
Metamodel and Formal Logic based Methodology for Modeling, Refining and
Verifying Reconfigurable Networked Component Systems

Gabor Batori
Software Engineering Group

Ericsson Hungary
Email: gabor.batori@ericsson.com

Zoltan Theisz
evopro Informatics and Automation Ltd.

Email: zoltan.theisz@evopro.hu

Domonkos Asztalos
Software Engineering Group,

Ericsson Hungary
Email: domonkos.asztalos@ericsson.com

Abstract—Reconfigurable networked systems have often
been developed via dynamically deployed software components
that are executing on top of interconnected heterogenous
hardware nodes. The challenges resulting from the complexity
of those systems have been traditionally mitigated by indi-
vidual ad-hoc problem solutions and industrial best practices
guidelines tuned to the particular domain specific modeling
frameworks and methodologies. Targeting this deficiency, this
paper disseminates an alternative, semi-formal methodology
that incorporates a first-order logic based structural modeling
language, Alloy, in the analysis of component deployment and
reconfiguration. This novel approach could help to extend the
limits of the generic domain specific metamodeling method-
ology that has been developed for creating Reconfigurable
Ubiquitous Networked Embedded Systems.

Keywords-Alloy; formal model semantics; metamodeling;
dynamic component system; platform middleware; RUNES;
Erlang; ErlCOM

I. INTRODUCTION

Reconfigurable networked component systems provide a
versatile implementation framework for highly distributed
autonomic peer-to-peer applications targeting the domains of
sensor networks and autonomous computing environments.
The introduction of an effective, high-quality software de-
velopment methodology, that speeds up the day-to-day tasks
of application developers in such an inherently complex
environment can be regarded as a rather valuable asset.
In fact, the Reconfigurable Ubiquitous Network Embedded
Systems (RUNES) IST project successfully completed this
endeavor by providing a common distributed component-
based platform architecture, on top of heterogeneous net-
works of computational nodes, and by establishing a cor-
responding model-based software development methodol-
ogy and related framework implementation. Nevertheless,
the practical building and later validation and verification
of such networked component applications turned out to
be quite an ambitious technical challenge, which almost
always required detailed software engineering know-how
that went beyond the usual precise understanding of the
problem domain. Hence, we think that practical application
development projects may enormously benefit from this
beyond state-of-the-art domain specific modeling technique,

which also includes some novel, formal logic based practical
approaches. Although some of the early results have been
reported in [1] the final validation of this methodology
via practical application scenarios is still open for further
investigation.

One of the major results of the RUNES [2] project was
to establish a reflective distributed component-based multi-
platform middleware architecture [3] for heterogeneous net-
works of computational nodes, including metamodel-based
software development methodology [4] and graphical de-
velopment framework. The RUNES metamodel provides all
those relevant concepts that software developers must need
to know in order to efficiently utilize the computational
resources of a reflective distributed component-based envi-
ronment. The complexity of these distributed reconfigurable
component systems is due to the fact that the reflective
components can be linked only by compatible provided-
required interface pairs and their communication must be
served either by these bound links, via pure message send-
ing, or by a temporal storage of (meta-)data located in a
distributed database. In the beginning of the RUNES project,
only state-of-the art domain specific modeling techniques
had been applied, however, later we had to realize that the
usage of formal logic based language support, e.g. Alloy,
could be taken advantage of in order to go beyond the
traditional validation and verification approaches of state-
of-the-art model based design methodologies. Therefore, we
started experimenting with semi-automated domain specific
model analysis techniques in Alloy that can be used to
formally handle the evolution of some dynamic component
behaviors in certain families of application domains for
domain specific verification. As a contribution, this paper
extends [1] by putting it into the context of our continuous-
life-cycle model based development methodology and in
this way also formalizes the relations between the meta-
modeling, platform and validation and verification part of
it. Moreover, we firmly believe that through its practical
applicability this methodology can contribute to the better
automation of some modeling tasks by eliminating non-
trivial dynamic errors or failure situations during the ap-
plication design of reconfigurable component systems.

51

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The paper is structured as follows: In Section I, the
motivation for this research is introduced. In Section II,
related works on Alloy usage for system verification and
validation are presented. Then, Section III provides a back-
ground on the technical domain of reconfigurable networked
component systems and the logical formalism of Alloy,
which establishes the conceptual frame for the rest of the
paper. Next, Section IV describes the methodology and its
associated formal and semi-formal methods to designing,
refining and verifying the components of reconfigurable
systems. A case-study showcasing the usefulness of this
methodology, focusing mostly on the application of Alloy
in the case of a simplified scenario example, is presented in
Section V. Finally, in Section VI, the conclusions and some
insights into our future research are provided.

II. RELATED WORK

Distributed reconfigurable component systems are inher-
ently complex to analyze, hence, the importance of formal
description techniques in system design is well known in the
scientific literature. In particular, in this paper, we restrict
our work on the usage of Alloy [7] to target only practical
scenarios where the model checking capability of a refuter
seems to be powerful enough to assist the application devel-
opers. So, our methodology, though, reliant on a formal first
order logic based description language, which is supported
by a fully automated SAT solver based analyzer, it is still
some way constrained when it comes to model complexity
and scalability. However, we know from related scientific
publications that similar formal description techniques of Al-
loy have been successfully applied to model various complex
systems in a wide range of application domains for domain
specific model verification purposes. It has been applied in
[11] for the analysis of some critical correctness properties
that should be satisfied by any secure multicast protocol.
The idea of applying Alloy for component based system
analysis was suggested also by Warren et al. [12]. That
paper describes OpenRec, a framework, which comprises
a reflective component model, and then its Alloy model is
investigated in some details. This Alloy model served as a
conceptual basis for our Alloy component model; however,
our model is more detailed, which enables deeper analysis
of system behavior. Moreover, [13] demonstrates another
Alloy model that identifies various types of dynamic system
reconfigurations. It provides a rather good categorization
of various problems and corresponding solutions related to
dynamic software evolution. Furthermore, Aydal et al. [14]
found Alloy Analyzer one of the best analysis tools for state-
based modeling languages.

Although individual application scenarios can be easily
expressed manually in Alloy we firmly believe that the
synergy between metamodel driven design and first order
logic based practical model verification could result in a
more advantageous unified approach. This approach, in a

nutshell, semi-automatically generates all relevant RUNES
deployment configuration assets that will also be analyzed
within Alloy. In effect, by analyzing a significant subset of
frequently reoccurring configurations the boundary between
valid and invalid component configurations can be better
investigated against proper sets of model-based application
and/or middleware feasibility constraints. The analysis re-
sults can be later reused for providing useful inputs to the
run-time adaptive control logic in order to extend the model-
based software development framework [4] with effective
autonomicity.

In the rest of this paper, we will describe how this first-
order logic based model of the RUNES middleware has
been developed in Alloy and how it has been integrated
into the RUNES domain specific modeling framework and
methodology [4].

