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Abstract—This paper presents a knowledge-based detection of 
objects approach using the OWL ontology language, the 
Semantic Web Rule Language, and 3D processing built-ins 
aiming at combining geometrical analysis of 3D point clouds 
and specialist’s knowledge. Here, we share our experience 
regarding the creation of 3D semantic facility model out of 
unorganized 3D point clouds. Thus, a knowledge-based 
detection approach of objects using the OWL ontology language 
is presented. This knowledge is used to define SWRL detection 
rules. In addition, the combination of 3D processing built-ins 
and topological Built-Ins in SWRL rules allows a more flexible 
and intelligent detection, and the annotation of objects 
contained in 3D point clouds. The created WiDOP prototype 
takes a set of 3D point clouds as input, and produces as output a 
populated ontology corresponding to an indexed scene 
visualized within VRML language. The context of the study is 
the detection of railway objects materialized within the 
Deutsche Bahn scene such as signals, technical cupboards, 
electric poles, etc. Thus, the resulting enriched and populated 
ontology, that contains the annotations of objects in the point 
clouds, is used to feed a GIS system or an IFC file for 
architecture purposes. 

Keywords-Ontology; Semantic facility information model; 
Semantic VRML model; Geometric analysis; Topologic analysis; 
3D processing algorithm, Semantic web; knowledge modeling; 
ontology; 3D scene reconstruction; object identification. 

I.  INTRODUCTION 

Surveying with 3D scanners is spreading all domains. 
With every new scanner model on the market, the 
instruments become faster, more accurate and can scan 
objects at longer distances [1]. Such a technology presents a 
powerful tool for many applications and has partially 
replaced traditional surveying methods since it can speed up 
field work significantly. This method allows the creation of 
3D point clouds from objects or landscapes.  

From the other side, the technical survey of facility aims 
to build a digital model based on geometric analysis. Such a 
process becomes more and more tedious. Especially, with the 
new terrestrial laser scanners, where a huge amount of 3D 
point clouds are generated. Within such a scenario, new 
challenges have seen the light where the basic one is to make 
the reconstruction process automatic and more accurate. 
Thus, early works on 3D point clouds have investigated the 
reconstruction and the recognition of geometrical shapes [2] 
[3] to resolve this challenge. In fact, such a problematic was 

investigated as a topic of the computer graphic and the signal 
processing research, where most works focused on 
segmentation or visualization aspects. As most-recent  works, 
the new tendency related to the use of semantic has been 
explored [4]. As a main operation, the technical survey relies 
fundamentally on the object reconstruction process where 
considerable effort has already been invested to reduce the 
impact of time consuming, manual activities and to substitute 
them by numerical algorithms.  

Unfortunately, most of algorithmic conceptions are data-
driven and concentrate on specific features of the objects, 
being accessible to numerical models. By these models, 
which normally describe the behavior of geometrical 
(flatness, roughness, for example) or physical features (color, 
texture), the data are classified and analyzed. Basically, such 
strategies are static and not to allow a dynamic adjustment to 
the object or initial processing results. In further scenarios, an 
algorithm will be applied to the data producing better or 
minor results, depending on several parameters like image or 
point cloud quality, the completeness of object 
representation, the viewpoints position, the complexity of 
object features, the use of control parameters and so on. 
Consequently, there is no feedback to the algorithmic part in 
order to choose a different algorithm or reuse the same 
algorithm with changed parameters. This interaction is 
mainly up to the user who has to decide by himself, which 
algorithms to apply for which kind of objects and data sets. 
Often good results can only be achieved by iterative 
processing controlled by a human interaction. 

These problems can be solved when further 
supplementary and guiding information is integrated into the 
algorithmic process chain for object detection and 
recognition, allowing to support the process of validation. 
Such an information might be derived from the context of the 
object itself and its behavior with respect to the data and/or 
other objects or from a systematic characterization of the 
parameterization and effectiveness of the algorithms to be 
used. As programming languages used in the context of 
numerical treatments are not dedicated to process knowledge,  
their condition of use is not flexible and makes the 
integration of semantic aspects difficult.  

Ontologies are used to represent formally the knowledge 
of a domain. The basic ideas were to present knowledge 
using graphs and logical structure to make computers able to 
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understand and process knowledge [5]. As most recent 
works, the tendency related to the use of semantic has been 
explored [4][10][21]. In fact, the assumption that knowledge 
will help the improvement of the automation, the accuracy 
and the result quality is shared by specialists of the point 
cloud processing. However, many questions remain without 
answers. How the detection process can get support within 
different knowledge about the scene objects and what is the 
impact of this knowledge compared to classic approach. In 
such scenario, knowledge about such objects has to include 
detailed information about the objects' geometry, structure, 
3D algorithms, etc. 

The technical survey of facilities, as a long and costly 
process, aims at building a digital model based on geometric 
analysis since the modeling of a facility as a set of vectors is 
not sufficient in most cases. To resolve this problem a new 
standard was developed over ten years by the International 
Alliance for Interoperability (IAI).) It is named the IFC 
format (IFC - Industry Foundation Classes) [8]. The 
specification is a neutral data format to describe exchange 
and share information typically used within the building and 
facility management industry. This norm considers the 
building elements as independent objects where each object 
is characterized by a 3D representation and defined by a 
semantic normalized label. Consequently, the architects and 
the experts are not the only ones who are able to recognize 
the elements, but everyone will be able to do it, including the 
system itself. For instance, an IFC "Signal" is not just a 
simple collection of lines and geometric primitives 
recognized as a signal; it is an “intelligent” object signal 
which has attributes linked to a geometrical definition and 
function. IFC files are made of objects and connections 
between these objects. Object attributes describe the 
“business semantic” of the object. Connections between 
objects are represented by “relation elements” [1]. 

As a matter of fact, the WiDOP project (knowledge-based 
detection of objects in point clouds) aims at making a step 
forward. The goal is to develop efficient and intelligent 
methods for an automated processing of terrestrial laser 
scanner data, Figure 1. The principle of the WiDop project is a 
knowledge-based detection of objects in point clouds for AEC 
(Architecture, Engineering and Construction) engineering 
applications using IFC format. In contrast to existing 
approaches, the project consists in using prior knowledge 
about the context and the objects. This knowledge is extracted 
from databases, CAD plans, Geographic Information Systems 
(GIS), technical reports or domain experts. Therefore, this 
knowledge is the basis for a selective knowledge-oriented 
detection and recognition of objects in point clouds.  

