
341

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Interoperability Service for Autonomic Systems

Richard John Anthony
The University of Greenwich

Park Row, Greenwich

London SE10 9LS, UK

+44 (0) 208 331 8482

R.J.Anthony@gre.ac.uk

Mariusz Pelc
The University of Greenwich

Park Row, Greenwich

London SE10 9LS, UK

+44 (0) 208 331 8588

M.Pelc@gre.ac.uk

Haffiz Shuaib
The University of Greenwich

Park Row, Greenwich

London SE10 9LS, UK

+44 (0) 208 331 8588

Haffiz.Shuaib@yahoo.com

Abstract - Interoperability support is a key outstanding

requirement for autonomic computing systems, and this need

stems from the very success of these systems. Autonomic

computing is increasingly popular; soon autonomic control

components will be commonplace and present in almost every

large or complex application. Interoperability between

autonomic managers is an increasingly urgent concern, as the

proliferation of autonomic systems inevitably leads to

situations where multiple autonomic components coexist and

interact either directly or indirectly within the same

application or system. Problems can arise when numerous

independently designed autonomic components interact,

potentially destabilising systems. We advocate a service-based

approach to interoperability and present a set of requirements

for such an approach as well as a suitable architecture. A key

component of this architecture is the Interoperability Service

with which Autonomic Managers register their management

interests and capabilities, using a management description

language. The Interoperability Service automatically discovers

and manages potential conflicts between manager components.

Developers integrate Autonomic Managers with the

Interoperability Service by importing its interfaces. This

allows the Interoperability Service to automatically suspend

and resume managers, or specific management functions as

necessary, driven by the automated conflict detection. We

illustrate the use of the Interoperability Service in a data-

centre scenario in which independently developed power

management and performance management autonomic

components operate.

Keywords - Autonomic systems; Interoperability; Services.

I. INTRODUCTION

Autonomic Computing (AC) has matured rapidly from a

hot research topic to an accepted and valued technique for

automating system management, in less than a decade. The

main reason that the popularity of AC has grown so strongly

in such a short timeframe is because it offers solutions to the

problems caused by high complexity in systems. This

complexity arises from large numbers of interacting

components, typically with high functionality and with high

operational speeds working in high throughput applications.

The number of possible configurations and the different

interactions and sequences of interactions, increases at an

exponential combinatorial rate as the underlying

behavioural richness of the systems and sub-components

increases. This rapidly leads to systems whose behaviour is

beyond a human manager’s comprehension, certainly in

terms of making real-time configuration decisions.

Autonomic computing automates the management of one or

more sub-components or resources, thus controlling certain

elected characteristics of a system in a timely manner;

increasing optimality and robustness and reducing errors.

The sophistication of AC has also advanced at a spectacular

rate. This is largely due to the reuse and extension of a wide

range of reasoning and control concepts and techniques

taken from established fields such as control theory and

artificial intelligence.

The rapid evolution of AC has been driven by a main

focus on the internal reasoning techniques, and a bias

towards isolated development and deployment of

Autonomic Managers (AM) which tend to have a very

specific operational envelope; in order to demonstrate the

robustness of the core techniques and thus to gain

acceptance for the overall concept of AC.

However, the popularity of AC is driving expansion into

ever more diverse application domains and increasing the

variety of aspects of systems that can be automatically

managed. This means that for future AMs, it is not safe to

assume isolated management operation. In fact, it will be

increasingly common for multiple AMs to coexist in any

moderately sized computer system.

Almost all systems use multi-vendor software solutions

and this implies that there will be potentially a variety of

manager components existing, even for any one specific

function of a system. For many systems, autonomic

management will arrive incrementally; as new functionality

is introduced, and through upgrades of non-managed

components to new managed versions. In some cases the

introduction of management capabilities will not be obvious

– third party developers may deliver components with

internal management that is not exposed at interfaces to

other components.

Unplanned coexistence, or unexpected interactions could

arise due to the highly dynamic nature of some systems in

which configurations, and composition of components

changes quickly. Automatic upgrades of individual

components are another increasingly popular way by which

systems behaviour changes over time, and not necessarily

with the designer of a specific component having full

342

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

visibility of the whole system behaviour. Thus even a

‘known’ manager component could suddenly introduce new

behaviour or potential conflict.

The possibility of coexistence and thus unplanned

interactions or resource conflicts means that AMs will

operate in environmental conditions not foreseeable by their

designers. This means that an AM may pass behaviour tests

‘in the lab’ but still exhibit undesired behaviour when

deployed.

This work extends our earlier work in [1]. We are

interested in the challenge of interoperability for AMs,

especially in the context of unplanned interactions, which

can take many forms, but fall into two classes. Direct

conflicts occur where two AMs attempt to manage the same

explicit resource. Indirect conflicts arise when AMs control

different resources, but the management effects of one have

an impact on the management function of the other, or the

combined effect of the two managers has an undesirable

impact at system level.

 The indirect conflicts are expected to be the most

frequent and problematic, as there are such a wide variety of

unpredictable ways in which such conflicts can occur. In

addition, the effects of indirect conflict will be less obvious

to detect and harder to diagnose than the direct conflicts.

There will also be a range of severity of the effects of

conflicts, from little consequence (such as a cancellation

effect of opposing managers) whilst others could lead to

serious performance or stability problems or even failure.

The problem is illustrated with an example: Consider a

system with two AMs: a Power Manager (PM1) shuts down

servers that have been idle for a short time; and a

Performance Manager (PM2) attempts to maintain a pool of

idle servers to ensure high responsiveness to high priority

applications. The two services were developed and

evaluated in isolation and both performed perfectly;

however the respective vendors did not envisage that they

would co-exist. In current state of practice for AM

development, interoperability is not a first-class concern, so

each manager will be unaware of the other, i.e., it has no

mechanism to detect and adapt to the presence and

behaviour of the other. Bringing a shutdown server back on

line has a latency of several seconds, thus when both AMs

are co-resident PM1’s ‘locally correct’ behaviour defeats

PM2’s contribution.

This problem can only be resolved if an external agent

(such as a human system manager) can detect, diagnose, and

identify a solution to the problem. This illustration is quite

similar to the situation described in [2], see section II.

The general lack of interoperability support for AC is an

urgent problem that could threaten its long-term success if

not addressed in the near future. Custom solutions for

interoperability may be necessary in some specific

applications but in general this is a very expensive

approach. In addition to the application-technical challenge,

the interoperability solution itself becomes an additional

component to keep up to date, as the AMs themselves, and

the operating environment change over time. Some

important issues arising from custom interoperability

attempts are discussed in section II.

We advocate a universal solution for AM

interoperability that is integrated into AMs at design time

but which does not impose any limitations on the

technology used to implement the management control

functions and does not restrict or interfere with the way in

which the autonomic management logic operates. We

propose an Interoperability Service (IS) that monitors the

various autonomic components present in a system. When a

conflict of interest is detected the IS selectively suspends or

shuts down the management function of autonomic

components, based on a service description exchanged

during the AM registration process (i.e., at run time). The IS

has a hierarchical structure to ensure scalability and operates

with a primarily local focus but also handles conflicts

between non-local components where relevant. The

proposed approach requires that at design time the

developer identifies the resources that the manager will

directly control, as well as those that could be indirectly

affected. The approach has the main benefit of not requiring

the developer to have any knowledge of other managers that

may be present at run time. Compliance with such a scheme

will be a step towards eventual ‘certification’ of AMs,

which is important for long-term acceptance and growth of

AC.

The contributions of this paper include: firstly we

evaluate the nature and scope of the interoperability

challenge for autonomic systems and identify a set of

requirements for a universal solution (section III). We

present the architecture of a service-based interoperability

solution in section IV. Section IV, part C outlines a

management description language which is intended for use

by developers to ensure consistent description of AMs’

management capabilities. Automatic detection of

management conflicts is discussed in section IV, part D.

Section V presents a work-in-progress implementation of

the IS, and this is evaluated in section VI.

II. BACKGROUND

This section discusses the state-of-the-art in autonomic

component interoperability. We also discuss some scenarios

reported in the autonomic computing literature where either:

purposeful interaction between several autonomic elements

has been attempted to achieve a common goal; or where

unexpected interactions or conflicts occurred between

independent autonomic elements.

