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Abstract—Autonomic computing systems are a promising technology
for bending the cost curve associated with information and communi-
cation technology (ICT) service management and for aiding the growth
and evolution of complex computing systems. Indeed, this has motivated
a significant amount of research. However, a central plank to achieving
fully-fledged autonomic computing systems is missing i.e., the ability to
certify these systems. The certification process will provide a basis; for
assessing the quality of autonomic systems with similar functionalities,
for assessing the current capability of the system and its suitability to
the problem, to assess the impact of a certified component on a system
and to resolve legal liability, if the autonomic computing systems were
to fail.

In this second part of a two-part paper, several steps to rate or
certify autonomic computing systems within the context of the targeted
application domain are proposed. In the first instance, the autonomic
manager architecture proposed in the first part of this work is associ-
ated with indices that indicate how mature an autonomic machine is.
The maturity index, the layer configuration of the machine and the
implemented autonomic self-management properties are used to derive
a mathematical expression that describes the machine in qualitative
terms. These qualitative metrics in turn point to what quantitative
measures or performance characteristics can be obtained from the
machine under an evaluation scenario. The proposed quantitative metrics
are based on the International Standard Organization’s software quality
specification i.e., ISO/IEC 9126. Using the software engineering standard
for product evaluation i.e., ISO/IEC 14598-4, the four steps for certifying
an autonomic computing system are outlined. Finally, an Ant Colony
Optimization (ACO) application called Path Finder (PF) is used to
demonstrate the proposals in this work.

Keywords-Autonomic computing systems; Certification; Performance;
Verification; Measurement;

I. INTRODUCTION

A true Autonomic Computing System (ACS) is one that is able
to automate the management decision-making process and reflect on
the quality of the decisions made. This, it must do regardless of the
environmental context and within the goals set by the human operator.
The ultimate aim of autonomic computing systems is to allow
complex Information Technology (IT) infrastructure to evolve to
handle more difficult tasks or change in their immediate environment,
without significantly increasing the cost of management.

As with most critical or increasingly complex systems, an ACS
should and must be certified on the basis of its expected characteris-
tics before it goes live, as these systems have applications from the
financial to the space exploration industries. However, no progress
has been made in the area of autonomic computing certification
i.e., there is no framework to guide the process by which two or
more autonomic machines are rated in relative terms, assuming these
machines target the same application domain and no standard measure
of performance for these systems [1]. A crucial aspect of correctly
assessing the quality of an autonomic computing system is knowing
what to measure and where to take these measurements. This task
is often very difficult [2]. An attempt to address this difficulty is

the primary objective of this paper. To this end, the following are
proposed;

1) Qualitative measures that convey the complexity, intelligence
and functionality of the autonomic machine.

2) Quantitative metrics that allow the autonomic machine to be
measured based on specific performance attributes.

3) A fixed number of evaluation planning and execution steps that
will lead to a final certification statement for an ACS.

These three objectives are dealt with within the context of the
four cardinal self-management properties identified for ACSs i.e.,
self-configuration, self-optimization, self-protection and self-healing
[3]. The idea is that since the four self-management properties to
varying extents are applicable to all autonomic computing application
domains, the certification framework can be made domain agnostic
by defining it around these properties. This framework, once defined,
is applied to an autonomic application use-case i.e., Path Finder (PF).
The PF application is an Ant Colony Optimization (ACO) application
in which an autonomic manager guides a managed object or robot
along a gridded map. As with all ACO applications, the primary
objective is to get the robot to the food source from the nest and
back to the nest using the shortest route. This application is written
in the C-Sharp programming language.

This paper collates together the findings of a detailed research
project whose roadmap can be found in [1] and more extensive details
in [4].

The rest of this paper is structured as follows; in the section
following, a brief recap of the intelligent machine design (IMD)
architecture covered in the first part of this paper is presented. In
Section III, an expression that conveys a qualitative measure of an
autonomic computing machine is derived. Quantitative metrics based
on the normative framework of the International Standard Orga-
nization/International Electrotechnical Commission software quality
specification [5] are discussed in Section IV. How these metrics apply
to autonomic computing systems is presented in Section V. Section
VI contains the steps for software evaluation based on ISO/IEC 14598
[6] that should lead to a final certification statement for an evaluated
ACS. The proposals of Sections III - VI are demonstrated using
the PF application in Sections VIII - XI. See Section XII for the
conclusion. The appendix discusses special cases of the mathematical
expression proposed in Section III.