The project WiDOP is Funded by the German 
government. However, the partners are the Fraport company 
(Frankfurt Airport manager), the German railway company 
(Deutsche Bahn), and the Metronom company which is 
specialized in 3D point cloud processing. Where the 
Deutsche Bahn main concerns are the management of the 
railway furniture. Actually, the environment of the railway is 
constantly changing. Where the cost of keeping these plans 
up to date is increasing. The present-time solution adopted by 
the Deutsche Bahn (DB) consists on fixing a 3D terrestrial 

laser scanner on the train and to survey the surrounding 
landscape (Railway, signals and green trees on the borders). 
Metronom automation is a DB subcontractor specialized in 
3D data processing. This partner takes the survey point 
clouds as input and detects the different existent elements 
manually helped with some 3D process like spike detection. 
The main objective of Deutsch Bahn project consists in 
detecting automatically the objects in the 3D point clouds to 
feed the position and the semantic definition of objects into a 
GIS system.  

 
 

 
Figure 1. Automatic processing compared to the manual one 

 
The present project aims at building a bridge between the 

semantic modeling and the numerical processing, to define 
strategies based on domain knowledge and 3D processing 
knowledge. The knowledge will be structured in ontologies 
containing a variety of elements like already existing 
information about objects of that scene. Like data sources 
(digital maps, geographical information systems, etc.), 
information about the objects' characteristics, the hierarchy of 
the sub-elements, the geometrical topology, the 
characteristics of processing algorithms, etc. In addition, all 
relevant information about the objects, geometries, inter and 
intra-relation and the 3D processing algorithms have been 
modeled inside the knowledge base, including characteristics 
such as positions, geometrics information, images textures, 
behavior and parameter of suitable algorithms, for example. 
The suggested system is materialized via WiDOP project [6]. 
Furthermore, the created WiDOP platform can  generate an 
indexed scene from unorganized 3D point clouds visualized 
within the virtual reality modeling language. [7]. 

II. BACKGROUND CONCEPT AND METHODOLOGY 

The problematic of 3D object detection and scene 
reconstruction, including semantic knowledge was recently 
treated within different domains. Basically, the 
photogrammetry one [9], the construction one, the robotics 
[10] and recently the knowledge engineering one [11]. 
Modeling a survey, in which low-level point cloud or 
surface representation is transformed into a semantically 
rich model is done through three main tasks. T first is the 
data collection, in which dense point measurements of the 
facility are collected using laser scans taken from key 
locations throughout the facility; Then data processing, in 
which the sets of point clouds from the collected scanners 
are processed. Finally, modeling the survey in which the 
low-level point cloud is transformed into a semantically rich 
model. This is done via modeling geometric knowledge, 
qualifying topological relations and finally assigning an 
object category to each geometry [12]. Concerning the 

2

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



geometry modeling, we remind here that the goal is to create 
simplified representations of facility components by fitting 
geometric primitives to the point cloud data. The modeled 
components are labeled with an object category. 
Establishing relationships between components is important 
in a facility model and must also be established. In fact, 
relationships between objects in a facility model are useful 
in many scenarios. In addition, spatial relationships between 
objects provide contextual information to assist in object 
recognition [13]. Within the literature, three main strategies 
are described to rich such a model where the first one is 
based on human interaction with provided software’s for 
point clouds classifications and annotations [14]. While the 
second strategy relies more on the automatic data processing 
without any human interaction by using different 
segmentation techniques for feature extraction [10]. Finally, 
new techniques presenting an improvement compared with 
the cited ones by integrating semantic networks to guide the 
reconstruction process are presented in [15]. 

A. Manual survey model creation 

In current practice, the creation of a facility model is 
largely a manual process, performed by service providers 
who are contracted to scan and model a facility. In reality, a 
project may require several months to be achieved, 
depending on the complexity of the facility and the modeling 
requirements. Reverse engineering tools excel at geometric 
modeling of surfaces, but with the lack of volumetric 
representations, while such design systems cannot handle the 
massive data sets from laser scanners. As a result, modelers 
often shuttle intermediate results back and forth between 
different software packages during the modeling process, 
giving rise to the possibility of information loss due to 
limitations of data exchange standards or errors in the 
implementation of the standards within the software tools 
[16]. Prior knowledge about component geometry, such as 
the diameter of a column, can be used to constrain the 
modeling process, or the characteristics of known 
components may be kept in a standard component library. 
Finally, the class of the detected geometry is determined by 
the modeler once the object is created. In some cases, 
relationships between components are established either 
manually or in a semi-automated manner.  

B. Semi-Automatic and Automatic methods 

The manual process for constructing a survey model is 
time consuming, labor-intensive, tedious, subjective, and 
requires skilled workers. Even if modeling of individual 
geometric primitives can be fairly quick, modeling a facility 
may require thousands of primitives. The combined modeling 
time can be several months for an average-sized  facility. 
Since the same types of primitives must be modeled 
throughout a facility, the steps are highly repetitive and 
tedious [17]. The above-mentioned  observations and others 
illustrate the need for semi-automated and automated 
techniques for facility model creation. Ideally, a system could 
be developed that would take a point cloud of a facility as 
input and produce a fully annotated as-built model of the 
facility as output. The first step within the automatic process 

is the geometric modeling. It presents the process of 
constructing simplified representations of the 3D shape for 
survey components from point cloud data. In general, the 
shape representation is supported by CSG [18] or B-Rep [19] 
representation. The representation of geometric shapes has 
been studied extensively [20]. Once geometric elements are 
detected and stored via a specific presentation, the final task 
within a facility modeling is the object recognition. It 
presents the process of labeling a set of data points or 
geometric primitives extracted from the data with a named 
object or object class. Whereas the modeling task would find 
a set of points to be a vertical plane, the recognition task 
would label that plane as being a wall, for instance. Often, 
the knowledge describing the shapes to be recognized is 
encoded in a set of descriptors that implicitly capture object 
shape. Research on recognition of facilities specific 
components is still in its early stages. Methods in this 
category typically perform an initial shape-based 
segmentation of the scene, into planar regions, for example, 
and then use features derived from the segments to recognize 
objects. This approach is exemplified by Rusu et al. who use 
heuristics to detect walls, floors, ceilings, and cabinets in a 
kitchen environment [10]. A similar approach was proposed 
by Pu and Vosselman to model facility façades [21].  