III. BACKGROUND

A. Networked Reconfigurable Dynamic Component System

The aim of any networked reconfigurable component sys-
tems is to hide the heterogeneity of the participating nodes
from the view of the application. The RUNES architecture
consists of a reflective reconfigurable component system and
a corresponding Component Run-Time Kernel (CRTK). This
means that the reflectivity of the CRTK manifests in the
reifiability of all kernel elements via an explicit management
interface, and the concepts of a component system lies in the
heart of its implementation that complies with well-known
component-based software engineering principles. In more
details, the reflective components are linked together by their
interfaces, they communicate via message sending and store
their meta-data in a distributed database. Each computational
node incorporates an instance of the CRTK, which provides
the basic middleware APIs of component management.
These architectural concepts were turned into an effective
reference implementation, called ErlCOM [5], which runs on
top of the Erlang/OTP distributed infrastructure [6]. ErlCOM
being a full-fledged realization of the RUNES CRTK, the
RUNES component system will now be described through
ErlCOM terms.

A component is the basic unit of the system that corre-
sponds to an active actor-like process, which contains some
executable code and has a unique name that is registered
in a global registry. The components are spread over caplet
hierarchies, caplets being components themselves, in a pool
of networked nodes. The root of the caplet hierarchy is called
capsule, which is the main process entity of the node. The
caplets’ main purpose is to provide supervisory facilities for
the maintenance of robustness and longevity of the whole
component system. The supervisory decisions are taken
according to a set of predefined constraints stored within a
particular component framework. Examples of robust auto-
configuration can be the reactivation of crashed components
or the migration of a cluster of running components due

52

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to e.g. load balancing. The main interaction between com-
ponents is carried out by means of pure message passing
through the bindings, which represent the behavioral policy
on the communication channels. The bindings themselves
are also components with special communication properties.
Message passing is synchronous; messages can be inter-
cepted both before entering the interfaces of the recipients
and after the replies have been exited those same interfaces.
The pre- and post-actions of the bindings constitute a
list of additional transformations on individual messages.
It is important to emphasize that by the introduction of
the binding concept both concurrent code execution inside
the components and individual message passing activities
through those bindings can be reified and reasoned on via
a reflective component configuration graph provided by the
middleware. Bindings are created when a receptacle, that is,
a required interface, of a particular component is to be bound
to a provided interface of another component, provided
that they have been found compatible. Finally, both the
components and the bindings are facilitated with explicitly
attached state information, which may also be associated
with some additional metadata stored in a global repository,
redundantly distributed over the meshed networked nodes.

The concepts and the specificities of the RUNES com-
ponent system are specified on various levels of technical
details and also from different perspectives. Firstly, the
constituting concepts with their corresponding static and
dynamic constraints are formalized within domain specific
metamodels [4]. Secondly, the dynamics and fine-grained
functional and operational details of the ErlCOM reference
implementation of the RUNES CRTK have been specified
both in Message Sequence Charts (MSC) and related Erlang
source code snippets [5]. Finally, a conceptually though
simplified, but semantically compatible formal logic based
representation of core CRTK elements and operations have
been defined in [1].

B. Alloy

For precise validation and verification of application
models logic based tools provide exact, though sometimes
theoretically complex and practically limited, answers to
some of the most important configuration or dimensioning
questions. Under validation we mean here the semantic
compatibility of the designed system, only from the perspec-
tives of configuration and dimensioning aspects, against the
semi-formal and/or verbal specification of given use case
scenarios. Verification has also a slightly limited scope in
our interpretation since we rather rely on a refuter than a
theorem prover in order to gain in practical applicability.
Nevertheless, in the particular case of dynamic component
systems deployed in the domains of sensor networks, we
believe that the theoretical prowess and the practical ap-
plicability of some first order logic based techniques can
be though efficiently merged for effective applicability. In

this paper, our selected choice of formal logic description is
based on Alloy [7], which is a textual modeling language
relying on structured first-order relational logic with equal-
ity. Although other temporal logic based techniques such
as Linear Temporal Logic (LTL) or Computational Tree
Logic (CTL) constructs could have been applied, instead
of Alloy’s formalism, to our domain of investigation, we do
think that Alloy’s syntax lies closer to the spirits of current
state-of-the-art programming languages and therefore it is
way easier for the practical program developers to use it or
understand generated Alloy expressions without having to
delve into theoretically precise definitions of its constructs.
However, by not directly relying on a temporal logic based
model checker such as UPPAAL [8] or SPIN [9] we were,
obviously, forced to recreate the temporal aspect of the
evolution of component configurations as we reported in [1]
and as it will be described more in details in IV-C of this
paper. In general, Alloy’s syntax is rather simple; a particular
model in Alloy contains a set of signature definitions with
fields, facts, functions and predicates. Each signature denotes
a set of atoms, which represent the smallest building blocks
of the language. Atoms are, per definition, immutable and
uninterpreted. Each field must belong to a signature and
represents a relation with some other signatures. Facts define
constraints on other elements of the model. Functions serve
as named containments of Alloy definitions and predicates
are considered like parameterized constraints that can be
invoked within facts, functions or other predicates. Alloy
is supported by a fully automated constraint solver, called
Alloy Analyzer [10], which can be used to verify model
parameters by searching for either valid or invalid instances
of the model. Model checking is achieved by automated
translation of the model into a Boolean expression, which
is analyzed by SAT solver plug-ins, which can be easily
incorporated into Alloy Analyzer. Once an instance violating
an assertion has been found within the defined scope of
a particular analysis task, the result of the verification is
declared as not valid. However, if no instance has been
found, it is not, in any means, a proof that the assertion is
valid, though in practical applications, it could be considered
as such, though it still might be invalid within a larger
scope. This non-monotonic behavior of the prover may be
disturbing in theory, but it works quite well in practical cases
since the most relevant errors with practical significance
occur in small, though non-trivial sized models in Alloy.
Thus, the selection of the proper scope is an important
trade-off of Alloy modeling and it should be carried out as
precisely as possible within the constraints of practicality.

IV. METHODOLOGY

A. Process

All kinds of professional software developments are
usually accompanied by some development processes that

53

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

safeguard industrial scale applicability of the chosen technol-
ogy. Although there are many well-established and widely-
used model based software development approaches, e.g.
Rational Unified Process, that significantly influenced our
work, the ambition level of our process design aimed at
covering all the stages of component based application de-
velopment, including generative metamodeling technologies.
The overview of the process stages are depicted in Figure
1. Figure 1 is layered into five stages; namely, Scenario,
Application Model, Platform Model, Code Repository and
Running System. The arrows of the non-iterative part of
the process, connecting together the artifacts of the various
stages, are labeled by sequence numbers in accordance to
their timing. In this paper, we only briefly outline the process
by mainly concentrating on the inter-work between the major
elements of the stages.

Figure 1. Software Development Process extended with Alloy verification

The Scenario evaluates and finalizes a set of scenario de-
scriptions that establishes the exact scope of the application
domain. Our experience gathered during the RUNES project
showed clearly that reconfigurable component based applica-
tions can only be successfully developed if the application
usage scenarios are detailed enough to enable non-trivial
application modeling and quality analysis. Because realistic
distributed applications involve intense interactions among
application components both structural and interaction mod-
eling are equally important. The Application Domain Model
is created to cover the scenario in such a way that all use
case details must be taken adequately into account and the
stakeholders’ roles have to be discovered, too.

The roles make up the basic elements of the interaction
model, hence the dynamicity of the use cases must be trans-
lated into corresponding Message Sequence Charts (MSC).
The Application Domain Model and the Interaction Model
must be detailed enough so that quality investigations could

be carried out in order to check the feasibility of the design.
Moreover, this stage involves many creative decisions, so
both arrow 1 and 2 in Figure 1 are dotted, this way showing
that the activity is mainly carried out manually.

