir-
tual machine [12] or using hardware with virtualization
extension [13][14]. As emulation requires the translation
of all the instructions, it has a very important performance
overhead. Using hardware virtualization, virtual machines
instructions are executed directly on the hardware which
offers accelerated performance. Nonetheless, generally not
all hardware supports virtualization. If modern CPUs are
provided with hardware virtualization support, most of the
time I/O devices like network interfaces need to be emu-
lated in software to be used in fully virtualized systems.
An alternative to emulation isparavirtualization, where
each virtual machine uses special virtual drivers to access
the hardware devices. This requires patching the virtual
machine’s OS to include the virtual drivers, but device
access is more efficient because the virtual driver’s design
is adapted to the virtualization mechanism. For this reason,
paravirtualization seems to be the most promising solution
for network-intensive virtual machines—assuming the vir-
tual machine kernels can be patched, which is now possible
for the major OSes. Figure 1 illustrates the difference
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Figure 1. Full virtualization and paravirtualization.

between full- and paravirtualization.
The most commonly used paravirtualization solution is
presently Xen [3]. A more recent virtualization technology
is KVM [15], which initially supported only full virtu-
alization with hardware-assisted CPU virtualization and
emulated I/O device drivers. When the virtual machines
are network-intensive, an important performance overhead
is expected, as emulation is a very costly procedure.
With the appearance of thevirtio [16] tools proposing a
set of virtual I/O drivers, KVM became able to perform
paravirtualization as well, to leverage the I/O performance.
In the following, to shed light on these technologies, Xen’s
and KVM’s network mechanisms are described in detail,
and their performance is evaluated.

III.. Network Virtualization

This section details the mechanisms used by paravirtu-
alization techniques to virtualize the network devices. In
Xen [3], each virtual machine resides in a so-called guest
domain. Among the guest domains, only a driver domain,
domain 0 (dom0) by default, has direct access to the hard-
ware. All the other domains, called domain U (domU) for
”Unprivileged”, need to use virtual interfaces. A virtual-
machine monitor, called hypervisor, manages all the virtual
machines and the access to the hardware devices. In KVM,
the virtual machines are created as device nodes, and
the host system operates as the hypervisor. It runs two

KVM kernel modules, a modified QEMU [12] module
performing hardware-device emulation, and a processor-
dependent module to manage hardware virtualization.

A. Data path in Xen

The virtual machines in Xen access the network hard-
ware through the virtualization layer. Each domU has a
virtual interface for each physical network interface of the
physical machine. This virtual interface is accessed via
a split-device drivercomposed of two parts, the front-
end driver in domU and the back-end driver in dom0
[17]. Figure 2 illustrates the path followed by the network
packets emitted on a virtual machine residing inside a
domU. The memory page where a packet resides in the
domU kernel is either mapped to dom0 or the packet
is copied to a segment of shared memory by the Xen
hypervisor from where it is transmitted to dom0. Inside
dom0, packets are bridged (path 1) or routed (path 2)
between the virtual interfaces and the physical ones. The
reception of packets on a domU is similar. To receive a
packet, domU gives a grant to dom0 so that dom0 can
access the grant page and copy the packet to domU’s kernel
space [18].
The additional path a packet has to go through due to
virtualization is marked by the dashed line. A significant
processing and latency overhead can be expected due to
the additional copy to the shared memory between domU
and dom0. Moreover, the multiplexing and demultiplexing
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Figure 2. Path of a network packet with Xen,
from a domU to the NIC.

of the packets in dom0 can be expensive.

B. Data path in KVM

Similar to Xen, KVM uses a virtual driver in paravirtu-
alization mode. This virtual driver is part of the virtio [16]
I/O drivers used within the Linux kernel. Virtual machine
kernels also use a front-end driver with particular code
to communicate with a back-end driver which interfaces
with the KVM module inside the Linux kernel [19]. This
architecture is represented on Figure 3. To communicate
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Figure 3. Path of a network packet in KVM
using paravirtualization (PV) or full virtualiza-
tion (emulation).

between front-end and back-end, ring-buffers are used for
the implementation of net channels, like in the Xen virtual
driver.
In its original full-virtualization mode, KVM emulates I/O
drivers using a QEMU [12] module in the userspace.