To reduce the search space of object recognition 
algorithms, the use of knowledge related to a specific facility 
can be a fundamental solution. For instance, Yue et al. 
overlay a design model of a facility with the as-built point 
cloud to guide the process of identifying which points clouds 
data belong to specific objects and to detect differences 
between the as-built and as-designed conditions [22]. In such 
cases, object recognition problem is simplified to be a 
matching problem between the scene model entities and the 
data points. Another similar approach is presented in [23]. 
Other promising approaches have only been tested on limited 
and very simple examples, and it is equally difficult to 
predict how they would fare when faced with more complex 
and realistic data sets. For example, the semantic network 
methods for recognizing components using context work well 
for simple examples of hallways and barren, rectangular 
rooms [13], but how would they handle spaces with complex 
geometries and clutter.  

C. Discussion 

The presented methods for survey modeling and object 
recognition rely on knowledge about the domain. Concepts 
like “Signals are vertical” and “Signals intersect with the 
ground” are encoded explicitly through a set of rules. Such 
rule based approaches tend to be brittle and break down when 
they are tested in new and slightly different environments. 
Additionally, regarding the literature, people models the 
context by specifying the concepts and the relationships of 
objects to describe the world. However, no one mentions the 
knowledge about the 3D processing algorithms and the 
associated results such as the geometry and the topology.  

Based on these observations, flexible representations of 
facility objects and more sophisticated guidance based 
algorithms for object detection by modeling algorithmic, 
geometric and topological knowledge within an ontology 
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structure  the way of a significant improvement. Actually, it 
will allow the process to create a dynamic sequence of 3D 
processing algorithms for object detections and to guarantee 
an automatic detection and recognition of objects in 3D point 
clouds, materialized via the semantic annotation process.  

III.  OVERVIEW OF THE WIDOP GENERAL MODEL  

In general, mathematical algorithms contain different data 
processing steps, which are combined with internal decisions 
based on numerical results. This makes the processing 
inflexible and error prone, especially when the data does not 
behave as the model behind the algorithm expects. One of the 
purposes behind this contribution is to put these implicit 
decisions outside, make a semantic layer out of it and 
combine it with the object model. This approach is more 
flexible and can be easily extended, since knowledge and data 
processing are separated. 

 

 
 

Figure 2. WiDOP: Overview system 
 
Figure 2 presents the general architecture for the WiDOP 

project. It is composed of three parts: the knowledge model, 
the 3D processing algorithms execution, and the interaction 
management and control part labeled WiDOP processing 
materialized within rules and extensions, ensuring the 
interaction between the above sited parts. In contrast with 
existing approaches, we aim at the utilization of previous 
knowledge on objects. This knowledge can be contained in 
databases, construction plans, as-built plans or Geographic 
Information Systems (GIS).  

A. The knowledge model 

The term “Semantic Web” has been defined numerous 
time. Though there is no formal definition of Semantic Web, 
some of its most used definitions are “The Semantic Web is 
not a separate Web but an extension of the current one, in 
which information is given well-defined meaning, better 
enabling computers and people to work in cooperation” [28]. 
It is a source to retrieve information from the Web (using the 

Web spiders from RDF files) and access the data through 
Semantic Web Agents or Semantic Web Services. Simply, 
Semantic Web is data about data or metadata. “A Semantic 
Web is a Web where the focus is placed on the meaning of 
words, rather than on the words themselves, where 
information becomes knowledge after semantic analysis is 
performed. For this reason, a Semantic Web is a network of 
knowledge, compared with what we have today, that can be 
defined as a network of information [29]. The Semantic Web 
provides a common framework that allows data to be shared 
and reused across application, enterprise and community 
boundaries [30]. In fact, description logics provide a 
formalization for knowledge representation of real-world 
situations. This provides the logical replies to the queries of 
real-world situations. The results are highly sophisticated 
reasoning engines, which utilize the expressiveness 
capabilities of DLs to manipulate the knowledge. A 
Knowledge Representation system is a formal representation 
of a knowledge described through different technologies. 
When it is described through DLs, they set up a Knowledge 
Base (KB), the contents of which could be reasoned or infer to 
manipulate them. A knowledge base could be considered as a 
complete package of knowledge content. It is, however, only a 
subset of a Knowledge Representation system that contains 
additional components. 
 

 
Figure 3. The Architecture of a knowledge representation system 

 
As seen in Figure 3, the author [31] sketches the architecture 
of any Knowledge Representation system based on DLs. It 
could be seen the central theme of such a system is a 
Knowledge Base (KB). It is composed by two components: 
the TBox and the ABox. TBox statements are the terms or the 
terminologies that are used within the system domain. In 
general, they are statements describing the domain through 
the controlled vocabularies. For example, in terms of a 
Deutsche Bahn domain the TBox statements are the set of 
concepts as Signal, Fourniture, ProcessingAlgorithm, etc. or 
the set of roles as hasCharacteristics, isDeseignedFor, 
hasGeometry etc. ABox in contains assertions to the TBox 
statements. For example, Wall1 is an ABox presents the TBox 
Wall.   

Our approach is intended to use semantics based on OWL 
technology [44] for knowledge modeling and processing. 
Knowledge has to be structured and formalized based on IFC 
schema, XML files and particularly on Deutsche Bahn and 3D 
processing domain experts, etc., using classes, instances, 
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relations and rules. An object in the ontology can be modeled 
as presented; a room has elements composed of walls, a 
ceiling and a floor. The sited elements are basic objects. They 
are defined by their geometry (plane, boundary, etc.), features 
(roughness, appearance, etc.), and also the qualified relations 
between them (adjacent, perpendicular, etc.). The object 
“room” gets its geometry from its elements, where further 
characteristics may be added, such as functions in order to 
estimate the existent sub elements. For instance, a 
“classroom” will contain “tables”, “chairs”, “a blackboard”, 
etc. The research of the object “room” will be based on an 
algorithmic strategy which will look for the different objects 
contained in the point cloud. This means, using different 
detection algorithms for each element, based on the above 
mentioned characteristics, will allow us to classify most of the 
point region in the different element categories. It corresponds 
to the spatial structure of any facility, and it is an instance of 
semantic knowledge defined in the ontology. This instance 
defines the rough geometry and the semantics of the building 
elements without any real measurement. This model contains 
also knowledge extracted from the technical literature of the 
domain and knowledge from experts of the domain also. In 
addition, the ontology is, as well enriched with knowledge 
about 3D processing algorithms and populated with the results 
of experiences undertaken on 3D point clouds, which define 
the empirical knowledge extracted from point clouds 
regarding a specific domain of application. 