The potential significance of unwanted interaction

between multiple autonomic elements was demonstrated in

[2]. In this work, two autonomic managers were

implemented. The first of these managers, the WebSphere

Extended Deployment (WXD) dealt with application

resource management, specifically in the area of CPU usage

optimization. The second manager referred to as the Power

343

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

manager was responsible for modulating the operating

frequency of the CPU to ensure that the power cap was not

exceeded. It was shown that without a means to interact,

both managers throttled and sped up the CPU without

recourse to one another, thereby failing to achieve the said

optimization the managers were expected to achieve, in

terms of resource allocation and power utilization

optimization, and potentially destabilising the system. We

envisage widespread repetition of this problem until a

universal approach to interoperability is implemented.

There are several examples of bespoke interoperability

solutions for specific systems. A distributed management

framework that seeks to achieve system-wide Quality of

Service (QoS) goals for autonomic/self-managing systems

was proposed in [3]. In this work, autonomic controllers

were added and removed from the system based on the

demands of the application QoS requirements. Here, the

controllers communicate indirectly with one another using

the system variables repository. If a controller were to fail,

other controllers reading this repository take over the

responsibilities of the failed controller, to ensure that QoS

objectives are met. Other research works take a more direct

approach to autonomic element interaction. For instance, in

[4] the autonomic elements that enable the proposed data

grid management system communicate directly with one

another to ensure that management obligations are met. This

paper defines four types of autonomic element including a

data scheduler, data replication service provider, client and

server file system providers. The relationship between each

type of autonomic element is peer-to-peer. In contrast, [5]

adopts a three-level hierarchical relationship to autonomic

element interactions. The hierarchy is such that it is made

up of a single device at its lowest level. Multiple devices are

grouped into servers and servers are further grouped into

clusters. The autonomic element at each level interacts with

the autonomic elements above and below it to achieve

autonomic power and performance management. [6]

proposes a two-level autonomic data management system

that optimizes the managed system so that jobs are not

starved of resources. Physical servers each support multiple

virtual servers. Local autonomic controllers manage each

virtual server. These controllers use fuzzy logic rules to

determine the expected amount of resources needed by the

applications that run on the virtual servers. A global

manager is tasked with allocation of physical resources to

the virtual servers in an optimal and equitable manner. [7]

implements a mechanism similar to that proposed in [6], in

that virtualization on each physical server is used to

optimize system usage and power consumption. The

difference is that in [7] the local controllers manage each

physical server as opposed to the virtual machine (VM) in

[6]. A higher-level autonomic manager interacts with the

local controllers to switch on or off the physical servers to

ensure that Service Level Agreements (SLAs) are met,

while also lowering power consumption. In [8] a

combination of database replication and the avoidance of

‘hot-spots’ (devices with above-average operating

temperature) is used to improve the performance of the

managed system. Here, the autonomic system consists of

two types of element. The responsibility of the first

autonomic element i.e., the application scheduler is the

creation and destruction of replicas of a database to assure

high-availability. The other autonomic element, the resource

manager, interacts with the scheduler to provide physical

computational resources to the applications based on the

SLAs. In addition to other responsibilities, the resource

manager uses a model of past operations to move jobs from

equipment operating at a higher temperature onto equipment

with lower operating temperature. [9] describes an

experiment to separate out the Monitoring and Analysis

stages of the MAPE loop into distinct autonomic elements,

with designed-in interactions between them. Monitoring

capabilities are implemented in a node called an agent, with

the analysis aspect implemented in a node called a broker.

Information received from the environment are processed

by the agents and forwarded to the broker where it is further

analyzed. One or more agents feed information to a specific

broker. An example of bespoke designed-in interaction

between autonomic elements is provided in [10]. Three

types of autonomic elements work hierarchically to provide

scalable management, differentiated in terms of their

operating timescale and scope of responsibility. This

example serves to differentiate interaction between

components which is achieved here, from the concept of

interoperability which has stricter requirements. The fact

that the various elements are part of a single coherent

service with designed-in support for interaction means that

the full challenge of interoperability is not encountered in

this situation.

[11] illustrates the complexity of combining multiple

management domains into a single controller. In this work a

joint QoS and Energy manager is developed using a design-

time oriented approach tuned for a specific environment and

is thus highly sensitive to its operating conditions. This tight

integration approach is not generalisable and the resulting

combined manager would appear to be much more costly to

develop and test than two independent managers.

The majority of the work to date has targeted planned

interoperability between designed-for-collaboration AMs

working towards a common goal. This is a valuable step

towards AM interoperability, although these solutions

generally lack a formal definition of the interfaces or where

defined, these interfaces are highly specific to the system in

question, thus preventing wide applicability and reusability.

Custom solutions are expensive to develop and are

sensitive to changes in the target systems, thus they are

generally restrictive and not future proof. A significant issue

is that they do not tackle the specific problem of unintended

or unexpected interactions that can occur when

independently developed AMs co-exist in a system.

However, the wider problem of standardised and system

independent interoperability in autonomic systems has been

344

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

considered in several works. For instance, [12] defines a

number of interfaces {Monitoring and test, Lifecycle,

Policy, Negotiation and binding} to aid autonomic element

interactions. Together these interface definitions enable the

following properties:

 A means to establish appropriate administrative

relationships.

 A means to monitor an autonomic element.

 A means to instruct these elements from an external

source.

 A means to determine the current state of an autonomic

element e.g., start, stop etc.

 A means to export and import policies to and from an

autonomic element.

 A means to grant and request service to and from

another autonomic element.

 A means to provide interaction integrity.

Multi-agent systems have some similarities to multiple

independent-AM systems. However the interoperability

problem is different because a multi-agent system is usually

a coherent application and thus designed and tested

specifically with the intention of multiple, similar, known-

at-design-time agents; whereas in the independent-AM case

incremental addition of new or upgraded AMs introduces

unplanned interactions (i.e., unplanned at the time the

various AMs were designed and tested).

Several ‘vision’ papers [13], [14], [15] identify

interoperability as a key challenge for future autonomic

systems. [13] argues that the mechanisms that define

interoperability between autonomic elements must be

reusable to limit complexities i.e., it must be generic enough

to capture all communications across the board but also

prevent bloatedeness. A standard means must exist for

exchanging contexts between communicating elements to

allow one autonomic element to understand the basis for the

action of another autonomic element. [13] also identifies the

need for a function to translate the output of one element to

the format understood by another. [14] identifies some

necessary components for autonomic element interaction,

including: a name service registry for autonomic elements; a

system interaction broker and a negotiator. An interface

specification must also take cognizance of hierarchy

amongst autonomic elements. [15] observes that a strict and

specified communication behaviour should be enforced, to

prevent interoperating autonomic elements from

communicating through undocumented or backdoor

interfaces.

III. INTEROPERABILITY ISSUES AND

REQUIREMENTS

This section highlights the technical challenges of

providing interoperability between AMs, and analyses the

requirements for a universal solution. The state-of-the-art in

achieving interoperability in autonomic systems has been

discussed in section II and is predominantly focussed on

custom and system-specific (or application-specific)

solutions. This demonstrates the plausibility of AM

interoperability and provides important starting points

towards our goal of universal interoperability.

We posit that interoperability support (or lack of it) will

become a make-or-break issue for future autonomic systems

which inevitably contain multiple AM components.

Bespoke or application-specific approaches to

interoperability only offer a temporary respite at best, as

they suffer a number of significant limitations which

include:

1. Lack of flexibility and ability to scale - it is unrealistic

to keep adding signals and functionality to deal with each

possible interaction between any combination of AM’s.

2. Having many isolated pools of interoperability is too

complex. AC became popular fundamentally as a means of

controlling, or hiding, complexity. It is undesirable from

maintainability and stability perspectives to actually add

excessive complexity in the process of solving the

complexity problem.

3. It is not technically feasible to achieve close-coupled

interoperability (i.e., where specific actions in one AM react

to, or complement those of another) unless the source code

and detailed functional specification is available for each

AM involved. Without standardised interfaces this will

always be a major challenge.

4. It will not be cost effective or timely. The cost and

complexity of a bespoke solution spirals exponentially as

the number of interacting AM’s increase (consider a cloud

computing facility or data centre with multi-vendor

management software systems and with autonomic

management embedded into platforms, operating software,

application software and also infrastructure such as power

management and cooling systems – this is a complexity and

stability storm just waiting to happen).

5. Re-development of managers to facilitate specific

interoperability, and especially to deal with conflicts that

arise unexpectedly, is reactive and incremental (thus always

ongoing).

6. It is not possible to know the nature of AMs not yet

built, or to predict exactly if/where/when conflict will

materialise in advance of adding a particular AM into a

running system.

7. The incremental re-development approach cannot be

applied on-line (in the medium term) as current technology

is not sufficiently sophisticated, although for the longer term

it may be possible since work is underway in several

projects to develop self-evolvable systems.