The Interaction Model is transformed into the Finite State
Machines (FSM) Model and then a further translation maps
it onto the RUNES Component Model. The solid arrow
indicates that the translation is executed via graph trans-
formations. The Application Domain Model usually requires
creative refinements and only semi-automatically (see dotted
line) can get translated onto the RUNES Component Model.

The Platform Model stage has been conceived to support
total semantics elaboration, that is, the RUNES Component
Model is extended by the semantics of the platform, the
components and the FSMs. This step involves some manual
coding in Erlang in order to produce a total executable
specification of the application.

The final application model takes into consideration the
distributed nature of the application; hence, the Deployment
Model is populated. It entirely specifies the total component
allocation of the application over the available nodes of the
network.

The Code Repository is the stage which copes with source
code management. The code production is fully automated,
which is indicated by dashed lines. The Deployment Model
is translated into an initial run-time configuration which is
deployed over the available ErlCOM nodes. Any changes
of the component configuration at run-time are managed
by the Deployment Tool, which continuously updates the
Deployment Model.

The Alloy based model verification step extends the
standard operation of the Deployment Tool. It contains two
additional model transformations; one that originates from
the RUNES Component Model and another that takes a
compatible RUNES Deployment Model and turns them into
a configuration scenario that can be verified within Alloy
Analyzer. The model transformations produce configuration
scenarios, which include both the structural and the behav-
ioral specifications of the application. However, only those
parts of the FSM action semantics are kept from the total
dynamic behavior that either directly relate to important
control logic elements of the scenario or which belong to the
operations provided by the underlying ErlCOM middleware.
These steps simplify, though, precisely specify when and
with which parameters the application invokes the CRTK
of the RUNES middleware. Therefore, the verification of
a particular scenario investigates mainly the evolution of
the application from the point of view of its component
reconfigurations that are allowed by the semantics of the
ErlCOM middleware. More precisely, in our work we mostly
targeted resource availability investigations over distributed
capsules along the lifetime of the application. The results
of this verification step provide useful input to the run-time
autonomic control mechanisms either embedded inside the

54

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application or defined as explicit rule-sets within autonomic
extensions of the Deployment Tool, basically managing pre-
calculated adaptive component reconfiguration. The verifica-
tion step is rather iterative in nature, which is well supported
by Alloy Analyzer, and thus the final convergence criteria
are mostly decided on a case-by-case basis depending on
the particular scenario.

B. RUNES Metamodel

1) Interaction Modeling: Large-scale networked systems
can be efficiently comprehended as a large number of
interacting services. By combining those services an entity
is getting involved in the complete behavior specification
for that entity is established. Therefore, the service concept
is effectively based on the interaction patterns between the
cooperating entities. The notion of a role describes the
contribution of an entity within a given interaction pattern.
In our work we followed a well-known service oriented
approach [15], which maps a particular service specification
onto a set of interconnected components, each of them
having an internal FSM, and a corresponding pool of abstract
communication channels. This methodology also advocates
the use of state machine synthesis algorithms so that the
scenarios can be quickly simulated and/or validated (see
Figure 2).

Figure 2. Service-based development

The generated state machines define the intended dynamic
behavior of the specified system, thus they can be easily
incorporated into our architectural design.

The state machine generation is carried out automatically
and relies on two types of MSCs, the basic MSCs and the
high level MSCs (HMSC). A basic MSC consists of a set of
lines, each labeled by the name of the role and representing a
certain unit of the behavior produced by that particular role.
An HMSC is a graph whose nodes refer to other (H)MSCs.
The semantics of an HMSC is obtained by following these
operational paths and by composing the interaction patterns
en route through the participating nodes. The output of
the transformation is one FSM per role within the domain
model; that is, the FSM implementing the respective role’s
contribution to the services it is associated with.

Figure 3. Functional metamodel

2) Functional Modeling: An outline of the component
metamodel is illustrated in Figure 3. Components are en-
capsulated units of functionality and deployment, which
interact with each other only via interfaces and receptacles.
Interfaces are defined by a list of related operation signatures
and associated data types. Components can provide multiple
interfaces; embodying a clear separation of concerns (e.g.
between base functionality and component management).
Capsules and caplets are platform containers providing
access to the run-time APIs. Bindings ensure consistent
connection setup between a compatible interface and a
receptacle. The component model itself is complemented
by two other architecture elements: component frameworks
and reflective extensions. Component frameworks (CF) are
groupings of components with constraint guarantees to allow
only "meaningful" component configurations. All entities of
the metamodel (Component, Capsule, Interface, Recepta-
cle, Binding, Component Framework) may store arbitrary
<key,value> attributes, which contribute to a reflective layer
facilitating universal discover at run-time. Component in-
teractions can be intercepted at the bindings by pre- and
post-actions to enable additional processing on the level of
individual messages.

3) Behavior Modeling: The component behavior descrip-
tion is formalized in an abstract model of action semantics
(see Figure 4). This Behavior Model is rather generic, but
it though provides an explicit attribute for the specification
of the modeled behavior within a particular implementation
language. Those entities of the metamodel that may contain
behavior descriptions are the Interface and the Component.
A component model is translated onto target implementation
languages by various model interpreters. In this way, the
components can be created in various languages; however,
they rely on the same modeling framework. A language
specific model interpreter processes only those parts of a
component model which contain relevant information for the
desired target language environment. Therefore, the meta-
model embodies various code snippets; the snippets are later
woven together into executable component implementations
by the related model interpreter. The most important parts

55

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Behavior metamodel

of the code snippets are:
• Init - Initialization code for a component, an interface

or the system.
• Body - Executable specification of the operation of an

interface. The signature of the operation is defined in
the model and automatically generated by the inter-
preter.

• StateAction - Specifies the semantics inside an FSM
state. This action semantics is automatically injected
into the corresponding connection point within the
generated FSM Model.

4) Deployment Modeling: The complete synthesized plat-
form specific application model contains both the structural
configuration and the behavioral semantics of all the con-
stituent components, including their interconnecting bind-
ings and component framework constraints. That model
represents the functional view of the application; however,
it neither specifies how the application is deployed on the
available networked nodes nor how it should start. Therefore,
the deployment configuration must be modeled, too (see
Figure 5).

Figure 5. Deployment metamodel

The deployed component configuration, which contains
the complete synthesized platform specific application model

and the initial configuration of the components, is called
the total synthesized platform specific distributed application
model.

From the point of view of model based development,
the most important element of the deployment infrastructure
is the Deployment Tool, which establishes a soft real-time
synchronization loop between the model repository and the
running application. The schematics of the Deployment Tool
based reconfigurability is shown in Figure 6.

Figure 6. Deployment Tool based reconfigurability of run-time component
application

The Deployment Tool analyzes the initial component
configuration of the total synthesized platform specific ap-
plication model and creates the needed ErlCOM elements by
relying purely on the ErlCOM API. (Complete API seman-
tics has been reported in [16]) After the initial deployment
has been completed the application starts running and the
ErlCOM CRTK continuously monitors all component re-
configuration and in case of observable component changes
events are sent containing descriptive notifications to the
Deployment Tool. The Deployment Tool keeps track of the
actual component configuration of the running system by
updating the total synthesized platform specific RUNES ap-
plication model. Deployment Tool plug-ins can also execute
policy based rules either re-actively or pro-actively. Any
corrective changes on the modeled component configuration
of the component application will be reflected by the run-
time deployment.