C. Routers data plane virtualization

The described virtualization techniques can be used
for fully (i.e., control-plane and data plane) virtualized
software routers, to implement virtual network infrastruc-
tures as described before. In particular, we used Xen,
to implement such a virtual router, due to its more
promising performance it showed in our end-host exper-
iments, compared to KVM. Figure 4 shows an example
of such an architecture with software routers uploaded
(control- and data-path) into virtual machines to create
virtual routers. In this example, two virtual routers share
the resources (NICs, CPU, memory) of a single physical
server. The governing principle inside such virtual routers

Figure 4. Machine with 2 virtual routers shar-
ing the 2 NICs.

is the same as inside a standard software router, except
that the virtual machines do not have direct access to the
physical hardware interfaces. The packets are forwarded
between the virtual or emulated interfaces and the cor-
responding physical interfaces thanks to a multiplexing
and demultiplexing mechanism. This is implemented in
an intermediate layer located between the hardware and
the virtual machines, which corresponds to the hypervisor
and the host’s operating-system kernel in the virtualization
techniques described before. For example in Xen, this layer
corresponds to the hypervisor and the driver domain or
dom0. As a consequence, there is additional computing
in this model whose impact on the network performance
needs to be analyzed.

D. Performance problem statement

An efficient usage of virtual machines for networking
requires a certain number of non-functional properties like
efficiency, fairness in resource sharing andpredictability
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of performance. We define and evaluate these properties
using the following metrics. GivenN ∈ N the number of
virtual machines inside the considered physical machine,
the defined metrics are listed in Table I.

Ri Throughput of virtual machinei,
i ∈ [1, N ]

Raggregate

N
X

i=1

Ri: aggregate throughput

Raggregate/N Effective fair share of the rate
Ci CPU cost on virtual machinei,

i ∈ [1, N ]

Caggregate

N
X

i=1

Ci: total CPU cost

Li Latency on virtual machinei,
i ∈ [1, N ]

Rclassical(T/R) Throughputs for sending/receiving
Rclassical(F ) and forwarding on classical Linux

without virtualization
Cclassical(T ) CPU costs of sending,
Cclassical(R) receiving and forwarding
Cclassical(F ) on a classical software router
Lclassical(F ) Latency on a classical Linux router

Table I. Metrics.

For our proposal, we define the efficiency in terms of
throughput by (1)

Ethroughput =
Raggregate

Rclassical
(1).

The fairness of the inter-virtual machine resource sharing
is derived from the classical Jain index[20], defined by (2).

Fairness(x) =

[

n
∑

i=1

xi

]2

n ×
n

∑

i=1

x2
i

(2)

where n is the number of virtual machines sharing the
physical resources andxi the metric achieved by each
virtual machinei, for example the throughput or the CPU
percentage.
Predictability and scalability are evaluated analyzing the
performance according to the number of virtual machines.

IV.. Experiments and Analysis

In this section, we examine the impact of the virtualiza-
tion layer on the networking performance. In this context,
at first, virtual end-host performance is evaluated with Xen.
Then it is compared to results obtained on KVM. Finally,
a virtual router is implemented with Xen, which showed

better performance in virtual networking than KVM. This
virtual router’s forwarding performance is then evaluated.

A. Experimental setup

The experiments were all executed on machines re-
served on the fully controlled, and reconfigurable French
national testbed Grid’5000 [21]. The machines used for the
initial experiments on Xen end-hosts were IBM eServers
325, with 2 AMD Opteron 246 CPUs (2.0 GHz/1 MB)
with one core each, 2 GB of memory and a 1 Gb/s NIC.
Virtual routers were built with Xen on IBM eServers 326m,
with 2 AMD Opteron 246 CPUs (2.0GHz/1MB), with one
core each, 2 GB of memory and two 1 Gb/s NICs. The
latest experiments on KVM were executed on more recent
machines provided with hardware virtualization enabled
processors. These were Dell PowerEdges 1950 with two
dual-core Intel Xeon 5148 LV processors (2.33 GHz) and
8 GB of memory. We tested with Xen that performance
was equivalent in these two different hardware configura-
tions. In each experiment, all the machines were located
inside one LAN interconnected by a switch.
The software configurations used were Xen 3.1.0 and
3.2.1 with respectively the modified 2.6.18-3 and 2.6.18.8
Linux kernels. Comparative experiments were performed
on KVM 84 with the Linux 2.6.29 kernel in the host system
as well as in the virtual machine. Measurement tools were
iperf [22] for the TCP throughput,netperf [23] for the
UDP rate,xentopandsar for the CPU utilization, and the
classicalping utility for latency.