B. The 3D processing algorithms 

Numerical processing includes a number of algorithms or 
their combination to process the spatial data. Strategies 
include geometric element detection (straight line, plane, 
surface, etc.), projection-based,  region estimation, histogram 
matrices, etc. All of these strategies are either under the 
guidance of knowledge, or use the previous knowledge to 
estimate the object intelligently and optimally. Alongside with 
3D point clouds, various types of input data sets can be used 
such as images, range images, point clouds with intensity or 
color values, point clouds with individual images oriented to 
them or even stereo images without a point cloud. All sources 
are exploited for application to particular strategies. 
Knowledge not only describes the information of the objects, 
but also gives a framework for the control of the selected 
strategies. The success rate of detection algorithms using 
RANSAC [24], Iterative Closest Point [25] and Least Squares 
Fitting [26] should significantly increase by making use of the 
knowledge background. However, we are planning not only to 
process point data sets, but also surface and volume 
representation like mesh, voxels and bounding Boxes. These 
methods and others will be selected in a flexible way, 
depending on the semantic context. 

C. The WiDOP processing 

In order to manage the interaction between the knowledge 
part and the 3D processing part, a new layer labeled WiDOP 
processing materialized within rules is created. This layer 
ensures the control and the management of the knowledge 
transaction and the decision taken based on SWRL languages, 
and its extensions through several steps explained in the next 

section. The semantic within the ontologies expressed through 
OWL can be used inside the ontologies, and the knowledge 
bases themselves for inference purposes. However, in order to 
express the rules, the Semantic Web Rule Language (SWRL)  
is emerged [45]. The SWRL has the form antecedent � 
consequent, where both antecedent and consequent are 
conjunctions of atoms written a1 ∧ ... ∧ an. Atoms in swrl rules 
can be of the form C(x), P(x,y), Q(x,z), sameAs(x,y), 
differentFrom(x,y), or builtIn (pred, z1, …, zn), where C is an 
OWL description, P is an OWL individual-valued property, Q 
is an OWL data-valued property, pred is a datatype predicate, 
x and y are either individual-valued variables or OWL 
individuals, and z, z1, … zn are either data-valued variables or 
OWL data literals. An OWL data literal is either a typed 
literal or a plain literal. Variables are indicated by using the 
standard convention of prefixing them with a question mark 
(e.g., ?x). URI references (URIrefs) are used to identify 
ontology elements such as classes, individual-valued 
properties and data-valued properties. For instance, the 
following rule asserts that one's parents' brothers are one's 
uncles where parent, brother and uncle are all individual-
valued properties. 

 
parent(?x, ?p) ∧ brother(?p, ?u) � uncle(?x, ?u)           (1) 
 
The set of built-ins for SWRL are motivated by a modular 

approach allowing further extensions in future releases within 
a taxonomy. SWRL's built-ins approach is also based on the 
reuse of existing built-ins in XQuery or XPath, which are 
themselves based on XML Schema by using Datatypes. The 
system of built-ins should as well help in the interoperation of 
SWRL with other Web formalisms, by providing an 
extensible, modular built-ins infrastructure for Semantic Web 
Languages, Web Services, and Web applications. Many built-
ins are defined. These built-ins are keys for any external 
integration. This project takes advantages of this extensional 
mechanism to integrate new Built-ins for 3D processing and 
topological processing. 

D. Interaction process 

To focus on our method for the combination of the 
Semantic Web technologies and the 3D processing 
algorithms, Figure 4   illustrates an UML sequence diagram 
that represents the general design of the proposed solution. 
Hence, the purpose is to create a more flexible, easily 
extended approach where algorithms will be executed 
reasonably and adaptively on particular situations following 
an interaction process. 

 

 
Figure 4. The sequence diagram of interactions between the laser scanner, 

the 3D processing, the knowledge processing and the knowledge base. 
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The processing steps can be detailed where three main 
steps aim at detecting and identifying objects.  
 

(3) From 3D point clouds to geometric elements.  
(4) From geometry to topological relations.  
(5) From geometric and/or topological relations to 
semantic elements annotated. 

 
As intermediate steps, the different geometries within 

specific 3D point clouds are detected and stored in the 
ontology structure. Once done, the existent topological 
relations between the detected geometries are qualified and 
then populated within the prior knowledge. Finally, detected 
geometries are annotated semantically, based on existing 
knowledge’s related to the geometric characteristics and 
topological relations. The input ontology contains knowledge 
about the Deutsche Bahn railway objects and knowledge 
about 3D processing algorithms.  

IV. DESCRIPTION OF THE WIDOP KNOWLEDGE BASE 

This section discusses the different aspects related to the 
Deutsche Bahn scene ontology structure installed behind the 
WiDOP Deutsche Bahn prototype [11]. The domain ontology 
presents the core of WiDOP project and provides a 
knowledge base to the created application. The global 
schema of the modeled ontology structure offers a suitable 
framework to characterize the different Deutsche Bahn 
elements from the 3D processing point of view. The created 
ontology is used basically for two purposes: 

 
• To guide the processing algorithm sequence creation 

based on the target object characteristics. 
• To facilitate the semantic annotation of the different 

detected objects inside the target scene. 

The current ontology, following to above considerations and 
with respect to technological possibilities, will be modeled in 
various levels. In principle, we have to distinguish between 
object-related knowledge and algorithmic related knowledge. 
In addition, the same distinction has to be done on the layer 
of the object knowledge and the layer of the algorithmic 
knowledge containing the respective semantic information. In 
fact, the ontology is managed through different components 
of description logics where we find five main classes within 
other data and objects properties able to characterize the 
scene in question. 