C. RUNES Metamodel Verification with Alloy

1) Introduction: This section revisits the kernel part of
metamodel, which defines the basic concepts of Interfaces,
Receptacles, Components and Bindings, in order to formally
represent those elements in a first order logic based formal-
ism. Figure 7 illustrates that kernel part of the metamodel,
including all the relevant relations and cardinalities. The
associated OCL expressions are not visualized, though they
play a significant role to establish a model-based rapid ap-
plication development environment in the Generic Modeling
Environment (GME) [17]. Mostly these OCL expressions

56

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Kernel part of RUNES metamodel

interact with the generic component meta-model by further
restricting the compatibility of component interconnection
by creating an implicit subsumption hierarchy of bindable
required-provided interfaces. Since a generic mapping of
these OCL statements onto corresponding logical expres-
sions in Alloy simply too complex and would go far beyond
the scope of this paper, our current logic based formalism
only relies on some selected elements of those OCL ex-
pressions and their mapping to Alloy has been ad-hoc and
hand-crafted.

The generic aim of the approach is to to verify particular
properties on some configuration sequences of certain mod-
eled application scenarios via semantically anchored precise
structural and behavioral formalism expressed in Alloy.
The following sections describe the individual mappings
between the various metamodeling concepts and their Alloy
equivalents in adequate details.

2) Functional Model: In general, the functional specifi-
cation of any RUNES application must be organized around
Components and Bindings. The Components represent the
encapsulated units of functionality and deployment. The
interactions amongst participating components take place
exclusively via explicitly defined Interfaces and Receptacles.
The dynamic behavior of the components are automatically
generated from MSC and they are represented via concurrent
FSM [15]. Intending to rewrite the above specification into
Alloy, a generic RUNES Component is, hence, defined
as a signature whose fields consist of at most one Finite
State Machine and a set of Interfaces and Receptacles,
respectively.

abstract sig Comp{
state_machine:set StateMachine,
provided: set Interface,
required: set Receptacle,

}{
lone state_machine

}

Both the Interface and the Receptacle inherit the common
characteristics of an Interaction Point, which is defined by a
set of related operation signatures and associated data types.
The Interface represents the "provided", the Receptacle
the "required" end-point of a inter-component connection,
respectively.

abstract sig Signature{}
abstract sig InteractionPoint {

signatures: set Signature
}
sig Interface extends InteractionPoint{}
sig Receptacle extends InteractionPoint{}

A connection between compatible "provided" and "re-
quired" communication end-points is set up via Bindings.
In fact, a Binding makes sure that connections between In-
terfaces and Receptacles are created consistently, according
to compatible properties defined on the corresponding end-
points. Hence, a definition of a Binding is also a signature
in Alloy, however, it also contains some more fields; one
for the Interface and another one for the Receptacle and
finally a third one for a non-identical, component correct
mapping connecting together the previous two fields. The
connection constraint emanating from the "provided" and
"required" characteristics of the end-points is attached to the
Binding signature in the form of explicit logical restrictions.

abstract sig Binding{
mapping:Comp -> Comp,
interface: one Interface,
receptacle: one Receptacle

}{
one mapping
no (mapping & iden)
receptacle in (Comp.∼(mapping)).required
interface in (Comp.mapping).provided

}

Furthermore, a Receptacle must always represent a re-
quired set of operations that is a ’subset’ of those oper-
ations which are provided by the Interface it intends to be
connected to via the Binding. In RUNES application models,
this requirement is specified by explicit operation signatures,
including parameter lists either via OCL constraints or by
the graphical representation of the metamodel. In the case of
Alloy, this constraint semantics has been slightly simplified
and only an abstract signature matching is enforced.

all b:Binding| b.receptacle.signatures in b.interface.signatures

3) Deployment Model: Figure 8 revisits the most impor-
tant deployment concepts of the RUNES Metamodel, which
determine the runtime aspects of any component applica-
tion. The key element is the Capsule, which represents the
generic middleware container providing direct access to the
functionalities of the runtime API of the CRTK. This set of
functionalities incorporates also the robust fault management
and recovery and the corresponding redundancy facilities.
From the verification perspective, deploying a component
into a capsule means that the capsule must be ensured to
possess adequate resources made available for loading in
components or bindings at any particular instance of time.
The deployed components and bindings might be reorga-
nized as time evolves, hence this temporal representation
must take into account the explicit definition of time, too.
This requirement can be easily satisfied by the introduction
of Time into the formal representation of Capsules in Alloy.
Hence, a Capsule is defined again as a signature, but this
time it has also an explicit field standing for a time instance.
The representation of the temporal evolution is not only

57

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Deployment part of RUNES Metamodel

restricted to the deployed components or bindings, but it
also incorporates a middleware related generic resource pool.
This resource pool is again a semantic simplification, that
abstractly represents the capacity of a capsule to contain
either CRTK objects, such as components, or application
specific elements that are usually stored in generic run-time
repositories within capsules. Another semantic simplification
is the time invariant representation of the capsule topology,
though it may change in the case of a deployed application
in real-time. Nevertheless, by setting the capacity of any
particular capsule to zero one can easily simulate all kinds
of run-time dynamic reconfigurability of a capsule hierarchy.

open util/ordering[Time] as TO
sig Time{}
abstract sig Capsule {

comps: DeployedComp -> Time,
bindings: DeployedBinding -> Time,
comp_capacity: Int -> Time,
neighbours: some Capsule

}{
all t:Time|int[comp_capacity.t] >= #(comps.t)
all t:Time|comp_capacity.t >= Int[0]

}

The formal specification of a deployed component must
contain all those pieces of information that the active process
aspect of the component’s functionality requires, including
the explicit definition of all state transitions in its FSM
during the whole lifetime. In other words, structurally a
deployed component has to be formally regarded as a
dynamic instance of a component in accordance to its
"ModelProxy" declaration in GME [18], as depicted in
Figure 8. Considering the temporal aspect of its behavior,
the state transitions are defined twofold in the signature of
DeployedComp: on one hand, the fire mapping describes the
fired transitions, one-by-one at a time; on the other hand, the
field current_state tracks all state changes as time flies by.

sig DeployedComp{
deploy: one Comp,
fire: Transition -> Time,
current_state: State -> Time

}{
deploy in FunctionalConf.comps

all t:Time|lone fire.t
all t:Time|lone current_state.t

}

Some additional constraints are also appended to the
definition of DeployedComp. Firstly, it must be safeguarded
that the deployed component honors the functional definition
of its component description in such a way that its pro-
vided logical representation fully satisfies the "ModelProxy"
declaration in GME. Secondly, the behavior of the FSMs
is restricted to enable only one of them to fire a single
transition at a particular instance of time. This is a sequenc-
ing constraint on causality of time evolution, which is a
restriction globally applicable to the component application.
Thirdly, letting a component have an FSM internally it must
be deterministic in nature, hence, there is only one current
state representing the total dynamic status of the component.
The latter two conditions can be relaxed, but the detailed
investigation of their consequences is still work in progress.