B. Evaluation of virtual end-hosts

In the following experiments, network performance
on virtual end-hosts implemented with Xen 3.1 and
Xen 3.2 was evaluated. As some results with Xen 3.1
were not satisfying, dom0 being the bottleneck, a second
run of the experiments on Xen 3.1 was performed,
allocating more CPU time to dom0 (up to 32 times
the part attributed to a domU). This choice was made
as dom0 is in charge of forwarding all the network
traffic between the physical and the virtual interfaces.
This setup will be calledXen 3.1a. In addition, the
obtained results were compared to KVM virtual end-
hosts. KVM was used either in its native full hardware
virtualization setup or using lightweight paravirtualization.

1) Sending performance:In this first experiment, the
TCP sending throughput on 1, 2, 4 and 8 virtual hosts
inside one physical machine, as well as the corresponding
CPU overhead, were evaluated. The throughput per virtual
machine and the aggregate throughput with Xen are
represented on Figure 5. In both Xen configurations,
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Figure 5. TCP Sending throughput on respec-
tively 1, 2, 4 or 8 VMs with Xen versions 3.1
and 3.2.
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during TCP sending on 1, 2, 4 or 8 VMs with
Xen.

3.1 and 3.2, performance was close to classical Linux
throughputRclassical(T/R) = 938 Mb/s. In the 3.1a and
3.2 setups, the aggregated throughput obtained by all the
virtual machines barely reached more throughput than on
3.1. We conclude that in the three cases (3.1, 3.1a, 3.2),
the system is efficient and predictable, in terms of sending
throughput. Indeed, the throughput per virtual machine
corresponds to the fair share of the available bandwidth
of the link (Rtheoretical/N ).

The associated average CPU utilization for each Xen
guest domain is represented on Figure 6. For a single
domU, around half the processing power of the two CPUs
was used in the three setups (Xen 3.1, 3.1a and 3.2),
whereas on a native Linux system without virtualization,
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Figure 7. TCP Sending throughput on 1, 2, 4
or 8 VMs with KVM 84 using paravirtualiza-
tion (PV) or full virtualization (FV).
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we measured that onlyCclassical(E) = 64% of the two
CPUs, out of200%, was in use running the same network
benchmark. In the experiment with 8 domUs, the CPUs
were used at over 140%. The overall CPU overhead did
not differ much between 3.1 and 3.2 setups. However, by
increasing dom0’s CPU weight (setup 3.1a), the overall
CPU cost also increased while leveraging the throughput
insignificantly. We notice that even though virtualization
introduced a processing overhead, two processors like the
ones used in these experiments achieved a throughput
equivalent to the maximum theoretical throughput on
8 concurrent virtual machines, sending TCP flows of
default maximum-sized packets on a 1 Gb/s link. Here,
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Figure 9. TCP Receiving throughput on re-
spectively 1, 2, 4 or 8 VMs with Xen versions
3.1 and 3.2.
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the fairness index was close to 1, bandwidth and CPU
time were fairly shared between the different domUs.

The same experiment was executed on KVM virtual
machines. KVM was used in two different configurations:
paravirtualization (PV) using virtual drivers fromvirtio,
and native full hardware virtualization (FV) where network
drivers are emulated. The results in terms of throughput
are represented on Figure 7. The first point to notice is
that paravirtualization clearly outperformed full hardware
virtualization with network driver emulation. For a single
virtual machine, KVM with full virtualization reached
only around 30% of the native Linux throughput. In
this case, the bottleneck was clearly the CPU utilization.
Figure 8 shows that the entire CPU core assigned to the
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Figure 11. TCP Receiving throughput on 1, 2,
4 or 8 VMs with KVM 84 using paravirtualiza-
tion (PV) and full virtualization (FV).
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evaluated virtual machine was used. In the case of several
virtual machines, where each one was assigned a different
CPU core, the throughput increased, as more CPU cores
were involved.