• Algorithm 
• Geometry 
• DomainConcept 
• Characteristics 
• Scene 

The DomainConcept class can be considered as the main 
class in the ontology as it is the class where the target objects 
are modeled. However, the importance of other classes 
cannot be ignored. They are used to either describe the object 

geometry, through the Geometry class by defining its 
geometric component or the bounding rectangle of the object 
that indicate its coordinates, or to either describe its 
characteristics through the Characteristics class. 
Additionally, the suitable algorithms are automatically 
selected based on its compatibility within the object 
geometry and characteristics. Add to that, other classes are 
equally significant but play their roles in the backend. The 
connection between the basic mentioned classes is carried out 
through object and data properties. There exist object 
properties for each mentioned activities. Besides, the object 
properties are also used to relate an object to other objects via 
topological relations. In general, there are five general object 
properties in the ontology which have their specialized 
properties for the specialized activities, Figure 5. They are: 

• hasTopologicRelation 
• IsDeseignedFor 
• hasGeometry 
• hasCharacteristics 

 
 

 
 

 
Figure 5. Ontology general schema overview 

 
The next sections focus on the layers, the object and the 

algorithmic knowledge definition.  

A. Layers of object knowledge  

The object knowledge layer will be classified in three 
categories: geometric, topological and semantic knowledge 
representing a certain scenario [35]. Therefore we distinguish 
between: 

• Deutsche Bahn Scene knowledge  
• Geometric knowledge 
• Topological knowledge 

 
1) Layer of the Deutsche Bahn Scene knowledge  
The layer of object knowledge contains all relevant 

information about objects and elements which might be 
found within a Deutsch Bahn scene. This might comprise a 
list such as: {Signals, Mast, Schalanlage, etc.}. They are used 
to fix either the main scene within its point clouds file and its 
size through attributes related to the scene class, or even to 
characterize detected element with different semantic and 
geometric characteristics.  
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The created knowledge base related to the Deutsche Bahn 
scene has been inspired next to our discussion with the 
domain expert and next to our study based on the official 
Web site for the German rail way specification [46]. An 
overview of the targeted elements, the most useful and 
discriminant characteristics to detect it and their inter-
relationship is presented. 

 
Table 1. EXAMPLE OF THE DB SCENE OBJECTS 

 
Class 

 
Sub Class Subsub Class Height Correspondent 

image 

Signals 

Basic Signals 

Main Signal 
Between 
4 and 6 

m 

 

Distant Signal 
Between 
4 and 6 

m 

Secondary 
signal 

Vorsignalbake 
between 
1,5 and 
2.5 m 

Breakpoint_ta
ble 

between 
1 and 2 

m 

Chess_board 
between 
1 and 1,5 

m 

 
Mast 

BigMast More than 6m  

 

NormalMast Between 5 
and 6  

Schaltanlag
e 

Schalthause Less than 1m  

 

SchaltSchran
k 

Less than 
0,5m  

 

 
 
 
Table 1 shows a possible collection of scene elements in 

case of a Deutsche Bahn scene. They may be additionally 
structured in a hierarchical order as might be seen convenient 
for a scene, while Figure 6 shows the suggested structure to 
model them within the OWL language. 

Basically, a railway signal is one of the most important 
elements within the Deutsche Bahn scene, where we find 
main signals and secondary ones. The main signals are 
classified onto the primary signal and the distant ones. In 
fact, the primary signal is a railway signal. It indicates 
whether the subsequent section of track may be driven on. A 
primary signal is usually announced through a distant signal. 
The last one indicates which image signal to be expected, that 
will be associated to the main signal in a distance of 1 km. 
Big variety of secondary signals exists like the 

Vorsignalbake, the Haltepunkt and others. From the other 
side, the other discriminant elements within the same scene 
are the Masts presenting electricity born for the energy 
alimentation. Usually, masts are distant from 50 m to each 
other. Finally, the Schaltanlage elements present small 
electric born connected to the ground. 

 

 
Figure 6. Example of the DB scene objects modeling 

 
Additionally, the above cited concepts are extended by 

relations to other classes or data. As an example, the data 
property “has_Bounding_Box” aims to store the placement of 
the detected object in a bounding box defined by its eight 3D 
points (each 3D point is defined by three values x, y and z).  
To specify its semantic characteristics, new classes are 
created, aiming to characterize a semantic object by a set of 
characteristics like color, size, visibility, texture, orientation 
and its position in the point cloud after detection. To do so, 
new object properties like “has_Color”, “ has_Size”, 
“has_Orientation”, “ has_Visibility” and “has_Texture” are 
created linking the Semantic_Object class to the “color”, 
“size”, “Orientation”, “Visibility”  and “Texture” classes 
respectively. 
 

2) Layer of the geometric knowledge  
Geometrical knowledge formulates geometrical 

characteristics to the physical properties of scene elements. In 
the simplest case, this information might be limited to few 
coordinates expressing a bounding box containing the object. 
However, for elements being accessible to functional 
descriptions, additional knowledge will be mentioned. A 
signal, for example, has vertical lines, which needs to be 
described by a line equation, its values and completed by 
width and height. In fact, we think that such knowledge can 
present a discriminant feature able to improve the automatic 
annotation process. For this reason, we opt to study the 
different geometric features related to the cited semantic 
elements, then, use only the discriminant one as basic features 
for a given object. The following table gathers the object 
characteristics together regarding the properties of a bounding 
box,  

Table 2, Figure 6. This table is extended with algorithm 
characteristics, but it is not presented here. 
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Figure 7. The geometry class hierarchy 

 
 

Table 2. Geometric characteristics overview 
 

Class 
 

SubClass Subsub Class Restriction on 
Line number 

Restriction on 
Planes number 

Signals Basic Signals Main Signal 1 or 2 Vertical 
line 

0 

Distant Signal 1 or 2 Vertical 
line 

0 

Secondary 
signal 

Vorsignalbake 1 Vertical line 1 Vertical 
plane 

Breakpoint_table 2 Vertical 
lines 

1 Vertical Plan 

Chess_board 1 Vertical line 1 Vertical 
plane 

Mast BigMast More than 6m 2 or 4 vertical 
lines 

0 

NormalMast Between 5 and 6 2 or 4 vertical 
lines 

0 

Schaltanlage Schalthause Less than 1m  1 Vertical 
plane 

1 Horizontal 
plane 

SchaltSchrank Less than 0,5m  1 vertical 
plane 

 
3) Layer of the topological knowledge  
While exploring the railway domain, lots of standard 

topological rules are imposed; such rules are used to help the 
driver and to ensure the passengers' security. From our point 
of view, these are helpful also to verify and to guide the 
annotation process.  In fact, topological knowledge represents 
adjacency relationships between scene elements. For 
instance, and in case of the Deutsche Bahn scene, the 
distance between the distant signal and the main one 
corresponds to the stopping distance that the trains require. 
The stopping distance shall be set on specific route and is in 
the main lines often 1000 m or in a rare case, 700 m. Add to 
that, three to five Vorsignalbake are distant from 75m while 
then the last one is distant from 100m to the distant signal, 
Figure 8. 