In contrast to the deployed components, a deployed
binding does not have to declare its time evolution explic-
itly; nevertheless, its formal definition in Alloy contains
a mapping field that anchors the DeployedBinding into
two deployed components it is connecting together. Hence,
the signature of DeployedBinding looks time independent,
though it tracks time evolution, but indirectly. Due to the
intimate linkage between the definition of a binding and the
bound two components, the compatibility of their reliance
must be ensured. This extra condition is made explicit
through three additional logical constraints appended to the
signature of DeployedBinding, stating the uniqueness and
functional compatibility of the connection. In other words, if
the functional compatibility of the participating components
of a binding can be proven, then, also the deployment of
such components is assumed to be valid. This formal set of
extra Alloy expressions is homologue to their "ModelProxy"
declaration in the GME metamodel.

sig DeployedBinding{
mapping: DeployedComp -> DeployedComp,
deploy: one Binding

}{
one mapping
(DeployedComp.∼mapping).deploy =
Comp.∼(deploy.mapping)

(DeployedComp.mapping).deploy = Comp.(deploy.mapping)
}

Being our main motivation of applying Alloy for the
verification of allowed component configurations, the de-
ployed component applications must be also represented in
a compatible Alloy formalism, that is, via a collection of
capsules that are continuously tracking the temporal evolu-
tion of each of the deployed components and bindings. The
Capsule having already been formally defined, the deployed
component application is represented via its deployment
configuration as a set of Capsules. Therefore, the formal
definition of DeploymentConf is quite trivial. Furthermore,
Alloy’s trace statements help verify this time evolution of
the deployed application as will be shown in Section V;
thus, successful runs are easily and interactively visualized

58

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for human inspection, too.
sig DeploymentConf{

capsules: some Capsule
}

4) Middleware Model: The ErlCOM middleware API
supports a complete set of component management oper-
ations such as [un]loading, [un]binding and migrating of
components. These operations contain complex negotiation
protocols among various elements of the ErlCOM CRTK
and the deployed components, thus, the execution of a
particular API invocation may require some time to complete
its functionality. The operations usually modify only the
local states of the distributed application and keep the rest
of the application’s state space unchanged. Obviously, these
complex concurrent middleware activities must be consider-
ably simplified so that a compatible logical formalism can
be within reach of practical usability. Therefore, in general,
all of the potentially concurrent atomic API operations are
to be serialized in such a way that one and only one of them
is allowed to be executed at one particular instance of time.
As a good example showing this simplification approach, the
Alloy definition of the ’migrate’ operation will be explained
in detail in the sequel. In the case of the remaining ErlCOM
operations [5] similar techniques have been applied in order
to translate them into corresponding Alloy expressions.

A component migration is carried out between two cap-
sules by moving an already deployed component between
two consecutive points of time. In effect, the migration
itself can be conceptualized as a sequence of invocations
of individual ErlCOM API operations: ’Create Component’,
’Load Component’, ’Update Component’, ’Unload Com-
ponent’ and ’Destroy Component’. Obviously, the CRTK
provides an optimized single API operation for completing
the component migration in one single step; however, for
the sake of explaining our approach of simplification the
above sequence is considered to be valid. Since our formal
Alloy representation is agnostic to the means by which
the local state of a component is being migrated from one
capsule into another, the operations of ’Load Component’,
’Update Component’ and ’Unload Component’ can be either
totally disregarded or taken into account in such a way that
only the application relevant state space of the component
is copied from time t to time t’. Hence, the only API
invocations to be mapped into Alloy are ’Create Component’
and ’Destroy Component’. Due to their analog treatment,
let us examine only the operation ’Create Component’. The
executable specification of the operation in Erlang is the
following (see Figure 9 for corresponding MSC):

%create in CRTK
create(CapletName,InstanceName)->

gen_server:call(global,CapletName , create,InstanceName),
insert_component(InstanceName,component,CapletName,CapletName).

%create in Caplet
create(InstanceName,Type)->

CapsuleName = crtk:getOwner(crtk:getSelfName()),
gen_server:call(global,CapsuleName, create,InstanceName),
insert_component(InstanceName,Type).

%create in Capsule
create(InstanceName)->

gen_server:start_link(global,ComponentName,
e_EmptyComp, [InstanceName],[]).

%insert_component in Caplet
insert_component(InstanceName,Type)->

ets:insert(get(componentTable),#componentcomponentName=InstanceName,
componentData=#componentDatacomponentType=Type,state=created).

%insert_component in CRTK
insert_component(ComponentName,ComponentType,Owner,RegistryOwner) ->

NodeName=node(),
Fun = fun() ->

mnesia:write(#componentcomponentName=ComponentName,
componentType=ComponentType,owner=Owner,registryOwner=RegistryOwner,
nodeName=NodeName)

end,
mnesia:transaction(Fun).

Figure 9. MSC of Create Component in ErlCOM

The message flow of a component creation is the follow-
ing (see Figure 9): the CRTK first calls the create operatin on
the caplet which forwards this request to the corresponding
capsule. When the capsule responds OK the component
related data will be stored into the caplet’s local cache (ets).
After the CRTK has received OK from the caplet, it registers
the component data into the distributed Mnesia database.

Taking into account that the current Alloy specification
of the Deployment Model (see Section IV-C3) only allows
flat configurations of Capsules instead of a full hierarchy of
Caplets with a leading root Capsule, steps 1 and 2 should
be considered as a single combined activity. Moreover, steps
4 and 5 are only relevant to the internals of ErlCOM,
therefore the first order logic based abstraction of ’Create
Component’ consists of one major task only, it being the
addition of a new component into the receiving capsule. The
operation of ’Destroy Component’ can be handled similarly.
Hence, in summary, the elements of the formal expression
in Alloy of a migration operation are as follows: First the
preconditions are checked if it is a real migration between
two different capsules. Next, as capsules are abstracted to
possess a generic capacity parameter, it is also checked if
there are enough resources available in the receiving capsule.
Then, the local states of the two respected capsules are
updated, which is the homologue of the actual component
migration in ErlCOM. Finally, three more constraints are to
be satisfied in order to ensure that the rest of the applica-
tion state remains unchanged. This restriction enforces our
serialization concept of causality, which we intend to relax
in our future research work.

pred migrate(c_src,c_dst:Capsule,d:DeployedComp,t,t’:Time){
c_src != c_dst
#(c_dst.comps.t) < int[c_dst.comp_capacity.t]

59

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

c_dst.comps.t’ = c_dst.comps.t+d
c_src.comps.t’ = c_src.comps.t-d
all capsule:Capsule|capsule.bindings.t’=capsule.bindings.t
all capsule:Capsule-c_src-c_dst| capsule.comps.t’=capsule.comps.t
all capsule:Capsule| capsule.comp_capacity.t’ = capsule.comp_capacity.t

}

Going beyond the dynamic aspects of ErlCOM CRTK,
there are still some structural restrictions of the middleware
left from the RUNES Metamodel. These enforce RUNES
specific constraints over potential component configurations
in order to safeguard the semantic correctness of component
reconfigurations. In the metamodel (see Figure 7 and Figure
8) those rules are expressed either via cardinality constraints
or by additional OCL statements. Consequently, their formal
Alloy representation must be incorporated into our set of
definitions, too. There are many such extra restrictions,
though here we only introduce the most relevant elements
of that constraint set.