In summary, the biggest single challenge to universal

interoperability of autonomic systems is that it is not

possible (at time of design, development or deployment of a

particular AM) to predict all future autonomic services that

could be added to a particular system, or even to predict

upgrades that could be made to known services.

345

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Requirements of a Universal IS

The issues highlighted above strongly suggest that it is

necessary to deal with interoperability proactively by

developing managers that are interoperability-enabled from

the outset. We propose a service-based approach to

interoperability, in which an Interoperability Service (IS) is

responsible for detecting possible conflicts of management

interest, and granting or withholding management rights to

specific AMs as appropriate. In this way the IS performs all

of the active interoperability management, and AMs only

participate passively by providing information and

following control commands from the IS. The IS interacts

with AMs via a special interface which they must support.

We identify a number of requirements for a universal IS

solution:

 Be application-domain independent and system

independent.

 Able to represent AMs’ management interests in a

standard way that facilitates accurate conflict detection.

This includes recognising resources which are not

directly managed, but are nevertheless impacted by the

behaviour of the manager.

 Have variable conflict-detection sensitivity which is run-

time configurable to suit specific system requirements.

 Have a hierarchical architecture so as to deal with both

local and global conflicts, and conflicts that occur across

different levels in a complex system.

 Be proactive and automated; these are mandatory

qualities for sustainable systems containing dynamic

combinations of AM’s with potentially complex

interaction patterns.

 Able to automatically suspend and resume AM

management activity on the basis of conflict detection

and resolution.

 Support independently developed and tested AMs which

in the presence of other AMs are susceptible to conflicts

that they cannot locally detect or handle.

 Be sufficiently trustworthy that compliant AM’s are

certifiable for safe co-existence – regardless of platform,

vendor etc.

Two diverse candidate architectural approaches were

considered: The first is fully distributed, with localised

conflict detection logic embedded in each autonomic

manager. This approach requires that each manager

exchanges standardised management description

information with other managers on a peer-peer basis. Each

participant would compare their own management interests

with those of its discovered peers. On discovery of a

conflict, a negotiation phase would determine which

manager has the authority to manage the contested resource.

This approach has the benefit of a standardised conflict

detection mechanism, embedded in the form of a library, but

has the disadvantages of extensive replication of

functionality, the need for the negotiation phase, and

potential scalability limitations.

The second approach is central service based. This

approach is based around an interoperability service which

keeps details of all autonomic managers present and

maintains a mapping of the resources they manage and their

scope of operation and management. Autonomic managers

register with the service via a standard interface (much like

a name service) and provide details of their management

capabilities using a standardised description language. The

interoperability service contains the logic to detect conflicts

and when necessary send a signal to one of the involved

managers to stop its management activity. This approach

can be highly scalable and robust if the service is itself

distributed and operates hierarchically with a dynamically

elected global instance.

We have adopted the second approach because it is

scalable, generalisable, has low component-interaction

complexity and has the advantage of not requiring further

negotiation once a conflict has been detected.

IV. INTEROPERABILITY SERVICE

This section presents the architecture of an IS to

facilitate exploration of the requirements identified above,

and thus investigate the feasibility of a universal IS. By

‘universal’ it is meant that the architecture promotes a

CORBA-like view of autonomic systems development, in

which it is intended that any two autonomic managers that

comply with the architecture specification will be

guaranteed to co-exist in a system, without undesirable

interactions leading to instability.

The IS maintains a database of all registered AMs along

with a mapping of the resources they manage and their

scope of operation and management. AMs register with the

service via a standard interface and provide details of their

management capabilities using a standardised description

language. The IS detects potential conflicts and sends

appropriate signals to one or more AMs to e.g., stop,

suspend or restrict their management activity. The strengths

of this approach are that it is scalable, generalisable, has low

component-interaction complexity and because conflict

management is handled within the IS, the AMs are not

involved in negotiation with peers.

The service has a hierarchical structure for scalability,

enabling conflict detection at both global level (such as

system-wide security management) and local level (such as

platform-wide, or VM-wide, resource management) with

respect to a particular AM. Additional levels can be added,

with a communication infrastructure resembling that of a

typical hierarchical service such as DNS.

It is important that conflict-detection is performed at the

correct level. For example, an autonomic VM scheduler

only has a potential conflict with an autonomic memory

manager, if they are both operating on the same processor

unit.

Figure 1 shows the system-level view. The IS comprises

a number of service instances distributed throughout a

346

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system. Each instance of the IS provides service to a local

group of AMs, resolving conflicts that occur at the local

level. One of these instances is dynamically elected to serve

as the global instance, and deals with resource conflicts at

system level.

Figure 1. System-level view

The architecture is formed around a number of regular

interfaces and a communication protocol which define the

interaction between the components of the system, as shown

in Figure 2.

Figure 2. The Interoperability Service (IS) architecture,

showing interface details.

A. Interoperability Service Interfaces

A number of interfaces are specified, and form three groups:

1. IS-AM interaction is supported by two interfaces.

IAdvertise {Advertise, Unregister, Heartbeat} is used

by AMs to signal joining (registering), leaving and

heartbeat messages to the IS. Advertise is accompanied

by a list of resources that the AM either wishes to

manage directly, or that the developer has identified

might be impacted by the manager’s behaviour. This has

the effect of registering the management interests of the

AM with the IS. Unregister is used by an AM to signal

an orderly shutdown, and Heartbeat (invoked

periodically under normal conditions) enables (when

absent) the IS to detect when a manager crashes or

leaves abruptly. In either case, the AM’s management

interests are unregistered from the IS and the conflict

detection analysis is triggered, so that any AMs which

were suspended but are no longer in conflict with the

system can be resumed.

IInteroperate {Run, Stop, Suspend, Restrict, Resume,

Throttle} is used to receive directives sent from the IS.

The AM developer uses the IS API to map these

directives onto the AM-internal behaviour. Run is

accompanied by a sub-list of the requested resources that

the AM can manage, so partial conflicts can be handled

without suspending the entire manager. Stop shuts down

the AM. Suspend backgrounds the AM (the AM

developer determines the actual AM-internal semantics).

Restrict is used to partially suspend an AM where

potential conflict is discovered for a subset but not all of

its management activities and is only used when the IS is

configured to operate in the SAFE_COEXISTENCE

mode (see later). Resume reactivates a suspended AM.

Throttle provides for a more-sophisticated adjustment of

AM behaviour in which the IS can specify different rates

of management activity to potentially conflicting AMs to

prevent certain oscillatory patterns developing.

2. IS-IS interaction is facilitated by a single interface.

ICommunicate {Forward, Locate, Elect, SetISLevel,

GetISLevel} supports hierarchical operation, necessary

in large or complex systems when AMs operate at

different levels within a system and may be involved in

local or system-wide conflicts. Forward is used to pass

messages between the Global IS instance and local ISs

which want to control or impact on global-level

resources (e.g., communication between low and high

level scheduling managers); this is the basis of system-

wide and cross-level conflict detection. The remaining

functions support the hierarchical IS structure itself

including leader election for robustness. Locate returns

the ID of the current service coordinator IS instance

(which also performs the role of global conflict

detection). Elect initiates an election if no coordinator

instance is found. SetISLevel is used to set the IS level

status to be either Local or Coordinator. GetISLevel is

used by each IS instance to determine its status during

Locate and Elect events.

3. The IS provides an external management interface.

IConfigure {SetMode, GetMode, SetSensitivity,

GetSensitivity, StatusReport} is a configuration and

reporting interface which allows external system

management utilities to perform system-specific

configuration and generate status reports and statistics.

SetMode and GetMode allow run-time configuration of

the service to allow different levels of safety;

‘SAFETY_CRITICAL’ requires that all of a particular

AM’s management activity is suspended when it is

ISk

ISi ISk

Elected Global IS instance
(role dynamically allocated
to an existing IS instance)

Distributed IS instances
communicate with local

AMs

Autonomic
managers

Managed
resources

ISj

AM AM AMAM

Independently
developed
Autonomic
Managers

Key
Interoperability Service
operational communication
Interoperability Service
configuration and reporting

Runtime system object / resource

Direct management relationship

Impacted by manager behaviour
(darker implies stronger impact)

()

()

Interoperability Service

(Global instance)

IS-internal interface

Config and
reporting
interfaces

System manager’s
configuration and
reporting utility

Config and
reporting
Interfaces
(user side)

Knowledge

Analyse Plan

Monitor Execute

Interoperability Service interfaces

Knowledge

Analyse Plan

Monitor Execute

Interoperability Service interfaces

Interoperability Service

(Local instance)

AM interfaces

Config and
reporting
interfaces

IS-internal interface

347

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

found to be involved in a conflict, whilst

‘SAFE_COEXISTENCE’ allows partial suspension of

AM functionality, such that only non-conflicting

management activities continue. The IS is initialised to

SAFETY_CRITICAL mode. SetSensitivity and

GetSensitivity are used to configure the conflict

detection sensitivity level (see section IV, part D) and to

dynamically adjust this if necessary. StatusReport

collects status information and statistics for report

generation and IS performance monitoring.