II. THE INTELLIGENT MACHINE DESIGN ARCHITECTURE: A
RECAP

For completeness, a technical summary of the intelligent machine
design (IMD) architecture is presented in this section. See Section
II-B of the first part of this two-part paper [7] for a more exhaustive
discussion on, and the philosophy behind this architecture.



385

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFLECTION (AMI 4 and 5)

From 

Sensor

To 

Effecter

POHC

ROUTINE (AMI 2 and 3)

POHC

REACTION (AMI 1)

POHC

AMI = Autonomic Maturity Index

C

PH

OSelf-Configuration Self-Protection

Self-Healing Self-Optimization

Fig. 1. An Autonomic Computing expression of the IMD (The AMI is
discussed at length in Section III)

The IMD is made up of three distinct layers viz; The Reaction
(R1), Routine (R2) and Reflection (R3) layers as shown in Figure
1. The Reaction layer is the least intelligent of all three, in that
it accepts information from the sensory input and effects a change
through its singular implemented policy rule. If this policy rule is
unable to handle the input information to the machine, R1 passes
control over to the Routine layer.

The Routine layer on the other hand, implements more than one
policy rule and can select and apply the best rule from amongst these
for the input context. As a result, the speed at which the Routine layer
reacts to changes is expected to be relatively slower when compared
to the Reaction layer. If the Routine layer is unable to find a suitable
policy rule to effect a corresponding change or if two or more policy
rules apply to an input context, it defers to the Reflection layer.

The algorithms implemented in the Reflection layer attempt either
one of two things; (1) use of complex techniques e.g., artificial
intelligence mechanisms (Fuzzy Logic etc.), to resolve policy rule
conflicts flagged by the R2 layer or (2) create a new policy rule on
the fly when none of the policy rules in the repository apply to the
extant input context. The Reflection layer is the only one of the three
that does not have sensory (S) inputs or effecter (E) outputs. The
Reflection layer can inhibit or excite the activities of the Routine
layer if required. The Routine layer can also do the same to the
Reaction layer.

The three-layer structure of the IMD can thus be aligned with a
simplified view of human problem solving in which there is a need
to achieve rapid pre-programmed response in some situations, whilst
being able to take a longer time to determine the best of several
possible options in other situations, and ultimately being able to
reason and learn new strategies in new situations. Using car driving
as a means to explain this, consider emergency braking where the
pre-programmed Reaction is faster than thinking speed; choosing
which lane to enter at a fuel station, based on observing queue length
(Routine); and studying the map to try to avoid an area of heavy
congestion (Reflection).

III. QUALITATIVE METRICS FOR AUTONOMIC COMPUTING

SYSTEMS

It can be envisaged that autonomic computing products will offer
a range of competing management services in the near future. If

multiple systems are targeted at a specific application domain, then
a means by which these systems are qualified from an autonomic
perspective is required. Knowing the relative autonomic level at
which a system operates will reveal what quantitative measurements
can be extracted e.g., efficiency, latency etc. and what results to expect
within the bounds of the complexity of a goal. This section contains
the relevant discussions and proposals in this regard.

In the first subsection, the related works carried out in this area
are discussed, together with apparent disadvantages. A five-level
autonomic index that can be aligned with the IMD is proposed in
Subsection III-B. These proposed indices are linked with the four
cardinal self-management properties of autonomic computing systems
in Subsection III-C. This link is to ensure that the proposed indices
have relevance to most autonomic application domains.

A. Measuring Autonomicity

The term by which systems are ranked based on their particular
autonomic capabilities go by a number of names in autonomic
literature. For example, it is referred to as Autonomic Control Levels
(ACL) in [2], Levels of Autonomy (LOA) in [8] and Degree of
Autonomicity [9]. Still other papers term it the Autonomic Adoption
Model (AAM) [3] or the Autonomic Computing Maturity Index
(AMI) [10]. For consistency in this work, the preferred term will
be AMI.