• A Binding or a Component must be contained within
at most one single Capsule. Until the binding or the
component has not been deployed to or removed from
a particular capsule its association with that capsule is
non-existent. However, while it is deployed, one and
only one capsule can contain it at any point of time.

no disj capsule1,capsule2:Capsule|
some (capsule1.bindings) & (capsule2.bindings)

no disj capsule1,capsule2:Capsule|
some (capsule1.comps) & (capsule2.comps)

• Two Bindings of the same type must not be deployed
if they share the same Receptacle. This constraint en-
forces that connections of a particular type between two
components, via a compatible Interface and Receptacle,
cannot be shared at any point of time.

no disj b1, b2:DeployedBinding| (b1.deploy = b2.deploy)
and (b1.mapping.DeployedComp = b1.mapping.DeployedComp)

• There must not be such a Binding within a Capsule
that has a connected Component which is not deployed
in any of the Capsules. This constraint is critical since
a binding can only connect together already deployed
components at its related end-points. Unconnected or
half-bound bindings are semantically incorrect since the
bind and unbind operations of the ErlCOM API are
both atomic in nature.

no deployedBinding:DeployedBinding|some t:Time|
deployedBinding in Capsule.bindings.t and
(deployedBinding.mapping.DeployedComp not in Capsule.comps.t
or deployedBinding.mapping[DeployedComp] not in Capsule.comps.t)

5) Behavioral Model: The dynamic behavior of the com-
ponent application is modeled via Finite State Machines
(FSM) that are either automatically generated directly from
the scenario MSCs or manually elaborated and added to
selected components based on application specific require-
ments. Therefore, in essence, the internal dynamics of the
components’ functional behavior must be specified in Alloy
by an explicit transcription of an FSM that specifies all
changes in internal state of the component, including the
preconditions of state transitions and the necessary action
semantics required by the postconditions of the transition at

entering the new state. Due to the complexity of practical
applicability, only the vital components of the application
are mapped onto their Alloy representation. Nevertheless,
our FSM specification in Alloy is generic and mirrors the
formal mathematical model following the abstract principle
of semantic anchoring [19].

The formal Alloy definition of a Finite State Machine
(FSM) relies on the signatures of State and Transition; the
latter being specified as a mapping between two States. The
initial state of the FSM is designated by the <StartState,
StartTransition> pair. Since our verification approach targets
the evolution of the FSMs in time a predicate named
transition is introduced, which tracks the time instances and
records the transitions being executed between every time
t and t’ inside the deployed component that has currently
been chosen for letting its FSM fire.

abstract sig State{}
abstract sig Transition{

trans: State -> State
}{

one trans
}
abstract sig StartState extends State{}
abstract sig StartTransition extends Transition{}
pred transition[d:DeployedComp,t,t’:Time]{

(d.fire.t).trans.State = d.current_state.t
(d.fire.t).trans[State] = d.current_state.t’

}
abstract sig StateMachine{

states: some State,
startState: one StartState,
transitions: some Transition,
startTransition: one StartTransition,

}{
no (states & startState)
no (transitions & startTransition)

}
fact Traces{

...
all t:Time-TO/last[],d:DeployedComp|let t’=TO/next[t]|
some d.fire.t => (transition[d,t,t’])

all t:Time|some DeployedComp.fire.t
}

The definition of the fact Traces puts the FSM into action,
basically letting at most one transition fire at a particular
point of time. The allowed firings are selected according to
the defined transition rules within the FSMs; therefore, the
deployed component application is totally FSM driven in our
Alloy specification.

6) Example Model: Having all the elements of our Alloy
formalism specifying the ErlCOM based, RUNES meta-
model compatible models described in details, here the
graphical visualization of such an example model is shown
in Alloy Analyzer. Figure 10 depicts a model that represents
a snapshot of a dynamically evolving component config-
uration of a sensor network scenario example. The com-
ponents (black hexagons) have been deployed over a cross
shaped capsule (gray pentagons) topology. The connections
among the capsules of this topology are indicated by green
arrows. The internal resources, here the maximum number
of deployed components/bindings, of the capsules are pooled
and limited in their capacity. The concrete mapping of
the components and bindings (white rhombuses) onto the
capsules, at a particular instance of time, is visualized by
the brown and red arrows, respectively.

This figure shows only a particular snapshot of a dy-
namically evolving component application, therefore, for the

60

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Scenario analysis snapshot

validation of an application scenario or the verification of
a certain logical property full sequences of these snapshots
must be analyzed. In the sequel, a simplified scenario model
will be analyzed to demonstrate the Alloy driven verification
step of our methodology in some detail.

V. SIMPLIFIED SCENARIO EXAMPLE

The scenario example that is used to showcase the us-
ability of our proposed approach is based on the Fire in
the Road Tunnel scenario [2] of the RUNES IST project.
This simple scenario example is part of one of the RUNES
demonstrators; hence, its elements have been extracted di-
rectly from a bigger component application in order to
make it manageable for practical analyses in Alloy. For
better understanding, some steps of the RUNES application
development process (see Section IV-A) will also be shown
in the case of this particular example. The relevant excerpt
from the overview of the scenario story [2] is as follows:

"At the beginning of our story traffic is flowing normally
in the road tunnel. Tunnel fires can be detected by the
wired system that is part of the tunnel infrastructure. The
fire sensors do, however, have the capability to operate
wirelessly if required. An accident within the road tunnel
has resulted in a fire. The fire is detected and is reported
back to the TunnelControl Room. ... As a result of the fire
the wired infrastructure is damaged and the link is lost
between fire detection nodes. Using wireless communication,
information from the fire detection nodes is still delivered
to the Tunnel Control Room seamlessly. ... As the firemen
move towards the fire the sensors reporting periodic data
on external temperatures detect a rise in temperature and
respond by increasing the frequency of reporting so that the
EmergencyControl can assess the danger to the fire fighters.
The fire becomes more severe. A node is lost..."

For the sake of being able to show dynamic behaviour
modeling in Alloy, we are, first, focusing on the Interaction
Modeling (see Section IV-B1). It is obvious to recognise

that there is a Fire Detector service lying in the heart of the
Fire in the Road Tunnel scenario. It was specified, within
the RUNES project, via five MSCs, which are depicted in
Figure 11.

Figure 11. Message Sequence Charts of Fire Detector

Then, the MSCs are translated via a sequence of trans-
formations [4], including a non-trivial graph transformation,
into an equivalent FSM representation, which is shown in
Figure 12.

Regarding its Functional (See Section IV-B2) and Deploy-
ment (See Section IV-B4) Modeling the scenario example
has been simplified by having been selected only two
capsules and 8 deployed components. In Figure 13, the
Alloy representation of the functional configuration of the
component system is depicted. The blue hexagons show the
components, the beige rectangles represent the bindings and
the green diamonds stand for the finite state machines.