The IS architecture specification defines the interfaces,

and with its accompanying communication protocol, defines

the message formats and sequences that form the inter-

component communication. It also specifies the semantics

of this communication. Figure 3 shows how the IS

functionality is integrated with the various components of

the system.

Figure 3. Internal architecture of the system components

and the integration of the IS interfaces with these

components.

The software developer retains flexibility with respect to

the internal design and behaviour of the business logic of

AM components and system configuration utilities. The

architecture specification does not restrict the management

approach, internal structure or control / adaptation

techniques used within an AM component. However, the

AM developer must integrate the API calls into the manager

such that the control behaviour meets the IS specification

(i.e., to interpret the directives {stop, suspend etc.} so that

the AM’s behaviour adheres to the respective IS semantics).

Where an AM manages multiple resources the developer

can choose to implement Restrict such that it is effective at

the level of the AM itself, or only on the management

activity that has been notified as being in conflict. In

contrast Suspend always acts at the level of the entire AM.

Similarly, the developer can decide the AM-internal

semantics of Suspend and Restrict so as to isolate the

management output (effecter output) of the manager whilst

still running the monitor, analyse and plan parts if desired.

This approach facilitates the IS’ regulatory control over the

AM when conflicts occur, whilst enabling ‘warm’ start-ups

of components when conflicts are resolved.

B. The IS AM-state model

The IS maintains an instance of a state model for each

locally registered AM (see Figure 4). The information held

in these models drives the IS conflict management

behaviour and is the basis on which AMs’ management

rights are governed.

An AM is discovered when it registers its management

interests with its local IS instance. If there are no other AMs

registered the new AM is granted management rights for the

resources requested and signalled that it can run. If other

AMs are already registered, the IS evaluates whether or not

there is a possible conflict of interest, and if so signals the

AM to either Stop (in which case the AM must attempt re-

registration at a later time driven by some external event) or

Suspend (in which case the IS will automatically signal the

AM that it can resume, i.e., manage, once the conflict has

been resolved).

Figure 4. State diagram held by an IS instance, for each

locally registered AM.

C. A Management Description Language

We discuss the need for a standard description of AMs’

management interests, and briefly introduce our current

language which is extensible to accommodate

improvements in our understanding of ways actual and

potential conflicts arise.

The IS facilitates interoperability (in the most limited

case: safe coexistence) amongst (unknown in advance) AMs

which have been developed independently of each other,

and thus do not directly support interoperability amongst

themselves.

The overall goal is to maximise the management

freedom of AMs whilst at the same time ensuring that the

system remains stable. To fulfil its main role, the IS must

also:

 Detect AMs and learn their characteristics (via AM

registration);

 Identify situations where conflicts can potentially occur,

determine the consequences and the level of risk, and

The developer links in the Interoperability library and
uses IS API calls to map the IS’s signals onto behaviour
in the component (so as to implement Advertise, Run,
etc. in the AM component, and SetMode, SetSensitivity
etc. in the system configuration utility).

Interoperability library

Interoperability
Service business

logic

Interoperability Service

IConfigure
{ SetMode,
GetMode,

SetSensitivity,
GetSensitivity,
StatusReport }
(service side)

ICommunicate
{ Forward,

Locate,
Elect,

SetISLevel,
GetISLevel }

The AM’s internal behaviour is unknown to the IS.
The IS places no restrictions on the management

technique or control / adaptation technology used.

IS
API

Application-
specific

Autonomic
Manager

business logic

Autonomic Manager

IAdvertise
{ Advertise,
Unregister,
Heartbeat }

IInteroperate
{ Run,
Stop,

Suspend,
Restrict,
Resume,
Throttle }

Interoperability library

System
configuration

utility
business logic

IS
API

IConfigure
{ SetMode,
GetMode,

SetSensitivity,
GetSensitivity,
StatusReport }

(user side)

System-specific configuration utility

AM_State { Discovered, ConflictPossible, Running, Stopped, Restricted Suspended }

Discovered

Running
(conflict free)

Conflict
possible

Suspended

Stopped

AMs already
registered

NO AMs
registered

No potential
conflict

detected

Stop (potential
conflict detected)

Suspend
(potential conflict

detected)

Resume (conflict
resolved)

Potential
conflict

detected Restricted

Restrict (suspend
subset of management

activities where potential
conflict is detected)

Resume full management activities
(conflict resolved)

348

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

achieve a system-specific balance when taking decisions

to resolve conflicts by restricting, suspending or

stopping AMs’ management activities;

 Automatically enable the not-in-conflict subset of

management activities for restricted AMs;

 Automatically resume suspended AMs when conflicts

are resolved (e.g., on the basis or re-evaluating potential

conflict status when other AMs leave the system);

 Enable cooperation between AMs. For example to share

learnt knowledge concerning system state, volatility etc.

To perform these functions, the IS needs certain

information detailing each AMs’ management domain and

specific resources of interest. This information must use a

standard language format, and a fixed vocabulary of key

terms so that automated searching for overlaps of interest

can be performed effectively. The information will be

provided at run time by the AM via the IS API (the

information is provided ultimately by the AM developer).

Conflicts can arise in several ways. Direct conflicts

occur where multiple AMs attempt to manage the same

resource or object. However conflicts can be indirect (and

less obvious) because a manager’s activity may impact

resources other than those directly managed. Categories of

this include cross-application conflicts, for example

increasing a specific application’s use of a particular

resource such as network bandwidth reduces the availability

of bandwidth available to other applications. Another

category of indirect conflicts are cross-resource conflicts,

for example increasing processor speed to maximise

throughput increases direct power usage and may also

increase power requirements for cooling systems (which

may have their own autonomic management systems). Some

system characteristics such as security policy, power usage,

server provisioning strategy etc. may be managed at both

the system-wide level, and locally at the level of individual

computing node or cluster. This can lead to conflicts

between global and local managers, resulting in parts of the

system being out-of step with global policy, and/or

inefficient behaviour.

Clearly, it is difficult to identify every possible case of

indirect conflict with certainty, and the extent of

management impact in such cases is also highly variable.

Therefore the description information provided by AMs

must be sufficient to derive a similarity measure between

their management effects. The language needs to contain

appropriate categories to express areas of management

concern in a structured way, i.e., from high-level domain in

which the manager operates down to specific resources that

are managed, and also to express characteristics including

the management scope (global or local) and specificity (e.g.,

organisation specific, application specific).

Given these requirements, the standard management

description should include:

Category. Mandatory. The highest-level and most generic

descriptor used to identify the AM’s domain of interest.

Terms include:

{Power general, Performance general, Security general, ...}

Zone. Mandatory. A second level, more specific sub-

category enabling developers to differentiate between

specific management functions. Terms include:

{Power system, Power platform, Power cooling ...

Performance system, Performance CPU, Performance disk,

Scheduling, VM management, ... }

Impact. Mandatory. A numerical indicator Impact Factor

(IF), (where 0 < IF ≤ 1), is defined to express the strength of

the management influence. A directly controlled resource or

parameter is assigned the value 1. A value close to 0

indicates that the particular AM has a weak influence on the

resource whilst values close to 1 indicate that the resource is

closely impacted by changes to one that is directly managed

by the AM. For example an AM directly controlling CPU

speed (IF = 1) has a strong indirect influence on VM

performance (IF ≈ 0.8). Term: { ImpactFactor(value) }

Scope. Mandatory. Whether the manager has local or global

impact. Terms: { Local, Global }

Specificity. Optional. The extent of manager operation.

Terms include: { System-wide, Application-wide, Platform-

wide, Process-wide, User-specific, ... }

Trigger. Optional. This facilitates expression of temporal

aspects such as periodicity or operating timescale, as well as

specific events that invoke the management activity. Such

characteristics can potentially be used to detect

combinations of AMs at risk of causing of instability in the

form of oscillation or control divergence for example.