2) Receiving performance:In this experiment, the
TCP receiving throughput on 1, 2, 4 and 8 concurrent
virtual machines and the corresponding processing
overhead were evaluated. Figure 9 represents the results
of this experiment in terms of TCP throughput per domU
and aggregate throughput with Xen. We notice that the
aggregate throughput decreased slightly according to the
number of virtual machines on Xen 3.1. It reached only
882 Mb/s on a single domU and only 900 Mb/s on a set
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of 8 concurrent domUs, which corresponds to about 96%
of throughputRclassical(T/R) = 938 Mb/s on a classical
Linux system. EfficiencyEthroughput varied between 0.96
for 8 domUs and 0.94 for a single domU. By changing the
scheduler parameters (Xen 3.1a), we managed to improve
the aggregate throughput to reach about 970 Mb/s on
8 virtual machines. Also, setup 3.1a improved fairness
in Xen 3.1, but increased CPU consumption, leading
to a trade-off between determinism and scalability.
Xen 3.2 showed similar trends, leveraging throughput
and removing unfairness (improving the event channel
mechanism [24]). Moreover, CPU utilization decreased
slightly in Xen 3.2, while being more efficient than Xen
3.1, achieving even better throughput. We conclude that
important improvements have been implemented in Xen
3.2 to decrease the excessive dom0 CPU overhead.
[24]. This problem was fixed in Xen 3.2. Providing dom0
with more CPU time simply, as it was done in the 3.1a
setup, allowed also to improve fairness in Xen 3.1 by
giving dom0 enough time to treat all the events before
the scheduler ran out of credits and started switching
unnecessarily between dom0 and domUs. The resulting
fair resource sharing made performance much more
predictable. The measured aggregate receiving throughput
in Xen 3.2 was more similar to the Xen 3.1a results
with the modified scheduler parameters. The throughput
increased by about 6% compared to the default 3.1
version. Figure 10 gives the CPU time distribution among
the guest domains. The total CPU cost of the system
varied between 140% and 150% in the default Xen 3.1
and 3.2 versions, which represents an important overhead
compared to a Linux system without virtualization, where
a network reception takesCclassical(R) = 48% with the
same benchmark. We notice that on the default Xen 3.1,
the efficiency in terms of throughput decreased to around
Ethroughput = 0.91, while the available CPU time was
not entirely consumed. Also, the distribution of the CPU
time consumption among the domUs followed the same
unfairness pattern than for the throughput. This shows
that the virtual machine scheduler on the CPU looses
efficiency when stressed with networking. The fairness
index decreased until only 0.46 on 8 concurrent domUs
on Xen 3.1 because of the described scheduling problem.

In comparison, KVM using the virtualized network
driver achieved very similar results to sending: Using a
single CPU core, as in the case of one virtual machine,
is not enough to achieve maximal Linux throughput as
shows Figure 11. Figure 12 shows that the CPU overhead
for receiving is slightly more important than for sending
using virtio paravirtualization driver. This is similar to
the results obtained with Xen 3.2, which nevertheless
used between 10% and 30% less processing to achieve

the same throughput. In the case of full virtualization,
KVM’s receiving mechanism is more efficient than its
sending mechanism, but it still does not reach Xen’s
performance, needing three of the available CPU cores to
achieve maximum Linux throughput.

C. Evaluation of virtual routers

To figure out the forwarding performance of virtual
routers with 2 NICs, the UDP receiving throughput over
virtual machines sending maximum-sized packets at
maximum link speed over the virtual routers, and the TCP
throughput was measured. Further the latency over virtual
routers was measured. For this experiment, only Xen 3.2
was used, which was the best performing technology in
the previous experiments. The results were obtained on
Xen 3.2 in its default configuration and with increased
weight parameter for dom0 in CPU scheduling (32 times
the part attributed to a domU). We call this setupXen
3.2a in the following.