Several attempts have been made to describe criteria for which the
AMI is to be based. For instance, [11] proposes using the following
as the basis for assessing autonomic capabilities; the complexity of
the objective, the operating environment and the level of human
interaction with the machine. The motivation for the scale above was
to have a consistent measure by which costs and suitability of a
proposed robotic system for military operations can be ascertained.

In [12], a 10-point AMI that ranges from High (10) to Low (0)
that depends on the relative influence of the participating entities i.e.,
Man or Machine on the following attributes was proposed;

• Information Acquisition: Reading, sorting, filtering and aggre-
gating input data.

• Information Analysis: Performing complex computation on the
acquired data e.g., prediction, data integration etc.

• Source of Decision: Making decisions based on the analyzed
data. And

• Source of Action: Take an action based on the decision made.
The more the machine handles any of the above listed attributes,

the higher up the scale the system is assessed to be.
An 11-point autonomic scale is presented in [2] based on similar

attributes to [12]. The only difference is that they are labelled
differently. The attributes of [12] i.e., Information Acquisition, In-
formation Analysis, Source of Decision and Source of Action are
called Observe, Orient, Decide and Act, respectively in [2].

The AMI proposed in [3] is characterized by what parts of the sys-
tem’s autonomic management activities are automated versus those
that are manually implemented; The resulting five level autonomic
scale is as delineated below;

• Manual Level: At this level all autonomic management activities
are handled by the human operator.

• Instrument and monitor: Here, the autonomic system is respon-
sible for the collection of information: This collected/aggregated
information is analyzed by the human operator and guides future
actions of the operator.

• Analysis Level: On this level, information is collected and
analyzed by the system. This analyzed data is passed to the
human administrator for further action(s).
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• Closed loop Level: This works in the same way as the Analysis
level, only this time the system’s dependence on the human is
minimized i.e., the system is allowed to action certain policies.

• Closed loop with business processes Level: At this level, the
input of the administrator is restricted to creating and altering
business policies and objectives. The system will operate inde-
pendently using these objectives and policies as guides.

The AMI system proposed in [11] is targeted specifically at robots,
thus limiting its application domain. At the time of its publication
i.e., [11], its definition of the autonomic scale was a work in progress.
The AMI in [12] is based on who makes the decisions and how these
decisions are executed. Clough’s AMI definition is also based on
these two criteria [2]. From a certification perspective, the place of a
system on the autonomic computing maturity index should be defined
by who/what makes the decisions and the quality of the decisions
themselves. After all, this is how human managers that autonomic
systems are supposed to steadily replace would be evaluated. Both
metrics will engender a certain level of trust in the system. The scales
in [3] is said to be narrowly defined and technically vague [9]. This
makes it difficult to align an autonomic system with these maturity
indices [13]. These concerns do not help the certification process
along. In the next subsection, an AMI that includes some of the
advantages of the autonomic ranking system discussed in this section
is proposed.

B. Autonomic Computing Maturity Indices (AMI)

The architecture shown in Figure 1 can be associated with the
AMI. To do this, an attempt is made to expressly define what each
Maturity Index means from a technical perspective, and further relate
each index to the layers of the IMD. The Five maturity indices are
thus interpreted as:

• Maturity Index 1: Here, only one policy action is executed in
response to all input signals and encountered contexts. Complex
operations are referred to the human operator or to the immediate
higher layer. This maturity index corresponds to the Reaction
layer.

• Maturity Index 2: This index corresponds to the Routine layer.
If the Routine layer is unable to find a suitable policy rule from
a policy repository or if there is a policy rule ambiguity, it relies
on the human administrator to provide a new solution or resolve
the policy rule conflict.

• Maturity Index 3: This is similar to Maturity Index 2, only
that this time, the Routine layer consults the Reflection layer to
solve its policy rule problems.