Terms include: { Period(value), Event(name) , ... }

Parameter. Optional. Identification of specific context

parameters that are of interest to the AM. Term:

{ Name(value) }

Envelope. Optional. Expression of range of control freedom

for a given named Parameter. This can potentially help to

avoid false positive detections of conflict, when managers

operate in the same domain but have non-overlapping

envelopes of operation. Terms include:

{ Name(range, value) }

Where provided, the Envelope term allows more precise

determination of the risk of conflict in cases where a pair of

AMs both declare an envelope value for a specific

parameter. Where an AM does not declare an envelope

value for any given Parameter the full state space of values

is assumed.

D. Conflict Detection

The architecture specification does not mandate the

actual conflict detection technique to be used; this is an

349

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implementation decision and will be based on the level of

sophistication required in a particular system.

In our exploratory work conflict detection is based on

calculating a numerical measure of similarity between the

management interests of a pair of AMs, and comparing this

measure with a sensitivity threshold level. A newly

registering AM’s management description is compared with

those of the already registered AMs.

The technique is described below and an example

implementation is outlined in section V.

The architecture specification defines a dynamically

configurable conflict sensitivity threshold (0 < ThreshC ≤ 1)

which is used to tune the conflict detection sensitivity (via

SetSensitivity, on IConfigure). A potential conflict is

detected if the similarity match measure Match of a pair of

AMs exceeds ThreshC. The sensitivity level is configured by

the facility manager via a control console application (or

tuning of this parameter could be automated), and can be

changed at run time as necessary. This enables safety

critical systems (for example) to operate pessimistically

with very low tolerance to potential manager conflicts,

whereas in domains where only efficiency (for example) is

at stake, the system can operate more optimistically, with a

higher tolerance which can lead to benefits of having a

greater number of AMs working simultaneously (bearing in

mind that a ‘potential conflict’ may not be realised).

V. IMPLEMENTATION

This section describes a work-in-progress

implementation which employs a subset of the extensible

architecture’s characteristics for demonstration of the core

behaviour. Here we focus on the operation of the service at

a local level, since it is intuitive to expect that many

conflicts between autonomic managers will be localised due

to decisions concerning local resources, or configurations of

local services.

The IS maintains a table which contains the identity and

state of each registered AM, and a second table which keeps

track of each AM’s directly managed and indirectly

impacted resources (see figure 5). Information in this table

comprises: AM_ID (a value allocated to the AM by the IS

during the discovery process); General area of management

function (a ‘category’ term from the management

description language); Sub-classifier of management

function (a ‘zone’ term from the management description

language); Managed parameter name ACItem_ID (the

optional ‘parameter’ term from the management description

language); Conflict status and Impact Factor for the related

resource; and Scope (a ‘scope’ term from the management

description language). Figure 5 also shows the

communication that takes place between an AM and the IS.

MAdvertise, MRelease and MHeartbeat are messages sent

from the AM via actions on the IAdvertise interface. MACK

/ MNACK are Acknowledge / Not Acknowledge responses

to management requests accompanying MAdvertise. This

works as follows: the AM tries to register (Advertise) its

management interests one by one and the IS replies with

MNACK messages if any are in conflict with the rest of the

system, MACK otherwise. MSuspend, MResume, MRun,

MStop and MThrottle are directives sent by the IS via the

IInteroperate interface.

Figure 5. The IS’ internal data tables,

and overview of the AM-IS communication protocol.

For initial exploration we use a conflict detection

technique based on a numerical similarity measure of AMs’

management interests. Conflict detection activity is

triggered by events that change the population or

configuration of the AMs; such as the registration of a

newly-discovered AM, or the departure of an AM from the

system.

For a pair of AMs {AMi, AMj} the similarity measure

Matchij is derived from the management descriptions of the

AMs as follows:

Let Ni = name of the specific managed resource

(specified by the Parameter term in the

management description),

 Ci = management category,

 Zi = management zone,

 IFi = impact factor (of AMi on the resource

identified by {Ni, Ci, Zi}),

 SN, SC, SZ = similarity indicator of management

description terms Name, Category and

Zone respectively for the pair of AMs.

4

IFSSS
Match

ZC
ij

N

where:

ji

ji
N

NN

NN
S

 when 0

 when 1

,

ji

ji
C

CC

CC
S

 when 0

 when 1 ,

ji

ji
Z

Z

Z
S

 when Z0

 when Z1 ,

2

ji IFIF
IF

 .

Interoperability Service

AMs Table
ENTRY_1 {}

ENTRY_2 {}

(...)

ENTRY_N {}

ACItems Table
ENTRY_1 {}

ENTRY_2 {}

(...)

ENTRY_N {}

Each AMs Table entry is of form:
{AM_ID, AM_State, ACItemList[]}

Each ACItems Table entry is of form:
{ACItem_ID, Category, Zone, AM_ID, ImpactFactor, isConflict, Scope}

Autonomic
Manager

MAdvertise

MRelease

MHeartbeat

MACK

MNACK

MSuspend

MResume

MRun

Mstop

MThrottle

350

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IF values are normalised, i.e., 1,0, ji IFIF , thus the

resulting similarity measure will always be a normalised

value 1,0ijMatch .

A newly registering AM’s management interests are

compared with details of each already registered AM, at the

local IS instance in most cases. This is performed

independently for each resource pair combination; so if AMi

and AMj are registered with declared management interests

in m and n resources respectively, and AMk attempts to

register p resource management interests, then mp + np

similarity measures are generated.

A potential conflict is detected if for any pair of AMs

{i,j}, Matchij exceeds the conflict sensitivity threshold

(ThreshC).

When evaluating the scalability of the approach it is

important to consider: 1. conflict detection occurs

predominantly at the level of the local IS instance; only in

cases where an AM’s resource description has global scope

does the conflict detection get invoked at the global level; 2.

conflict detection is only performed when events that affect

the AM population occur (e.g., AMs arriving, leaving); and

3. whilst we do not limit the number of AMs registered at a

local IS instance, we expect this number to be of order 10,

or perhaps 100 rather than much bigger values, for realistic

systems.

The dynamically configurable operating mode of the IS

determines what action is taken once a potential conflict has

been detected. If the IS mode is SAFETY_CRITICAL, AMk

will be suspended (i.e., management activities are inhibited

at the level of the AM itself). In SAFE_COEXISTENCE

mode AMk will be restricted, (i.e., management activities

are inhibited at the level of specific resources managed by a

particular AM; it is allowed to perform its normal

management operations for the not-in-conflict subset of its

management domain). The actual semantics for restricted

AM-internal operations are to some extent implementation

specific. In some cases it will be desirable to enable the

monitoring aspect to operate as normal (to prevent

discontinuity in monitoring traces etc., and to facilitate

warm restarts of restricted operations), but in all cases the

effecter is switched off, i.e., the manager can monitor its

environment but cannot change anything.

The current implementation uses policy-based

management logic within AMs; and is based on Agile++

[16], [17]. Agile++ has language components including

Rules, Variables and Actions. Under typical normal

behaviour, a Rule will be evaluated to determine which

Action needs to be performed, using Environment Variables

to reflect external inputs to the Rule and Output Variables to

signal the result of an Action. Restricted mode has been

implemented for conflicting operations such that the AM

still evaluates its control policy and executes Actions

within, as normal. However, Output Variables are disabled

(value forced to NULL) so that the Action can continue to

make internal updates (such as for external-state tracking)

but cannot actually effect the external system state.

As an alternative to using the IAdvertise interface for

AMs to register their management interests, the

implementation supports the encoding of the Management

Description Language in XML format. An example

configuration file is shown in Figure 6.

<!-- Autonomic Manager Configuration Specification Language -->

<MetaData>

 <ConfigAuthor Name="Mariusz Pelc" Organisation="UoG" />

 <TimeStamp Time="12:00" Date="20/12/2010" />

 <AMDescription>

 <AM ID="AM1">

 <ACItems>

 <ACItem ID="Performance" Scope="Local">

 <Category>Performance General</Category>

 <Zone>CPU Performance</Zone>

 <ImpactFactor>1.0</ImpactFactor>

 </ACItem>

 <ACItem ID="Power" Scope="Local">

 <Category>Performance General</Category>

 <Zone>System Performance</Zone>

 <ImpactFactor>0.5</ImpactFactor>

 </ACItem>

 </ACItems>

 </AM>

 </AMDescription>

</MetaData>

Figure 6. XML representation of the Management Description

Language

A. Wider Architectural Perspective

The IS implementation forms part of a wider project to

develop a full component model and middleware for

autonomic computing which has been ongoing at

Greenwich for several years, see for example [18], [19]. Full

details of this are out of scope for this paper, but in brief,

this is a policy-based system in which services including

communication manager, context manager, repository

manager and now the IS are optionally policy supervised.