1) Forwarding performance:To determine the perfor-
mance of virtual routers, UDP traffic was generated with
either maximum- (1500 bytes) or minimum- (64 bytes)
sized packets over one or several virtual routers (from 1 to
8) sharing a single physical machine. All the flows were
sent at the maximum rate from distinct physical machines
to avoid bias. Then, end-to-end TCP throughput was also
evaluated.
Figures 13 show the obtained UDP bit rate with maximum-
sized packets and the TCP throughput. The corresponding
CPU cost is represented in Figure 14. Table II details
the UDP packet rates and the loss rates per domU with
maximum- and minimum-sized packets. With UDP, the
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1500-byte packets.
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Figure 14. CPU cost of 1, 2, 4 or 8 virtual
routers with Xen 3.2 forwarding 1500-byte
packets.

packet loss rate with maximum-sized packets on each
virtual machine corresponded to
1 − Rtheoretical/(N × Rtheoretical).
The bandwidth was fairly shared between the virtual
routers. The results showed efficiency, the throughput cor-
responded to the value obtained on a classical Linux router
Rclassical(F ) = 957 Mb/s. The aggregate UDP throughput
was in some cases a bit higher than the theoretical value
due to little variation in the start times of the different
flows. Resource sharing was fair: in this case, performance
is predictable. With maximum-sized packets, dom0 used an
entire CPU, forwarding at maximum rate with UDP and
only 80% of the maximum throughput with TCP, having
an efficiency ofEthroughput = 0.80. With minimum-sized
packets on 4 or 8 virtual routers, dom0 became overloaded,
not being able to forward on all virtual routers anymore.
Regarding the processing of the router, dom0 used much
more CPU resources than the domUs, compared to the
simple sending or receiving scenario. This is due to the fact
that it has to forward the traffic of twice as many virtual
interfaces than before (16 in the case of 8 virtual routers).
In the case of UDP and TCP with the modified scheduling
parameters (named TCPa), the usage of domU’s CPU was
pushed to its maximum. It used an entire CPU. Hence,
the TCP throughput was obviously limited by dom0’s
processing limitation. In the case of TCP forwarding with
the default CPU scheduling parameters, dom0 did not get
enough processing resources, especially when the number
of virtual routers increased, in turn increasing the number
of virtual interfaces to treat, which caused the throughput
to decrease. With the important overload with 8 virtual
routers, the last domU was not even able to forward packets
anymore, and thus used no CPU.

1500 byte packets 64 byte packets
pps/VM loss/VM pps/VM loss/VM

1 VM 81284 0 % 109685 60 %
2 VM 40841 50 % 12052 96 %
4 VM 20486 75 % / /
8 VM 10393 87 % / /
Linux 81277 0.00 % 356494 0.06 %

Table II. Average UDP packet-forwarding rate
and loss rate per domU.

With TCP, the throughput throttled down, especially
with an increasing number of virtual routers. This might
be related to an increasing latency, discussed in the next
paragraph.

2) Virtual router latency: In this experiment, the la-
tency on one virtual router (VR) was measured, while
concurrent virtual routers (1, 3 or 7) sharing the same
physical machine were either idle or stressed forwarding
maximum-rate TCP flows. Table III represents the results
in both cases. The latency over a virtual router sharing

Latency(ms) Linux 1 VR 2 VR 4 VR 8 VR
idle 0.084 0.147 0.150 0.147 0.154
stressed 0.888 1.376 3.8515

Table III. Latency over one VR among 1, 2, 4 or
8 VRs idle or stressed with TCP forwarding.

the physical machine with other idle virtual routers was
about 0.150 ms, no matter the number of virtual routers,
which was almost the double of the latency on a classical
Linux router Lclassical(F ) = 0.084ms. In the case of a
stressed system, the latency on the considered virtual router
increased with the number of concurrent virtual routers
forwarding maximum throughput TCP flows. The average
latency reached nearly 4 ms on a virtual router sharing the
physical machines with 7 virtual routers forwarding TCP
flows. The more virtual machines asking for the scheduler,
the more the latency on the virtual router increased. For
TCP, this can lead to timeouts. In this case, frequent
retransmissions throttle the throughput down.

V. Related work

The performance of virtual packet transmission in Xen
is a crucial subject and was treated in several papers.
Table IV lists the main network issues of the successive
Xen versions, discussed in this section. On Xen 2.0, Menon
et al. [25] measured default transmit and receive TCP
throughput on a domU below 1000 Mb/s using four 1-
Gigabit NICs, which is much less than the throughput we
measured on Xen 3.2 (940 Mb/s on a single NIC). The
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Key problem Key improvement
Xen End-host throughput VNIC offloading
2.0 (≅25% of CL)[25] I/O channel modif.
Xen Forwarding rate<25% SMP load balancing
3.0 of CL, CPU bottleneck[26] CPU scheduler
Xen Unfairness Event channel modif.[24]
3.1
Xen Small packets I/O
3.2 (memory bottleneck)[27]
KVM CPU overhead virtio virtual driver