 
 

 
Figure 8: Topologic rules 

 
The purpose of such object properties is to spatially 

connect Things presented in the scene. At semantic view, 
topological properties describe adjacency relations between 
classes. For example, the property isParallelTo allows 
characterizing two geometric concepts by the feature of 
parallelism. Similarly relations like isPerpendicularTo and 
isConnectedTo will help to characterize and exploit certain 
spatial relations and make them accessible to reasoning steps. 

B. Layer of processing knowledge  

The 3D processing algorithmic layer contains all relevant 
aspects related to the 3D processing algorithms. It´s 
integration into the semantic framework is done by special 
Built-Ins called “Processing Built-Ins”. They manage the 
interaction between above mentioned layers. In addition, it 
contains algorithm definitions, properties, and geometries 
related to each defined algorithms. An importance 
achievement is the detection and the identification of objects, 
which has a linear structure such as signal, indicator column, 
and electric pole, etc., through utilizing their geometric 
properties. Since the information in point cloud data 
sometimes is unclear and insufficient, the various methods to 
RANSAC [24] are combined and upgraded. This 
combination is able to robustly detect the best fitting lines in 
3D point clouds for example.  

 
 

Figure 9. Mast detection 
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Figure 9 contains the Mast object constructed by linear 
elements, ambiguously represented in point cloud as blue 
points. Green lines are results of possible fitting lines and 
clearly show the shape of the object that is defined in the 
ontology. The object generated from this part is a bounding 
box that includes all inside geometries of the object and a 
concept label. 

Next to the 3D expert recommendation, knowledge within 
the Table 3 is created, where a set of 3D processing 
algorithms within the target detected geometry are structured; 
the input and output are created. 
 

Table 3. 3D Algorithms and experts observations 
 

Algorithm 
name 

has Input hasOutput isDesignedfor hasSuccessor 

Vertical 
Objects 

Detection 

PointCloud Point_2D Vertical 
gemetry 

None 
 
 
 

Segmentationi
n2D 

Point_2D 
PointCloud 

 

SubPointClo
ud 

Vertical 
gemetry 

VerticalObjec
tsDetection 

BoundingBox SubPointClo
ud 
 

Point_3D Vertical 
gemetry 

Segmentation
in2D 

Approximate
Height 

SubPointClo
ud 
 

number Geometry 
height 

 

Segmentation
in2D 

RANSAC 
Line Detection 

SubPointClo
ud 
 

Line_3D 3D  Lines Segmentation
in2D) 

FrontFaceDet
ection 

SubPointClo
ud 
 

Boolean Geometry 
with front 

face 

Segmentation
in2D 

CheckPerpen
dicular 

Line_3D 
 

Boolean 
angle 

Geometry 
containing 

Perpendicular 
elements 

LinesDetectio
nin3DbyRAN

SAC 

CheckParallel Line_3D 
 

Boolean                   
angle 

Geometry 
containing 

Parallel  
elements 

LinesDetectio
nin3DbyRAN

SAC 

 
The subclasses of the Algorithm class, Figure 10, are 

representing all the algorithms developed in the 3D 
processing layer. They are related to several properties which 
they are able to detect. These properties (Geometric and 
semantic) are shared with the DomainConcept and the 
Geometry classes. By this way, a sequence of algorithms can 
detect all the characteristics of an element. 
 

 
Figure 10. Hierarchical structure of the Algorithm class 

 

The next section introduces an overview of the approach 
undertaken in the WiDOP project to detect and annotate 
semantically the different Deutsch Bahn objects. 

V. INTELLIGENT PROCESS 

The basic strength of formal ontology is their ability to 
reason in a logical way based on Descriptive Logic language 
DL [36]. The last one presents a form of logic to reason on 
objects. Lots of reasoners exist nowadays like Pellet [37], and 
KAON [38]. Actually, despite the richness of OWL's set of 
relational properties, the axioms does not cover the full range 
of expressive possibilities for object relationships that we 
might find, since it is useful to declare relationship in term of 
conditions or even rules. These rules are used through 
different rules languages to enhance the knowledge possess 
in an ontology.  

Within the WiDOP project, the domain ontologies are used 
to define the concepts, and the necessary and sufficient 
conditions that describe the concepts. These conditions are of 
value, because they are used to populate new concepts. For 
instance, the concept “Vertical_BoudinBox” can be 
specialized into “Signal” if it contains a “VerticalLines”. 
Consequently, the concept “Signal” will be populated with all 
“Vertical_BoudinBox” if they are linked to a “VerticalLines” 
with certain parameters. In addition, the rules are used to 
compute more complex results such as the topological 
relationships between objects. For instance, the relations 
between two objects are used to get new efficient knowledge 
about the object. The ontology is than enriched with this new 
relationship. The topological relation built-ins are not defined 
in the SWRL language. Consequently, the language was 
extended.  

To support the defined use cases, two basic further layers 
to the semantic one are added to ontology in order to ensure 
the geometry detection and annotation process tasks. These 
operations are the 3D processing and topological relations 
qualification respectively. 

A. Integration of 3D processing operations  

The 3D processing layer contains all relevant aspects 
related to the 3D processing algorithms. Its integration into the 
WiDOP semantic framework is done by special Built-Ins. 
They manage the interaction between processing layers and 
the semantic one. In addition, it contains the different 
algorithm definitions, properties, and the related geometries to 
the each defined algorithms. An importance achievement is 
the detection and the identification of objects with specific 
characteristics such as a signal, indicator columns, and electric 
pole, etc. through utilizing their geometric properties. Since 
the information in point cloud data sometimes is unclear and 
insufficient. 