The middleware supports policy-based application-specific

components which can have dynamic (run-time) policy

upgrades and which have in-built fault recovery. For

example if a new policy is loaded but its required context

information is not available from the context manager then

an automatic roll-back to a previously working policy is

performed. Architectural support for low-resourced

embedded platforms is also included.

B. Evaluation Application Scenario

Data centre management is a popular application domain

for AC; due in part to the high configuration complexity that

arises from the scale of operation, and also because with

such large amounts of resources deployed the potential

efficiency savings are very high. AC currently targets

several key aspects of data centres, including power

management to reduce running costs, and scheduling to

improve resource efficiency. We demonstrate the operation

and benefit of the IS in a data centre scenario in which two

independently developed AMs coexist (managing power

usage, and processor scheduling, respectively); their

management operations potentially conflicting.

351

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The scenario: The scheduling manager (AM1) has a

main goal of maximising throughput by keeping all

resources utilised where possible. The power manager

(AM2) is designed to minimise power usage by slowing

down processor speed or by shutting down entire processor

units where possible. We assume that, in the absence of

other managers, each of these services has been extensively

evaluated and found to improve overall performance.

The co-existence of these AMs creates a high potential

for conflict. For example AM2 will attempt to shutdown an

underutilised resource as soon as load level starts to fall,

whilst AM1 will attempt to bring unused resources into play

as soon as load levels increase (or a backlog develops).

Depending on the sequence of load level changes it is

possible that oscillation will build up between the actions of

these two managers.

Operation: During its initialisation each AM registers

with the IS. The management capabilities of each AM are

described using the standard language and categories

described earlier.

AM1 directly controls a parameter performance within

the general management category performance general, and

specific sub-zone CPU performance; and indirectly

influences a parameter power within the general category

performance general, and sub-zone system performance.

AM2 directly controls a parameter power within the

general category power general, and the specific zone of

interest system power; and indirectly influences a parameter

performance within the general category performance

general, and the specific zone of interest CPU performance.

a) AddACItem ("Performance", "Performance General",

 "CPU Performance", "1.0", "Local");

AddACItem ("Power", "Performance General",

 "System Performance", "0.5", "Local");

RegisterAsAM ();

b) AddACItem ("Power", "Power General",

 "System Power","1.0","Local");

AddACItem ("Performance", "Performance General",

 "System Performance", "0.5", "Local");

RegisterAsAM ();

c) bool AddACItem(char *ParameterName, char *Category,
 char *Zone, char *Impactfactor, char *Scope);

Figure 7. API calls to register AM’s management interests.

The API calls to perform the manager registration with

the IS are shown in Figure 7a (for AM1), and 7b (for AM2),

where AddACItem means ‘Add autonomically controlled

item’; its template is shown in Figure 7c.

VI. EVALUATION

As mentioned in section V, part A this work forms part

of a larger project to develop a full component model and

middleware for autonomic computing. We use the existing

infrastructure as a testbed to evaluate the IS in a realistic

system setting.

In addition to the IS, three additional system services are

provided to create a run-time environment in which the

behaviour of the IS and AMs can be evaluated, these are:

Communication Manager; ContextManager and

RepositoryManager. In addition, a couple of services were

fabricated to provide mock context values for two system

parameters which are needed as inputs in the run-time

execution of various control policies used in the

experiments. The EfficiencyProvider component generates

the ‘Efficiency’ parameter, and likewise the LoadProvider

component generates the ‘Load’ system parameter.

The services are integrated into a middleware

component (available in the form of shared library for

Linux) with API interface enabling communication, context

and repository management, conflict resolving and policy

evaluation.

Two IS-compliant AMs (AM1, AM2) have been

developed to evaluate and demonstrate the behaviour of the

Interoperability Service. AM1 and AM2 target popular

management domains within cloud / grid computing, typical

of autonomic control systems currently deployed in data

centre systems for example. The whole application

(including the AMs) thus comprises of 8 services. Figure 8

provides a snapshot of the system in operation during

scenario 5 (see below), showing clockwise from top left:

Communication Manager, Context Manager,

Interoperability Service, AM2, AM1, and the Repository

Manager.

The management domains of AM1, AM2 respectively

are: processor scheduling (with the goal of maximising

throughput by keeping resources utilised where possible),

and power management (with the goal of minimising power

usage). This is a realistic situation in which the direct

management activities are well differentiated, but in which

there is an indirect conflict as discussed in section IV, part

C.

The AMs are designed so as to be representative of

independently developed components operating in a data-

centre system, i.e., the AMs include no direct support for

co-existence or interoperability amongst themselves. The

evaluation is performed in 5 scenarios. The first four

scenarios show the behaviour of the IS when operating in

SAFETY-CRITICAL mode under a range of different

resource management circumstances. The fifth scenario

shows how the IS responds to AM conflicts when the IS is

operating in SAFE-COEXISTENCE mode.

352

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Figure 8. The system in operation during the evaluation.

353

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Scenario 1 illustrates the standalone manager case, and

is included for completeness. Each manager registers

separately in the system in the absence of the other. ThreshC

= 0.6. AM1 requests management rights for CPU

performance, and also notifies a potential impact on system

power. As there are no other AMs present, the IS grants

AM1 permission to manage unimpeded. Similarly, for AM2

(in the absence of AM1) the IS grants rights to manage

system power level and also to have an indirect impact on

system performance.

Scenario 2 illustrates the case where a potential conflict

is detected between a pair of managers (IS operating in

SAFETY-CRITICAL mode). AM1 registers with the IS and

is granted rights to manage the resources it has requested.

AM2 then registers whilst AM1 is still present. ThreshC =

0.6. The IS performs conflict detection analysis, based on

the AMs’ announced Impact Factors (IFs) for each

requested managed item. This determines whether AM2 can

be granted the requested management rights: Power directly

managed (IF=1.0), and Performance potentially affected

indirectly (IF=0.5). The match levels are determined using

the algorithm presented in section V. In this case a conflict

is detected; arising from AM1’s direct management of

performance and AM2’s indirect impact on performance,

giving a match value greater than the threshold. This can be

seen in the diagnostic trace in figure 9.

IS: Handling Advertise Message:

IS: Conflict Detection [AM2->Power]::[AM1->Performance]

IS: Match Level=0.25, Threshold=0.6

IS Decision: No Conflict Detected

IS: Conflict Detection [AM2->Power]::[AM1->Power]

IS: Match Level=0.4375, Threshold=0.6

IS Decision: No Conflict Detected

IS: Conflict Detection [AM2->Performance]::[AM1->Performance]

IS: Match Level=0.6875, Threshold=0.6

IS Decision: Conflict Detected

IS: Conflict Detection [AM2->Performance]::[AM1->Power]

IS: Match Level=0.625, Threshold=0.6

IS Decision: Conflict Detected

IS: Sending MACK message for [AM2]->Power

IS: Sending MNACK message for [AM2]->Performance

IS: Sending MSuspend message to [AM2]

Figure 9. A potential conflict is detected.

Figure 9 shows a diagnostic trace of the IS conflict

detection process, in which the advertised management

interests of AM2 are compared for all relevant AMs. In this

specific case AM1 is already managing a system

performance characteristic (specifically CPU performance),

when AM2 registers, requesting to manage system power,

but also announcing a potential impact on system

performance. The IS does not detect a direct conflict with

the power management, but the conflict match level for

system performance exceeds the current ThreshC (0.6). The

IS suspends the newly registering manager to prevent

possible instability (this manager will be automatically

resumed if AM1 leaves the system and there are no other

conflicts with other AMs registered in the meantime).

Figure 10 shows the resulting message sequence.

Key: Snd - Sent Message MNA - MNACK MRu - MRun

 Rcv - Received Message MRl - MRelease MSp - MStop

 MAd - MAdvertise Message MRe - MResume

 MAC - MACK Message MSu - MSuspend

Figure 10. Message sequence for scenario 2.

Scenario 3: As scenario 2, but with ThreshC = 0.8, i.e.,

the IS is less sensitive to potential conflicts (this

configuration may be better suited to non-critical systems

where some potential for conflict may be acceptable, i.e.,

the tradeoff between safety and management flexibility is

shifted). The new diagnostic behaviour trace and the

resulting message sequence are shown in Figure 11 and

Figure 12 respectively. In this case no conflicts are detected

and the newly arriving AM2 is granted rights to manage

system power level, and to have an impact on system

performance, thus potentially interacting with AM1.