Table IV. Comparison of Xen versions and
KVM.

authors improved Xen’s networking performance by mod-
ifying the virtual network interfaces to include hardware
NIC features and optimize the I/O channel between dom0
and domU. After optimization, they obtained results for
transmissions similar to what we obtained on Xen 3.2:
3310 Mb/s on four NICs which corresponds to around
830 Mb/s per NIC, but still less for receptions (only
970 Mb/s on four NICs) which corresponds to only 26%
of Xen 3.2’s receiving throughput.
A study about scheduling on Xen 3 unstable (changeset
15080) [24] confirms our result, with Xen 3.1, of the
unfair bandwidth distribution among the domUs in the
default configuration, with the credit scheduler [28]. The
authors measured an aggregate throughput of less then
800 Mb/s on 7 domUs, varying from less than 25 Mb/s to
around 195 Mb/s per domU. They proposed event-channel
improvements which enhanced the fairness in the sharing
of the bandwidth between the virtual machines, to vary
only about±25 Mb/s on the different domUs. We noticed
this improved fairness in the new Xen 3.2 version.
McIlroy and Sventek in [29] proposed the virtual router
concept to separate traffic into virtual forwarding planes.
In this case, data-plane virtualization offers QoS with
individual packet forwarding. An evaluation of Xen 3.0 for
routers [30] shows that the aggregate forwarding through-
put on two to six domUs reaches less than 25% of what
is achievable on classical Linux for 64-byte frames.
In a recent paper [27], the authors showed that memory
access time is the main system bottleneck with Xen. They
finally proposed a system to map forwarding paths to CPU
cores so that as many packets as possible can be kept in
the closest CPU cache to limit costly memory accesses
[31]. This system is an interesting step to improve the
performance of forwarding in software, but there is no
real data-plane virtualization as packet data remains in
dom0 and only routing is performed in domU. It is an
interesting trade-off between performance and the level of
virtualization in software virtual routers.
In parallel to these evaluations and optimizations of Xen,
KVM appeared as a new full virtualization solution. To
leverage it’s low I/O performance, due to the emulation

of the drivers, paravirtualization was also included within
the virtio drivers. Nevertheless, as our results showed,
Xen outperforms KVM with virtio when it comes to
network virtualization. While virtio is a sort of trade-off
between genericity and performance, Xen’s virtual drivers
are tailored to the Xen technology and, as described before,
have gone through several optimizations. This can explain
its better performance to date.
Another very recent software network virtualization solu-
tion is Crossbow [32], which appeared on OpenSolaris.
Crossbow allows to build virtual NICs using so-called
virtualization lanes. It works with hardware-virtualization-
enabled NICs, and packets are directly classified on layer
2 into the right virtualization lane. In the absence of
hardware virtualization of the NICs, virtual lanes are
implemented entirely in software, but giving no guarantees
on the fairness in the resources sharing. In both cases,
Crossbow is a solution to virtualize the data plane and is
an interesting technology to study as future work.

VI. Conclusion and perspectives

In this article, we evaluated the network performance
of virtual end-hosts and a virtual router we designed and
implemented with Xen. The results were also compared to
KVM virtualization technology. Virtualization mechanisms
like additional copy and I/O scheduling of virtual machines
sharing the physical devices are costly. Nevertheless, our
results show that virtualizing the data plane by forwarding
packets inside the virtual machines becomes a more and
more promising approach with the successive versions of
Xen, improving those mechanisms. We show that end-host
throughput improved in Xen 3.2 compared to 3.1. Also,
previous fairness issues have been corrected. Xen, with
its virtual network drivers, outperforms KVM, offering
higher network transmission rates, as it requires signifi-
cantly less processing power. Virtual routers built with Xen
act similarly to classical Linux routers, while forwarding
big packets. The evaluation of successive Xen versions
shows that the technology is constantly improving and
gives a promising perspective to network virtualization.
However, our results showed an important overhead, due to
additional processing needed, since packets travel through
virtual drivers. For this reason, the best solution to lever-
age performance would probably be to use virtualization-
enabled network interfaces. Our next goal is to evaluate the
impact of executing large-scale applications on concurrent
virtual network topologies with virtual routers performing
network control in terms of routing and bandwidth sharing.
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