• Maturity Index 4: This index corresponds to the Reflection
layer. The Reflection layer of a Machine in this index will
attempt to solve the policy rule problem of the Routine layer,
and monitor the implementation of this new policy rule. If the
policy rule fails in its objective or if a new policy rule cannot
be created, the human administrator is required to intervene.

• Maturity Index 5: This is similar to index 4, but rather than
defer to the human administrator, if a suitable policy rule is
not found or created, the algorithm within the Reflection layer
will continually attempt to create a new policy rule or resolve
the policy rule conflict. This index should be used to define
autonomic machines that will be unable to get in touch with
the human manager, a craft in deep space for example. Another
possible example for this index is a scenario where the human
intervention cannot be timely enough due to the complexities in
the system.

In effect, the autonomic maturity level 1 corresponds to the
Reaction layer, levels 2 and 3 correspond to the Routine layer, levels 4
and 5 correspond to the Reflection layer. The position of an autonomic
computing system on the defined maturity indices above provides
a possible basis for verifying the source of the decision making
process and the quality of the decisions made. For instance, if a
system in question specifies a Maturity Index of 2, the certification
process would know that the ’court of last instance’ is the human
administrator. The certification process would now seek to verify the
qualification of skilled personnel for the system to be awarded an
index of 2. If the system seeks to be tagged with an index of 5 i.e.,
the decision making process is handled ultimately by the machine
itself, the algorithm implemented in the Reflection layer must be
shown to be robust enough to handle this task.

C. Autonomic Self-Management AMI Qualification

Regardless of the application domain targeted by an autonomic
computing system, it is expected that some or all four of the self-
management properties be implemented. The AMI proposed in the
last subsection is able to achieve application domain agnosticism by
being associated with these self-management properties, as opposed
to tying it to a specific application.

Consequently, a mathematical expression that describes an auto-
nomic manager that implements the IMD architecture is derived. The
benefits of this expression include:

1) The verification of the characteristics of the autonomic manager
at a glance. Examples of such characteristics are the complexity,
implemented functionality of the machine, level of intelligence
etc.

2) An indication of the extent to which a manager conforms to
the IMD specification.

3) An indication of the self-management properties implemented
in the manager.

4) Assisting the design of automated architectural verification
algorithms of the implemented machine, if required.

5) It indicates the relevant quantitative metrics that ought to
be measured. The certifier can use this as a guide during
the evaluation process. Quantitative metrics are discussed in
Section V.

Before deriving the expression describing the machine, it is instruc-
tive to restate here that only five layer configurations are allowed for
the IMD. Section VI of Part I has shown why Expressions (1) - (5)
are the only legal IMD configurations, and as such the explanation
here is kept brief. All IMD configurations must contain either R1
or R2, as these layers are the only ones connected to the sensory
and effecter mechanisms. If the R3 layer is implemented then the
R2 layer must also be present, as R3 cannot communicate with R1
directly.

R1� ∅� ∅ (1)

R1� R2� ∅ (2)

R1� R2� R3 (3)

∅� R2� ∅ (4)
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∅� R2� R3 (5)

Where R1, R2 and R3 represent the Reaction, Routine and Reflec-
tion layers, respectively and � represents a connection between the
layers of the machine.

Observe from Figure 1 that all four self-management properties can
be implemented in all layers of the IMD, although with varying de-
grees of intelligence, speed and complexity. Expression (6) is used to
symbolically represent the self-management properties implemented
by a specific layer of the IMD.

SMRX = {SCX , SHX , SOX , SPX} (6)

where X = {1, 2, 3} is the level of the IMD where
the relevant self-management property is implemented. Thus
SCX , SHX , SOX , SPX represent the implementation of the self-
configuration, self-healing, self-optimization and self-protecting prop-
erties at layer X, respectively.

If all four self-management properties are implemented in the
Routine layer (R2) then symbolically it is represented by SMR2 =
{SC2, SH2, SO2, SP2}. Similarly, if the Reaction layer (R1) does
not implement the self-configuration property then the appropriate
representation is SMR1 = {∅, SH1, SO1, SP1, }. In other words,
if a self-management property is not implemented, its corresponding
symbol is replaced with ∅ in the enclosed set of Expression (6).