IS: Handling Advertise Message:

IS: Conflict Detection [AM2->Power]::[AM1->Performance]

IS: Match Level=0.25, Threshold=0.8

IS Decision: No Conflict Detected

IS: Conflict Detection [AM2->Power]::[AM1->Power]

IS: Match Level=0.4375, Threshold=0.8

IS Decision: No Conflict Detected

IS: Conflict Detection [AM2->Performance]::[AM1->Performance]

IS: Match Level=0.6875, Threshold=0.8

IS Decision: No Conflict Detected

IS: Conflict Detection [AM2->Performance]::[AM1->Power]

IS: Match Level=0.625, Threshold=0.8

IS Decision: No Conflict Detected

IS: Sending MACK message for [AM2]->Power

IS: Sending MACK message for [AM2]->Performance

IS: Sending MRun message to [AM2]

Figure 11. IS conflict detection analysis in which the conflict

match level is below the conflict threshold.

Figure 12. Message sequence for scenario 3.

Scenario 4 Illustrates the case where AMs are replicated

and the IS must ensure that only a single instance is active at

any time (note that the IS does not know that the two

managers are identical, it bases its decisions only on the

AMs’ management descriptions). Manager AM1 registers

and begins managing its advertised resource. A second

instance of the same manager type as AM1, AM3, requests

management rights from the IS. ThreshC = 0.6. The conflict

detection procedure is not executed when AM1 registers as

there are no other AMs registered with the IS. Thus AM1 is

granted management rights for both resources requested.

The registration of AM3, advertising a direct management

interest in Performance and an indirect impact on Power,

triggers conflict detection analysis, as shown in Figure 13.

In this case, conflicts are detected for both of the

requested resources, so as a result, AM3 is suspended. At a

later time, AM1 performs an orderly shutdown sending an

Time

Time

354

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MRelease message to the IS, invoking the UnregisterAM

function at the IS. This has 3 effects: 1. an MStop message

is sent to AM1 (see Figure 14); 2. the IS unregisters all

AM1’s management interests; 3. conflict detection analysis

is again triggered, now with the goal of detecting situations

where previous conflicts have now been resolved. Any

suspended AM’s that are no longer in conflict with active

managers are now resumed. In this case AM3 is the only

suspended AM, and in the absence of any conflicts with

active AMs it is automatically resumed and granted its

requested management rights (see Figure 15).

IS: Handling Advertise Message:

IS: Conflict Detection [AM3->Performance]::[AM1->Performance]

IS: Match Level=1, Threshold=0.6

IS Decision: Conflict Detected

IS: Conflict Detection [AM3->Performance]::[AM1->Power]

IS: Match Level=0.4375, Threshold=0.6

IS Decision: No Conflict Detected

IS: Conflict Detection [AM3->Power]::[AM1->Performance]

IS: Match Level=0.4375, Threshold=0.6

IS Decision: No Conflict Detected

IS: Conflict Detection [AM3->Power]::[AM1->Power]

IS: Match Level=0.875, Threshold=0.6

IS Decision: Conflict Detected

IS: Sending MNACK message for [AM3]->Performance

IS: Sending MNACK message for [AM3]->Power

IS: Sending MSuspend message to [AM3]

Figure 13. Conflict detection analysis finds potential conflicts of

interest between two instances of the same AM type.

IS: Handling Release Message:

IS: Sending MStop message to [AM1]

Figure 14. IS receives MRelease, responds with MStop.

List of Suspended AMs:

--

AM Name: AM3

AM State: SUSPENDED

--

IS: Sending MACK message for [AM3]->Performance

IS: Sending MACK message for [AM3]->Power

IS: Sending MResume message to [AM3]

Figure 15. IS resumes the AM3 Manager

Figure 15 illustrates the IS’s behaviour on receipt of an

MRelease message, which implies that an AM has left the

system and thus one or more previously detected conflict

conditions may have been removed. First the state model is

searched for any AMs in the SUSPENDED state. The

management interests of these are re-examined against those

of the remaining RUNNING state AMs (conflict detection

analysis is triggered again). Any suspended AMs which are

now conflict-free are resumed (AM3 in this case). Figure 16

shows the entire message sequence for scenario 4.

Figure 16. Message sequence for scenario 4.

In addition to illustrating the prevention of conflicts of

directly overlapping management interest; scenario 4 also

shows how the IS architectural approach facilitates and

manages redundant replication of autonomic manager

processes for robustness within a system. Only one AM is

given management rights for a particular resource at any

time, but whenever an AM leaves the system the set of

running and suspended AMs is automatically re-evaluated

for changes in conflict status. Suspended replicas are

resumed when determined conflict-free, and can start

‘warm’ because the AM’s developer can choose to

implement ‘suspend’ as only shutting down the execute

stage of the MAPE loop.

Scenario 5 is the equivalent of scenario 2, except that in

this case the IS operates in SAFE-COEXISTENCE mode.

AM1 registers its management interests with the IS,

followed by AM2. ThreshC = 0.6. The two Autonomic

Managers attempt to control respectively, Performance

(direct control with IF=1.0) and Power (indirect control with

IF=0.5) for AM1 and Power (direct control, IF=1.0) and

Performance (indirect, IF=0.5) for AM2.

As there are no other AMs running when AM1 registers

it is granted full management rights, as shown in figure 17.

IS: Handling Advertise Message:

IS: Sending MACK message for [AM1]->Performance

IS: Sending MACK message for [AM1]->Power

IS: Sending MRun message to [AM1]

Figure 17. IS issues full rights to the AM1 Manager

When AM2 registers its management interest the IS

checks for a conflict with all other registered managers. As

a result the IS allows AM2 to control Power but restricts

controlling Performance and sends an MRestrict message to

AM2 as the diagnostic trace in figure 18 shows.

IS: Handling Advertise Message:

IS: Conflict Detection [AM2->Power]::[AM1->Performance]

IS: Match Level=0.25, Threshold=0.6

IS Decision: No Conflict Detected

IS: Conflict Detection [AM2->Power]::[AM1->Power]

IS: Match Level=0.3875, Threshold=0.6

IS Decision: No Conflict Detected

IS: Conflict Detection [AM2->Performance]::[AM1->Performance]

IS: Match Level=0.6875, Threshold=0.6

IS Decision: Conflict Detected

IS: Conflict Detection [AM2->Performance]::[AM1->Power]

IS: Match Level=0.575, Threshold=0.6

IS Decision: No Conflict Detected

IS: Sending MACK message for [AM2]->Power

IS: Sending MNACK message for [AM2]->Performance

IS: Sending MRestrict message to [AM2]

Figure 18. A potential conflict is detected; AM2 is restricted.

In the Restricted mode AM2 evaluates its policy as

normal but the Performance output variable is set to NULL,

i.e., AM2 cannot actually effect the system performance

whilst restricted in this management aspect. AM2 manages

power normally, as this aspect was not restricted.

Later, AM1 Unregisters with the IS, this again triggers

conflict check operation. AM2 is no longer in conflict, so is

now granted permission to control all items of interest, as

shown in the trace in figure 19.

IS: Handling Release Message:

delete AMDesc: AM1

IS: Sending MStop message to [AM1]

List of Restricted AMs:

--

AM Name: AM2

--

ACItem Name: Power

Category: Power General

Zone: System Power

AMID: AM2

Time

355

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ImpactFactor: 1.0

IsConflicting: 0

Scope: Local

ACItem Name: Performance

Category: Performance General

Zone: System Performance

AMID: AM2

ImpactFactor: 0.5

IsConflicting: 1

Scope: Local

--

IS: Sending MACK message for [AM2]->Power

IS: Sending MACK message for [AM2]->Performance

IS: Sending MResume message to [AM2]

Figure 19. Diagnostic trace showing IS behaviour during release of

AM1 and subsequent granting of full rights to AM2

Figure 20 shows the entire message sequence for

scenario 5.

A. Evaluation summary

The evaluation aspect of this paper is mainly concerned

with demonstration of the IS concept. Our implementation

is not necessarily optimised for processing performance. We

have focussed the evaluation on exploring the behaviour of

the system in a set of base cases which represent realistic

types of conflicts (direct and indirect) between AMs.

The evaluation was based on a number of ways in which

a pair of AMs may overlap in their management activities.

These scenarios were chosen so as to reflect a wide range of

possibilities.

The case results show how the IS controls the

management rights of AMs dynamically, using the

management similarity-measure based conflict detection.