The Semantic Web Rule Language within extended built-
ins is used to execute a real 3D processing algorithm, and to 
populate the provided knowledge within the ontology (e.g. 
Table 4). The “3D_swrlb_Processing: 
VerticalElementDetection” built-ins for example, was 
created, it aims at the detection of geometry with vertical 
orientation. The prototype of the designed Built-in is:  
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3D_swrlb_Processing:VerticalElementDetection(?Vert, ?Dir) 
 
where the first parameter presents the target object class, and 
the last one presents the point clouds' directory defined 
within the created scene in the ontology structure. At this 
point, the detection process has as a result a set of bounding 
boxes, representing a rough position and orientation of the 
detected object. Table 4 shows the mapping between the 3D 
processing built-ins, which is computer and translated to 
predicate, and the corresponding class. 
 

TABLE 4. 3D PROCESSING BUILT-INS MAPPING 
 

3D Processing Built-Ins Correspondent Simple class 
3D_swrlb_Processing: 

VerticalElementDetection 
(?Vert,?Dir) 

Vertical_BoundingBox(?x) 

3D_swrlb_Processing: 
HorizentalElementDetection 

(?Vert,?Dir) 

Horizental_BoundingBox(?y) 

 

B. Integration of Topologic operations  

The layer of the topological knowledge represents 
topological relationships between scene elements since the 
object properties are also used to link an object to others by 
a topological relation. For instance, a topological relation 
between a distant signal and a main one can be defined, as 
both have to be distant from one kilometer. The 
qualification of topological relations into the semantic 
framework is done by new topological Built-Ins.   

This step aims at verifying certain topology properties 
between detected geometries. Thus, 3D_Topologic built-ins 
have been added in order to extend the SWRL language. 
Topological rules are used to define constrains between 
different elements. After parsing the topological built-ins and 
its execution, the result is used to enrich the ontology with 
relationships between individuals that verify the rules. 
Similarly to the 3D processing built-ins, our engine translates 
the rules with topological built-ins to standard rules, Table 5. 
 

TABLE 5. EXAMPLE OF TOPOLOGICAL BUILT-INS 
 

Processing Built-Ins Correspondent object 
property 

3D_swrlb_Topology:Upper(?x, ?y) Upper(?x,?y) 
 

3D_swrlb_Topology:Intersect(?x, ?y) Intersect (?x,?y) 
 

C. Guiding 3D processing algorithms 

Actually, the created knowledge base aims to satisfy to 
basic purposes which are: 
 

• Guiding the processing algorithm sequence creation 
based on the target object characteristics. 

• Facilitate the semantic annotation of the different 
detected objects inside the target scene. 

 
Let’s remember that the one of the main ideas behind this 

project is to direct, adapt and select the most suitable 
algorithms based on the object's characteristics. In fact, one 

algorithm could not detect and recognize different existent 
objects in the 3D point clouds, since they are distinguished 
by different shapes, size and capture condition. The role of 
knowledge is to provide not only the object's characteristics 
(shape, size, color...) but also object's status (visibility, 
correlation) to algorithmic part, in order to adjust its 
parameters to adapt with a current situation. Based on these 
observations, we issue a link from algorithms to objects 
based on the similar characteristics as Figure 11 shows. 
 

 
 

Figure 11. Algorithms selection based on object's characteristics 
 

In fact, knowledge controls one or more algorithms for 
detecting object. To do this, we try to find a match between 
the object’s characteristics and characteristics that a certain 
algorithm can be used for. For example, object O has 
characteristics: C1, C2, C3; and algorithm Ai can detect 
characteristic C1, C3, C4, while algorithm Aj can detect 
characteristic C2, C5. Then, decision algorithm will select Ai 
and Aj since these algorithms have capability detecting the 
characteristics of object O. The set of characteristics are 
determined by the object’s properties such as geometrical 
features and appearance. Once done, selected algorithms will 
be executed and target characteristics will be detected. 

 
The whole process takes as input the 3D point clouds 

scenes, an ontology structure presenting a knowledge base to 
manipulate objects, geometries, topologies and relations 
(Object and data property) and produces as an output, an 
annotated scene within the same ontology structure. As 
intermediate steps, the different geometries within a specific 
3D point cloud scene are detected and stored in the ontology. 
Once knowledge about geometries and the topologies are 
experienced, SWRL rules aim at qualifying and annotating 
the different detected geometries. The following simple 
example shows how a SWRL rule can specify the class of a 
VerticalBoundingBox which is of type Mast regarding its 
altitude. The altitude is highly relevant only for this element. 

 
3DProcessing_swrlb:VerticalElementDetection(?
Vert, ?dir) ^ altitude (?x, ?alt) 
^swrlb:moreThan (?alt, 6) → Mast (?Vert) 
 

In other cases, geometric knowledge is not sufficient for 
the previous process. The topological relationships between 
detected geometries are helpful to manage the annotation 
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process. The following example shows how semantic 
information about existing objects is used conjunctly with 
topological relationships in order to define the class of 
another object. 

 
Mast (?vert1) ^ VerticalBB (?Vert2) ^ 
hasDistanceFrom (?vert1,?vert2, 50) → 
Mast(?vert2) 

VI.  WIDOP PROTOTYPE 

WiDOP prototype takes in consideration the adjustment 
of the old methods and, in the meantime, profit from the 
advantages of the emerging cutting-edge technology. From 
the principal point of view, our system still retains the storing 
mechanism within the existent 3D processing algorithms; in 
addition, suggest a new field of detection and annotation, 
where we are getting a real-time support from the target 
scene knowledge. Add to that, we suggest a collaborative 
Java Platform based on semantic web technology (OWL, 
RDF, and SWRL) and knowledge engineering in order to 
handle the information provided from the knowledge base 
and the 3D packages results. 

 
 

Figure 12. the WiDOP use case diagram 
 
The process enriches and populates the ontology with 

new individuals and relationships between them. In order to 
graphically represent these objects within the scene point 
clouds, a VRML model file [7] is generated and visualized 
within the prototype where the color of objects in the VRML 
file represents its semantic definition. The resulting ontology 
contains enough knowledge to feed a GIS system, and to 
generate IFC file [37] for CAD software. As seen in Figure 
12, the created system is composed of three parts. 
 