Based on the discussion so far, an IMD compatible Autonomic
Manager can be described by a combination of its AMI, IMD layer
configuration and the implemented self-management properties as
shown in Expression (7).

AMz =

{ AMI;R1� R2� R3;
SMR1 = {SC1, SH1, SO1, SP1}
SMR2 = {SC2, SH2, SO2, SP2}
SMR3 = {SC3, SH3, SO3, SP3}

}
(7)

where AMI = {1...5}.
Consider the AMs described by Expressions (8), (9), (10) and (11).

AM1 =

{ 4;R1� R2� ∅;
SMR1 = {SC1, SH1, SO1, SP1}
SMR2 = {SC2, SH2, SO2, SP2}
SMR3 = {SC3, SH3, SO3, SP3}

}
(8)

AM2 =

{ 4; ∅� ∅� R3;
SMR1 = {SC1, SH1, SO1, SP1}
SMR2 = {SC2, SH2, SO2, SP2}
SMR3 = {SC3, SH3, SO3, SP3}

}
(9)

AM3 =

{ 4;R1� R2� R3;
SMR1 = {SC1, SH1, SO1, SP1}
SMR2 = {SC2, SH2, SO2, SP2}
SMR3 = {SC3, SH3, SO3, SP3}

}
(10)

AM4 =

{ 2;R1� R2� ∅;
SMR1 = {SC1, SH1, SO1, SP1}
SMR2 = {SC2, SH2, SO2, SP2}
SMR3 = {∅, ∅, ∅, ∅}

}
(11)

AM1 in Expression (8) is invalid because it specifies an AMI
value of 4 but does not implement the Reflection layer (R3).
Recall from the last subsection that AMI 4 and 5 reside at the
Reflection layer. Since R3 is not implemented in AM1, it should
specify SMR3 = {∅, ∅, ∅, ∅} not SMR3 = {SC3, SH3, SO3, SP3}.

AM2 (see Expression 9) is invalid since the layer configuration
∅ � ∅ � R3 is not among those allowed for the IMD (see
Expressions 1-5 at the beginning of this section). AM3 and AM4

in Expressions (10) and (11) conform to the IMD rules and thus
valid.

If all four AMs were to go through a certification process, then
AM1 and AM2 would have failed the first test and resources need
not be expended to verify them or measure other attributes further.
If AM3 and AM4 were designed in a way that both targeted the
same application domain, from Expressions (10) and (11), one can
tell that AM3 will be expected to adapt to contexts that deviate from
the norm, as it implements a Reflection layer (R3). Tests to verify
this superior management capability should be carried out on AM3

but not on AM4, as it does not have an R3. The AMI of AM3 also
points to the fact that it is more mature in relative autonomic terms.
These are just a few examples of how an expression describing an
AM can point to what can and cannot be measured quantitatively
(see the next section for discussions on quantitative metrics).

There are certain AM implementations that can appear to reveal
some inconsistencies when attempts are made to describe them using
Expression (7). These apparent inconsistencies are treated in the
appendix.

IV. QUANTITATIVE METRICS FOR SOFTWARE EVALUATION

The Qualitative metrics presented in the last section while relevant
to the certification process, lack a means by which an autonomic
system is measured on a scale of magnitudes. A number of quantita-
tive metrics must be derived to address the above. The International
Standard Organization software quality specification i.e., ISO/IEC
9126-1998 is the basis on which the autonomic quantitative measures
presented in the next section are defined.

ISO/IEC 9126 [5] defines six main characteristics that can be used
to assess the quality of a software product, including; Functional-
ity, Usability, Portability, Reliability, Efficiency and Maintainability.
These normative characteristics and their attributes can be used to
pose certain questions to the evaluation of an autonomic computing
machine. The answers to these questions, which may be boolean or
numerical ratios can be used to derive a single value or set of values
that form the basis for which a system to be certified is rated.

In terms of the Functionality characteristic the following questions
are posed:

1) Suitability: Does a function exist within the implemented
system that provides for a specifically stated or implied need?