We have demonstrated the variable safety-sensitivity of the

service, using the configurable sensitivity threshold

combined with the choice of two safety levels (SAFTEY-

CRITICAL and SAFE-COEXISTENCE).

The processing overhead of conflict detection does not

increase significantly when larger populations of AMs exist,

because conflict detection is only triggered when the AM

population changes (e.g., a new AM is registered), and the

existing AMs are only compared against the arriving AM

(not against each other). The conflict detection always

considers AMs on a pair-wise basis, so functional

complexity remains the same regardless of the number of

AMs present.

VII. CONCLUSION

In this paper, we have outlined the case for greater

research effort in the area of interoperability of autonomic

managers. We have discussed why bespoke and custom

solutions will not work in the long term and argued for a

universal standard for interoperability. In line with this we

have identified requirements for a service-based approach.

We are working towards standards and services for

universal interoperability in autonomic systems. In

particular we are targeting the under-addressed challenge of

interoperability and co-existence in not-planned

circumstances, i.e., for AMs that are developed

independently and brought together when systems are built

from a number of separate components, and also when

existing systems or components are upgraded.

This work is timely and important because the likelihood

of conflicts will escalate as autonomic computing continues

to increase in popularity, and AMs are deployed in an ever-

wider array of components with ever-richer functionality.

We have presented initial work towards a service-based

automatic and proactive interoperability service, being

integrated into autonomic components and making them

‘interoperability ready’ in advance of their deployment. Our

approach enables AMs to be developed independently,

requiring that the developer uses a management description

language to describe the component’s management

characteristics. This approach has the main advantage of not

requiring an AM developer to have knowledge of other

AM’s that may exist in the target system, and thus supports

agility i.e., configuration changes, expansion and upgrades.

The technique has been developed with generalisation as

a main goal. In the same way that it is not possible when

developing an AM to perceive all the possible other AMs

and their management capabilities that could coexist; it is

also not possible when developing an IS to predict all of the

application domains and behaviours of future AMs.

Therefore we have ensured that the language used to

describe management capabilities is extensible, and can be

represented using a standard format (XML). The

architecture defines the interfaces and communication

between the key management components of the system but

leaves open the implementation decisions for the IS-internal

business logic so it can be tailored to a system’s needs.

The demonstration-of-concept implementation has

focussed initially on ‘safe coexistence’ as a mandatory

foundational step towards universal AM interoperability.

Further work focuses on more-sophisticated techniques for

the conflict detection, and further refinement of the

management description language on which the conflict

detection is based.

Figure 20. Message sequence for scenario 5.

356

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. REFERENCES

[1] Anthony R, Pelc M, and Shuaib H, The Interoperability

Challenge for Autonomic Computing, The Third

International Conference on Emerging Network Intelligence

(EMERGING 2011), Lisbon, Portugal, November 20-25,

2011, pp. 13-19, IARIA, ISBN 978-1-61208-174-8.

[2] Kephart J. O., Chan H., Das R., Levine D. W., Tesauro G.,

Rawson F., and Lefurgy C. 2007. Coordinating multiple

autonomic managers to achieve specified power-performance

tradeoffs. In Proc. 4th Intl. Conf. on Autonomic Computing

(Jacksonville, FL, USA, June 2007). ICAC’07. IEEE, 1–9.

[3] Wang M., Kandasamyt N., Guezl A., and Kam M. 2006.

Adaptive performance control of computing systems via

distributed cooperative control: Application to power

management in computing clusters. In Proc. 3rd Intl. Conf.

on Autonomic Computing (Dublin, Ireland, June 2006).

ICAC’06. IEEE, 165–174.

[4] Zhao M., Xu J., and Figueiredo R. J. 2006. Towards

autonomic grid data management with virtualized distributed

file systems. In Proc. 3rd Intl. Conf. on Autonomic

Computing (Dublin, Ireland, June 2006). ICAC’06. IEEE,

209–218.

[5] Khargharia B., Hariri S., and Yousif M. S. 2006. Autonomic

power and performance management for computing systems.

In Proc. 3rd Intl. Conf. on Autonomic Computing (Dublin,

Ireland, June 2006). ICAC’06. IEEE, 145–154.

[6] Xu J., Zhao M., Fortes J., and Carpenter R. 2007. On the use

of fuzzy modeling in virtualized data center management.

Autonomic Computing, 2007. In Proc. 4th Intl. Conf. on

Autonomic Computing (Jacksonville, FL, USA, June 2007).

ICAC ’07. IEEE Computer Society.

[7] Wang R., Kusic D. M., and Kandasamy N. 2010. A

distributed control framework for performance management

of virtualized computing environments. In Proc. 7th Intl.

Conf. on Autonomic Computing (Washington DC, USA, June

2010). ICAC’10. IEEE, 89–98.

[8] Ghanbari S., Soundararajan G., Chen J., and Amza C. 2007.

Adaptive learning of metric correlations for temperature-

aware database provisioning. In Proc. 4th Intl. Conf. on

Autonomic Computing (Jacksonville, FL, USA, June 2007).

ICAC’07. IEEE.

[9] Kutare M., Eisenhauer G., and C. Wang. 2010. Monalytics:

Online monitoring and analytics for managing large scale

data centers. In Proc. 7th Intl. Conf. on Autonomic

Computing (Washington DC, USA, June 2010). ICAC’10.

IEEE, 141–150.

[10] Zhu X., Young D., Watson B. J., Wang Z., Rolia J., Singhal

S., McKee B., Hyser C., Gmach D., Gardner R., Christian T.,

and Cherkasova L. 2008. 1000 islands: Integrated capacity

and workload management for the next generation data

center. In Proc. 5th Intl. Conf. on Autonomic Computing

(Chicago, IL, USA, 2008). ICAC ’08. IEEE, 172–181.

[11] Poussot-Vassal C., Tanelli M., and Lovera M. 2010. A

Control-Theoretic Approach for the Combined Management

of Quality-of-Service and Energy in Service Centres. In Run-

time Models for self-managing Systems and Applications.

Ardagna D and Zhang L, Eds). Springer Basel AG. 73-96.

[12] White S. R., Hanson J. E., Whalley I., Chess D. M., and

Kephart J. O. 2004. An architectural approach to autonomic

computing. In Proc. 1st Intl. Conf. on Autonomic Computing

(New York, NY, USA, May 2004). ICAC’04. IEEE. 2-9.

[13] Kennedy C. 2010. Decentralised metacognition in context-

aware autonomic systems: some key challenges. In Proc.

American Institute of Aeronautics and Astronautics (AIAA)

Workshop on Metacognition for Robust Social Systems

(Atlanta, Georgia,) AAAI-10, AIAA. 34-41.

[14] Salehie M. and Tahvildari L. 2005. Autonomic computing:

Emerging trends and open problems. In Proc. Workshop on

the Design and Evolution of Autonomic Application Software

(New York, NY, USA, 2005). DEAS’05. ACM Special

Interest Group on Software Engineering. 30. 1–7.

[15] Quitadamo R. and Zambonelli F. 2008. Autonomic

communication services: a new challenge for software

agents. SpringerLink Journal of Autonomous Agents and

Multi-Agent Systems. 17, 3 (2008), 457–475.

[16] Anthony, R. J. Policy-based autonomic computing with

integral support for self-stabilisation, International Journal

of Autonomic Computing, Vol. 1, No. 1, pp.1-33. ISSN

(Online): 1741-8577, ISSN (Print): 1741-8569, 2009,

Inderscience.

[17] P. Ward, M. Pelc, J. Hawthorne, and R. Anthony,

Embedding Dynamic Behaviour into a Self-configuring

Software System, In Proc. 5th Intl Conf. on Autonomic and

Trusted Computing (ATC 2008), Oslo, Norway, Lecture

Notes in Computer Science (LNCS 5060/2008), ISBN 978-

3-540-69294-2, pp373-387, June 23-25, 2008, Springer-

Verlag.

[18] Anthony R. J., Pelc M., Ward P., and Hawthorne J. 2009. A

Software Architecture supporting Run-Time Configuration

and Self-Management. Communications of SIWN. 7 (May.

2009), SIWN. 103-112.

[19] Pelc M., Anthony R. J., Ward P., and Hawthorne J. 2009.

Practical Implementation of a Middleware and Software

Component Architecture supporting Reconfigurability of

Real-Time Embedded Systems. In Proc. 7th IEEE/IFIP Intl.

Conf. on Embedded and Ubiquitous Computing (Vancouver,

Canada, 2009). EUC’09. IEEE, 394-402.