This functional view contains, thus, five different com-
ponents; namely, three network related components (Net-
workDriver, CommA and CommB) and two application
specific components (Publish and FireDet). The components
CommA and CommB implement two different kinds of com-

Figure 12. Platform Independent Behavior for Fire Detector

61

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Functional configuration of the example system

munication paradigms, both of them relying on the shared
functionalities of the common NetworkDriver component.
Their connections are made available through Binding1 and
Binding2. The main functionality of the Publish component
is to broadcast different sensor measurement data towards
the processing end points, such as the Tunnel Control Room.
The FireDet component combines and simulates both the
effects of spreading fire and the decisions that could have
been taken by a real control component being responsible for
reconfiguring the other components whenever a fire situation
has been detected. Due to the complexity of its real-life
homologue, FireDet in Alloy has a rather modified, adapted
version of the original FSM that is associated with the Fire
Detection service. Its control logic has been reduced to fit
the trivial topology of the deployed components in this new
functional setup. Nevertheless, the main goal of its function-
ality, which is to keep the sensor system in operation even
in case of extreme fire conditions, has been left unchanged.
Therefore, in the scenario example, the reconfiguration is
carried out by letting the application components migrate
to other capsules located in the neighborhood. In effect, the
original states Fire and Dead have been combined and the
substitute state causes a gradual loss in capsule capacity. By
decreasing this generic capacity parameter of the capsule
taken "by fire" the receiving capsule will not be able
to immediately reinsert the recently migrated component;
hence, ping-pong effects are eliminated.

Both NetworkDriver and FireDet possess proper state
machines, which are represented by the green diamonds in
Figure 13.

Figure 14. NetworkDriver state machine

Figure 14 shows the state machine of the NetworkDriver
component. Its initial status is given by the start state,
SM1_startState (black ellipse), and the initial transition,
SM1_startTrans (white rectangle), leading from the start
state to state_commA. (The states are represented by gray
colored ellipses, while the transitions are shown via red rect-
angles.) Via a consecutive transition from state_commA to
state_commB, through a temporal state_toB1, the unbinding
of component CommA from NetworkDriver and the binding
of component CommB to NetworkDriver will take place.
This state transition sequence is a simplified version of the
Behavioral model (see Section IV-B3) of the component
and simulates the reconfiguration of the communication
paradigms within the scenario example. The binding and
the unbinding operations represent the invocations of the
ErlCOM middleware API. (see Section IV-C4). The Alloy
specification of NetworkDriver’s FSM is as follows:

sig SM1 extends StateMachine{}
{

startState = SM1_startState
startTransaction = SM1_startTrans
one SM1_state_commA
one SM1_state_commB
one SM1_state_toB1
one SM1_state_toA1
states = SM1_state_commA + SM1_state_commB +

SM1_state_toB1+SM1_state_toA1
one SM1_trans_toA1
one SM1_trans_toA2
one SM1_trans_toB1
one SM1_trans_toB2
transactions = SM1_trans_toA1 + SM1_trans_toA2 +

SM1_trans_toB1 + SM1_trans_toB2
}

sig SM1_startState extends StartState{}

sig SM1_state_commA extends State{}{
no t:Time-TO/last[]|

let t’ = TO/next[t]|this in getEndState[DeployedComp.fire.t] and
not SM1_state_commA_action[t,t’]

}

pred SM1_state_commA_action[t,t’:Time]{
some b:DeployedBinding|

let d = getDeployedComp[SM1_state_commA,t]|
b.mapping[DeployedComp] = d and
((b.mapping.DeployedComp).deploy = CommA) and
bind[getCapsule[d,t],b,t,t’]

}

sig SM1_state_commB extends State{}{
no t:Time-TO/last[]|

let t’ = TO/next[t]|this in getEndState[DeployedComp.fire.t] and
not SM1_state_commB_action[t,t’]

}

pred SM1_state_commB_action[t,t’:Time]{
some b:DeployedBinding|

let d = getDeployedComp[SM1_state_commB,t]|
b.mapping[DeployedComp] = d and
((b.mapping.DeployedComp).deploy = CommB) and
bind[getCapsule[d,t],b,t,t’]

}

sig SM1_state_toB1 extends State{}{
no t:Time-TO/last[]|

let t’ = TO/next[t]|this in getEndState[DeployedComp.fire.t] and
not SM1_state_toB1_action[t,t’]

}

pred SM1_state_toB1_action[t,t’:Time]{
some b:DeployedBinding|

let d = getDeployedComp[SM1_state_toB1,t]|
b.mapping[DeployedComp] = d and
((b.mapping.DeployedComp).deploy = CommA) and
unbind[getCapsule[d,t],b,t,t’]

}

sig SM1_state_toA1 extends State{}{
no t:Time-TO/last[]|

let t’ = TO/next[t]|this in getEndState[DeployedComp.fire.t] and
not SM1_state_toA1_action[t,t’]

}

pred SM1_state_toA1_action[t,t’:Time]{
some b:DeployedBinding|

let d = getDeployedComp[SM1_state_toA1,t]|
b.mapping[DeployedComp] = d and

62

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

((b.mapping.DeployedComp).deploy = CommB) and
unbind[getCapsule[d,t],b,t,t’]

}

sig SM1_startTrans extends StartTransaction{} {
trans[SM1_startState] = SM1_state_commA

}

sig SM1_trans_toB1 extends Transaction{} {
trans.State = SM1_state_commA
t̃rans.State = SM1_state_toB1
no t:Time|this in DeployedComp.fire.t and

not SM1_trans_commA_pred[t]
}

pred SM1_trans_commA_pred[t:Time]{}

sig SM1_trans_toB2 extends Transaction{} {
trans.State = SM1_state_toB1
t̃rans.State = SM1_state_commB

}

sig SM1_trans_toA1 extends Transaction{} {
trans.State = SM1_state_commB
t̃rans.State = SM1_state_toA1

}

sig SM1_trans_toA2 extends Transaction{} {
trans.State = SM1_state_toA1
t̃rans.State = SM1_state_commA

}

Figure 15. FireDet state machine

The Figure 15 shows the state machine of the FireDet
component. As previously explained, this FSM is a reduced
version of the original one possessing only two states.
Its initial state, FIRE_SM_startState, represents the Normal
state of the FSM associated with the Fire Detection service,
while the state FIRE_SM_state1 stands for the combination
of states Fire and Dead. (see Figure 12) The transition is one-
way only and results in the decrease of capsule’s capacity.
The Alloy specification of FireDet’s FSM is as follows:

sig FIRE_SM extends StateMachine{} {
startState = FIRE_SM_startState
one FIRE_SM_state1
states = FIRE_SM_state1
startTransaction = FIRE_SM_startTrans
one FIRE_SM_trans1
transactions = FIRE_SM_trans1

}

sig FIRE_SM_startState extends StartState{}

sig FIRE_SM_state1 extends State{}{
all t:Time-TO/last[]|let t’ = TO/next[t]|

this in getEndState[DeployedComp.fire.t] =>
FIRE_SM_state1_action[t,t’]

}

pred FIRE_SM_state1_action[t,t’:Time]{
let c = getCapsule[getDeployedComp[FIRE_SM_state1,t],t]|

decrease_capacity[c,t,t’]

}

sig FIRE_SM_startTrans extends StartTransaction{} {
trans[FIRE_SM_startState] = FIRE_SM_state1

}

sig FIRE_SM_trans1 extends Transaction{} {
trans.State = FIRE_SM_state1
t̃rans.State = FIRE_SM_state1

}

In the sequel, a simple validation sequence of the above
defined scenario example will be analyzed step-by-step. Fig-
ures 16–19 show the snapshots of an Alloy trace sequence.
The model evolution is projected over Time in such a way
that the relations of a model in different points of Time
are represented through a sequence of consecutive models.
Expressed it more precisely in Alloy parlance, it means
that one Time instance is connected to one and only one
particular Model snapshot.