2) Accuracy: If it does, how well does it meet that need?
3) Interoperability: Is it able to interact with other systems e.g.,

AMs deployed in the same environment?
4) Security: How well does it prevent unauthorized access to the

system data?
Questions relating to the Reliability characteristic include:
1) Maturity: What is the Mean Time to Failure of the system?
2) Fault Tolerance: Can the system maintain a specific level of

performance in the face of a fault? i.e., how robust is the
system?

3) Recoverability: Can the system regain peak performance after
the impact of a failed component is mitigated?

The Usability characteristic deals with how user-friendly the
system is. This characteristic is not discussed further in this work
because it is subjective and directly dependent on how the system is
developed and the system’s targeted application domain.
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The attributes of the Efficiency characteristic ask the following
questions:

1) Time (temporal) behaviour : How much time does it take to
complete a task or does the system meet the hard or soft
execution time constraints?

2) Resource Utilization: How much resources in terms of memory
space, CPU cycles and network bandwidth are committed to
achieving the task?

The Maintainability characteristic deals with the following ques-
tions:

1) Analysability: How well are system faults and their causes
recognized and understood?

2) Changeability: Can the system or part of it be modified easily?
3) Stability : When the system is modified, how well does it

perform thereafter?
4) Testability :Regardless of whether changes are made can the

system be validated?
5) Modularity and Coupling: Can the system be expressed in

specific component parts and can these parts be joined together
efficiently?

Finally, the questions associated with the Portability characteristic
deals with:

1) Adaptability: Can the software be adapted for another environ-
ment using only components contained within?

2) Installability: How easy is it to install?
3) Co-Existence: When installed in a new environment can it co-

exist with other installed components?
4) Replaceability:Can it efficiently replace another software de-

signed for the same purpose?
A Compliance attribute applies to all six characteristics discussed

above. This attribute seeks the answer to the following question;
How well does the autonomic machine conform to specified stan-
dards/conventions etc.?

These six software quality characteristics are applicable to two
types of metric namely Internal and External. The Internal metrics
are applicable to the quality of the actual code, while the External
metrics apply to the operational behaviour of the software code.
While both metrics are equally important, evaluation of the Internal
metric should be left to the autonomic computing system developer.
The ACS certifier should only be concerned with the External metric
for the following reasons:

1) The developer of the code might not want to reveal the internal
logic, thereby protecting intellectual property rights and trade
secrets. This must not pose a barrier to certification.

2) The operational external behaviour of the code under a rigorous
test is sufficient to inform on whether the autonomic machine
does what it says it does.

3) Points 1 and 2 allow the containers of the code e.g., the
three layers of the IMD to act as black boxes that can be
tested, thereby lessening the amount of work on the certifying
authority without compromising the quality of the certification
process.

V. QUANTITATIVE METRICS FOR AUTONOMIC COMPUTING

SYSTEMS

The broad ISO/IEC software evaluation characteristics discussed in
the last section are applied to autonomic computing systems in this
section. Specifically, the methods for computing these quantitative
metrics, the outputs of these computations and the interpretation of
these outputs are proposed and presented.

A. Functionality

There are several dimensions to measuring the functionality char-
acteristic in this work. In the first, the autonomic machine or system is
measured in terms of the self-management properties it implements.
The second dimension of this metric involves the level at which
these management properties reside e.g., R1, R2 or R3. Note that
the functionality behaviour expected at each of the three levels of
the IMD will differ. For instance, at the R3 level, the assessor will
want to verify if the Reflection layer is able to create a new policy or
resolve a policy conflict on behalf of the Routine layer (R2). At the
R2 level, the assessor will be looking at how well the Routine layer
engages the Reflection layer when a context deviates from the norm,
how well does the implemented policy selection algorithm execute
given a specific context and how well it regulates the behaviour of
the Reaction layer (R1). R1 will be evaluated based on how well it
executes its implemented policy and how well it is able to engage
R2 when the extant context cannot be dealt with.

From the above the following tasks and measurement types are
derived based on the attributes of the functionality metric:

1) Suitability:

• R1 Functional Suitability
Task: Find out if the self-management property i.e., self-
configuration, self-healing, self-optimization or self-protection
is supposed to be and is implemented in R1. Note that this
can be deduced from the expression describing the machine,
specifically SMR1 in Expression (7).