• Generation of a set of geometries from a point could 
file based on the target object characteristics. 

• Computation of business rules with geometry, 
semantic and topological constrains in order to 
annotate the different detected geometries.  

• Generation of a VRML model related to the scene 
within the detected and annotated elements. 
 

In addition, the created WiDOP platform offers the 
opportunity to materialize the annotation process by the 
generation and the visualization based on a VRML structure 
alimented from the knowledge base. It ensures an interactive 
visualization of the resulted annotation beginning from the 
initial state, to a set of intermediate states, coming finally to 
an ending state, Figure 13 where the set of rules are totally 
executed.  

 

 
 

Figure 13. Snapshot of the WiDOP prototype 
 

As a first impression, the system responds to the target 
requirement since it would take a point cloud of a facility as 
input and produce a fully annotated as-built model of the 
facility as output.  
 

 
 

Figure 14. Detected and annotated elements visaliazation within VRML 
language 
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VII.  BENCHMARKS 

A. Annotation process summerized 

For the demonstration of our prototype, two different 
sections from the whole scanned point clouds related to 
Deutsch Bahn scene in the city of Nürnberg was extracted. 
While the last one measure 87 km, we have just taken two 
small scenes of 500 m each one. Each one of the kept scenes 
contains a variety of the target objects. The whole scene has 
been scanned using a terrestrial laser scanner fixed within a 
train, resulting in a large point cloud representing the 
surfaces of the scene objects.  Within the created prototype, 
different SWRL rules are processed, e.g. Figure 15. First, 
geometrical elements will be searched in the area of interest 
based on dynamic 3D processing algorithm sequence created 
based on semantic object properties. 

  

 
Figure 15. Example of executed rules 

 
Once done, the second step within our approach aims to 

identify existing topologies between the detected geometries. 
Thus, useful topologies for geometry annotation are tested. 
Topological Built-Ins like isConnected, touch, 
Perpendicular, isDistantfrom are created. As a result, 
relations found between geometric elements are propagated 
into the ontology, serving as an improved knowledge base for 
further processing and decision steps.   

The last step consists in annotating the different 
geometries. Vertical elements of certain characteristics can 
be annotated directly. Subsequently, further annotation may 
be relayed on aspects expressing facts to orientation or size 
of elements, which may be sufficient to finalize a decision 
upon the semantic of an object or, in more sophisticated 
cases, our prototype allows the combination of semantic 
information and topological ones that can deduce more 
robust results by minimizing the false acceptation rate, Figure 

16. By this way, and based on a list of SWRL rules, most of 

the detected geometries are annotate as seen within Table 6, 
Table 7, Table8.  

B. System evaluation 

Our testes had been made on two different data bases with 
500 m long extracted from the whole scanned point clouds 
data. Where the first scene contains just 37 elements, and the 
second one contain 128 elements. As a first impression, it´s 
totally reasonable that the number of elements varies from a 
scene to another, because we are near from the rail way 
station, more the scene is rich and vice versus. It’s also clear 
from the above-mentioned  tables, how our knowledge base 
could recognize which geometry represents a real element 
from those which are noise, Table 6.  
 

 
 

Figure 16. Annotated Bounding Box as Masts 
As well, in most cases, our annotation process is able to 

affect the right label to the detected Bounding box based on 
knowledge on its component, its internal and external 
topology. In the first example, Table 7, among 13 elements 
are classified as Masts, three as a SchaltAnlage and 18 
signals. While in the second scene, among 67 elements are 
classified as Masts, 55 signals and finally 155 Schaltanlage, 
Table 8. 
 

TABLE 6. DETECTED ELEMENT WITHIN THE SCENE AND ANNOTATED ONES 
 

 Scene 
Size 

Detected 
Bounding 

Box 

Annotated 
elements 

Truth 
data 

Scene1 500m 105 34 37 
Scene2 500m 344 277 128 

 

12

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE 7. DETECTED AND ANNOTATED ELEMENTS WITHIN THE SCENE1 
 

 Masts signal Schaltanlage 
Annotated 13 18 3 
Truth data 12 20 5 

 
TABLE 8. DETECTED AND ANNOTATED ELEMENTS WITHIN THE SCENE2 

 
 Masts signal Schaltanlage 

Annotated 67 55 155 
Truth data  65 50 13 

 
Some clear limits are detected within the Table 8. Where 

lots of false Schaltanlage are detected and annotated. Before 
explaining the reason behind this false detection, let's recall 
that the Schaltanlage present very small electronic boxes 
installed on the ground. In the case of scene 2 which is near 
the rail station, the level of the ground is a higher compared 
to the other scenes. For this reason, lots of bounding boxes 
are detected where a high average of them presents small 
noise on the ground. The reason for the false annotation is the 
lack of semantic characteristics related to such elements 
because, until now; there is no real internal or external 
topology neither internal geometric characteristic that 
discriminate such an element compared to others. 

VIII.  DISCUSSION AND CONCLUSION 

We have presented an automatic system for survey 
information model creation based on semantic knowledge 
modeling. Our solution aims to perform the detection of 
objects from a technical survey within the laser scanner 
technology by using available knowledge about a specific 
domain (DB).  This prior knowledge is modeled within an 
ontology structure. SWRL rules are used to control the 3D 
processing execution, the topological qualification and finally 
to annotate the detected elements in order to enrich the 
ontology and to drive the detection of new objects. 

The designed prototype takes 3D point clouds of a 
facility, and produce fully annotated scene within a VRML 
model file. The suggested solution for this challenging 
problem has proven its efficiency through real tests within 
the Deutsche Bahn scene. The creation of processing and 
topological Built-Ins has presented a robust solution to 
resolve our problematic and to prove the ability of the 
semantic web language to intervene in any domain and create 
the difference.  

Future work will include the integration of new 
knowledge’s that can intervene within the annotation process 
like the number of detected lines within each bounding box 
and the update of the general platform architecture, by ensure 
more communication between the scene knowledge within 
the 3D processing one. It will also include a more robust 
identification and annotation process of objects based on 
individual object characteristics. Finally,  further knowledge 
related to the algorithm parameterization that can intervene 
within the detection and annotation process will be studied to 
make the process more flexible and intelligent. 
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