Figure 16. Component binding step

Figure 16 presents the first step of the sequence. When
NetworkDriver_startTrans has been activated the red circle
labeled by the Bind tag, which represents the invocation
of the bind operation of the ErlCOM API, points to the
deployed binding B0. The deployed component D5, in
capsule c2, is going to be bound to D0 in the next step
(see Figure 17).

Figure 17. Component reconfiguration (unload) step

In Figure 17 the first reconfiguration of the system is to be
seen. The FireDet component’s state machine is activated;
therefore, the migration of some application functionality
has been started. FireDet selected the Publish component,
in capsule c2, for migration; however, since another Publish

63

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

component had already been deployed to the neighboring
capsule c1, the marked Publish component is going to be
unloaded from capsule c2 instead of being migrated into
capsule c1. Moreover, FireDet will also decrease the capacity
of capsule c2.

Figure 18. Component unbinding step

In Figure 18, the reconfiguration of the Network-
Driver component has started changing from communication
paradigm CommA to CommB. In Figure 19, the second
migration attempt is demonstrated. In this case, component
CommA is migrating to capsule c2 because this required
functionality has not been deployed yet to that capsule so
far.

Figure 19. Component reconfiguration (migration) step

Although this example is a rather simplified one in nature,
it indicates well the way how a particular validation or
verification session may take place using Alloy Analyzer.
Validation only generates a set of potential runs of a sce-
nario, while verification also injects logical properties into
the Alloy specification of the component application before
it looks for counter-examples and shows them visually if
found. In general, this approach helps enormously to analyze
configuration sequences so that they both comply with some
application constraints and avoid non-trivial pitfalls. The
result of these analyses is later fed back to the control logic
of the Deployment Tool (see Section IV-B4).

VI. CONCLUSION AND FUTURE WORK

This paper has investigated a new way of combining
domain specific metamodeling techniques with first order
logic based model verification so that dynamic component
applications could benefit from better quality reconfiguration
mechanisms thanks to active scenario validation and verifi-
cation. We have introduced the semantical foundations of
our approach by describing the most relevant items of the
RUNES metamodel, its development methodology and, most
importantly, the first order logic based definition of those
metamodel elements in Alloy representation. We have also
illustrated the applicability of the approach in the case of
reconfigurable component based sensor networks by a sim-
plified scenario example that has been disseminated in detail.
Our current work focuses on further extending the presented
methodology by combining the assets of the RUNES and
the GANA [20] metamodel in order to fully automate
the generation of the adaptive control logic for autonomic
component applications. So we are currently investigating
the information extraction and feed-back of the results
of Alloy based validation and verification of component
model configurations so that we could explicitly manage
the deployed system via multi-faceted control paradigms.
Obviously, we are fully aware of the scalability issues of
our current approach, so further studies will be carried out
in this regard. Moreover, the results of these studies will be
incorporated, as best practices guidelines, into future model
translators, which are supposed to produce the major parts
of the Alloy specifications and to evaluate the results of
the analysis runs. Ultimately, our aim is to create a generic
framework which iteratively and interactively modifies and
verifies the component model of sensor application scenarios
and continuously indicates the most probable, correct run-
time configuration sequences thereof.

REFERENCES

[1] Z. Theisz, G. Batori, and D. Asztalos, “Formal logic based
configuration modeling and verification for dynamic compo-
nent systems,” Proceedings of MOPAS 2011, 2011.

[2] K.-E. Arzén, A. Bicchi, G. Dini, S. Hailes, K. H. Johansson,
J. Lygeros, and A. Tzes, “A component-based approach to
the design of networked control systems,” European Journal
of Control, 2007.

[3] P. Costa, G. Coulson, C. Mascolo, G. P. Picco, and S. Zachari-
adis, “The RUNES middleware: A reconfigurable component-
based approach to networked embedded systems,” Proceed-
ings of the 16th Annual IEEE International Symposium
on Personal Indoor and Mobile Radio Communications
(PIMRC’05), Berlin, Germany, September 2005.

[4] G. Batori, Z. Theisz, and D. Asztalos, “Domain specific mod-
eling methodology for reconfigurable networked systems,”
ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2007), 2007.

64

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] G. Batori, Z. Theisz, and D. Asztalos, “Robust reconfigurable
erlang component system,” Erlang User Conference, Stock-
holm, Sweden, 2005.

[6] J. Armstrong, “Making reliable distributed systems in the
presence of software errors,” SICS Dissertation Series 34,
2003.

[7] D. Jackson, Software Abstractions: Logic, Language, and
Analysis. The MIT Press, London, England, 2006.

[8] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on
UPPAAL,” Proceedings of the 4th International School on
Formal Methods for the Design of Computer, Communication,
and Software Systems (SFM-RT’04), LNCS 3185, 2004.

[9] G. Holzmann and R. Joshi, “Model-driven software verifica-
tion,” Proceedings of SPIN2004, Springer Verlag, LNCS 2989,
2004.

[10] D. Jackson, “Alloy analyzer,” http://alloy.mit.edu/, 2008.

[11] M. Taghdiri and D. Jackson, “A lightweight formal analysis
of a multicast key man-agement scheme,” Formal Techniques
for Networked and Distributed Systems (FORTE 2003), vol.
2767 of LNCS., pp. 240–256, 2003.

[12] I. Warren, J. Sun, S. Krishnamohan, and T. Weerasinghe, “An
automated formal approach to managing dynamic reconfigu-
ration,” 21st IEEE International Conference on Automated
Software Engineering (ASE 2006), Tokyo, Japan, pp. 37–46,
September 2006.

[13] D. Walsh, F. Bordeleau, and B. Selic, “A domain model
for dynamic system reconfiguration,” ACM/IEEE 8th Interna-
tional Conference on Model Driven Engineering Languages
and Systems (MoDELS 2005), vol. 3713/2005, pp. 553–567,
October 2005.

[14] E. G. Aydal, M. Utting, and J. Woodcock, “A comparison of
state-based modelling tools for model validation,” Tools 2008,
June 2008.

[15] I. H. Krueger and R. Mathew, “Component synthesis from
service specifications,” In Proceedings of the Scenarios:
Models, Transformations and Tools International Workshop,
Dagstuhl Castle, Germany, Lecture Notes in Computer Sci-
ence, Vol. 3466, pp. 255–277, September 2003.

[16] G. Batori, Z. Theisz, and D. Asztalos, “Configuration aware
distributed system design in erlang,” Erlang User Conference,
Stockholm, Sweden, 2006.

[17] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett,
C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi,
“The generic modeling environment,” In Proceedings of
WISP’2001, Budapest, Hungary, pp. 255–277, May 2001.

[18] “GME documentation,” http://www.isis.vanderbilt.edu/Projects/gme.

[19] K. Chen, J. Sztipanovits, S. Abdelwahed, and E. Jackson,
“Semantic anchoring with model transformations,” European
Conference on Model Driven Architecture -Foundations and
Applications (ECMDA-FA), Nuremberg, Germany, November
2005.

[20] A. Prakash, Z. Theisz, and R. Chaparadza, “Formal methods
for modeling, refining and verifying autonomic components
of computer networks,” Springer Transactions on Computa-
tional Science (TCS) - Advances in Autonomic Computing:
Formal Engineering Methods for Nature-Inspired Computing
Systems in LNCS 7050, pp. 1 – 48, 2012.

65

International Journal on Advances in Intelligent Systems, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