Output Metric: 1 for Yes and 0 for No for each of the
applicable self-management properties.

• R2 Functional Suitability
Task: Find out if the self-management property i.e., self-

configuration, self-healing, self-optimization or self-protection
is supposed to be and is implemented in R2. Note that this
can be deduced from the expression describing the machine,
specifically SMR2 in Expression (7).

Output Metric: 1 for Yes and 0 for No for each of the
applicable self-management properties.

• R3 Functional Suitability
Task: Find out if the self-management property i.e., self-
configuration, self-healing, self-optimization or self-protection
is supposed to be and is implemented in R3. Note that this
can be deduced from the expression describing the machine,
specifically SMR3 in Expression (7).

Output Metric: 1 for Yes and 0 for No for each of the applicable
self-management properties.

2) Accuracy: A functional self-management property that eval-
uates to ’Yes’ after the suitability check is tested a number of
times to verify its functional accuracy when it executes. In order
to compute the measure of accuracy (A) the total number of times
the self-management property is tested is counted and assigned to a
variable Ntotal. The number of tries in Ntotal for which it executed
as expected are counted and assigned to the variable Nsuccess.
Correspondingly, Nfail holds the total number of times the self-
property fails the task. The accuracy of the task is given as the ratio
of Nsuccess and Ntotal i.e., A = Nsuccess

Ntotal
. Functional elements

that evaluate to ’No’ at the functional suitability stage are awarded
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a value of 0. This implies that the range of values for accuracy is
0.0 ≤ A ≤ 1.0

• R1 Functional Accuracy
Task 1: What is the accuracy with which the singular policy of
R1 executes?

Output Metric 1: A1 = Nsuccess
Ntotal

Metric 1 Interpretation: The closer the value of A1 is to 1.0
the better.

Task 2: How accurate is the logic at R1 that passes control
from R1 to R2, if the context cannot be properly handled by R1?

Output Metric 2: A2 = Nsuccess
Ntotal

Metric 2 Interpretation: The closer the value of A2 is to 1.0
the better.

• R2 Functional Accuracy
Task 1: Count the number of times R2 succeeds (Nsuccess) in
selecting the best policy for the specific context after Ntotal

number of tries.

Output Metric 1: A1 = Nsuccess
Ntotal

Metric 1 Interpretation: The closer the value of A1 is to 1.0
the better.

Task 2: Count the number of times R2 correctly engages R3
or the human operator to solve policy conflicts or request the
creation of a new policy.

Output Metric 2: A2 = Nsuccess
Ntotal

Metric 2 Interpretation: The closer the value of A2 is to 1.0
the better.

Task 3: Count the number of times R2 correctly moderates the
actions of R1 by overwriting the policy executed by R1.

Output Metric 3: A3 = Nsuccess
Ntotal

Metric 3 Interpretation: The closer the value of A3 is to 1.0
the better.

• R3 Functional Accuracy
Task 1: Verify how accurate R3 is at creating a new policy or
resolving policy conflicts reported by R2.

Output Metric 1: A1 = Nsuccess
Ntotal

Metric 1 Interpretation: The closer the value of A1 is to 1.0
the better.

Task 2: How accurate is R3 when signalling to the human
operator that it is unable to solve a problem reported by R2.
This task assumes that the machine operates at AMI level 4
(see Section III-B).

Output Metric 2: A2 = Nsuccess
Ntotal

Metric 2 Interpretation: The closer the value of A2 is to 1.0
the better.

3) Interoperability: In Section X of the first part of this paper,
a number of interoperability mechanisms where proposed to aid
management coordination. These mechanisms included proposals
for; (1) establishing administrative relationships, (2) resolving
management conflict, (3) monitoring autonomic elements, (4)
support for granting and requesting services, (5) policy sharing and
(6) reliable remote policy communication.

Task: Let Osuccess be the number of interoperability mechanisms
implemented and Ototal be the total number of interoperability
mechanisms required for the application under consideration.

Output Metric: I = Osuccess
Ototal

Note that Ototal ≤ 6.

Metric Interpretation: The closer the value of O is to 1.0 the
better.

4) Security: In Section X of Part I of this work, a mechanism
for establishing administrative and security relationships between
elements of an ACS was presented. These relationships are
established through the I-4 interfaces of the IMD. The IMD has
four different connections that use the I-4 interface (see Figure
3 in Part I). This Security attribute verifies that all the active I-4
interfaces are secure, as per the standard security procedure laid out
for establishing security relationships.

Task: Count the total number of active I-4 interfaces that conform
to the security conventions and standards and store this value in
Isuccess. Let Itotal be the total number of active I-4 interfaces.

Output Metric: S = Isuccess
Itotal

where Itotal ≤ 4.

Metric Interpretation: The closer the value of S is to 1.0 the better.

B. Reliability

Notice from Section IV, that the maturity, fault tolerance and
recoverability attributes of the Reliability characteristic correspond
to the self-management properties of self-healing and self-protection.
Since the presence and accuracy of these self-management properties
are already dealt with in Section V-A, there is no need to further
define metrics for them here.

C. Usability

The usability metric is not discussed within the context of this
work for the reasons given in Section IV.

D. Efficiency

The Efficiency attributes of Time behaviour and Resource utiliza-
tion are measured during the period in which the functional accuracy
tests are carried out. Note that the only relevant values for efficiency
are those obtained when the measured accuracy tallies with the
expected outcome i.e., Nsuccess.
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1) Time Behavior: Task: This is a measure of how much time
it takes to complete a self-management task i.e., TSM . The time
behaviour will naturally be impacted by memory access times,
computation duration and network delays.

Output Metric:

Tavg =
ΣNsuccessTSM

Nsuccess

where Tavg is the average latency of an executed self-management
property and Nsuccess the number of times for which the executed
self-management property behaves as expected. The Tavgvalue
can be linked to real-time managerial constraints in autonomic
computing applications.

Metric Interpretation: The lower the value of Tavg the better.
2) Resource Utilization: Task: Measure the amount of resources,

specifically network bandwidth consumed (Rntw), the amount of
memory (Rmem) and the CPU utilization (Rcpu) used to achieve
the self-management task. This metric enables the ACS or AM to
be tested for compliance with the resources available on a given
platform.

Output Metric: Rntw, Rmem and Rcpu in bits/second, bytes and
%, respectively.

Metric Interpretation: Generally, the lower the values of Rntw,
Rmem and Rcpu, the better.

E. Maintainability

The Maintainability characteristic is associated primarily with the
architecture implemented, in this case the IMD reference architec-
ture. As such the attributes for the Maintainability characteristic is
discussed within the context of the IMD.

1) Analyzability: Since this attribute has to do with reporting
failure or operational anomalies, the reporting agent must be able
to precisely describe what the problem is and alert the agent in
charge of addressing anomalies. Recall from Section IX of Part
I that an autonomic element is able to write its undertakings to
an operational log (see Figure 26 in Part I). Tabs can be placed
on an autonomic element and corresponding actions taken by
monitoring its operational logs. This, of course, assumes that the
right administrative relationships have been established.

Task:Verify that faults injected into the system are properly logged
and responded to for an autonomic element. Let MAtotal be the total
number of injected faults and MAsuccess the total number of times
the faults are resolved.

The analyzability metric is denoted as MA.

Output Metric:

MA =
MAsuccess

MAtotal

where 0 ≤MA ≤ 1

Metric Interpretation: The closer the value of MA is to 1.0 the
better.

2) Coupling and Modularity: Within the context of this work,
coupling and modularity (C & M) has to do with how the layers are
arranged or configured based on the need of the targeted application
domain. The Expressions for the five valid machine configurations
are given in Section III-C. If these configurations are violated, then
an autonomic manager fails the modularity and coupling test.

Task: Verify that the implemented configuration is valid.

Output Metric: 1 for Yes and 0 for No.
3) Stability: Assuming a layer of a machine implementing the

IMD as its reference architecture was to go out of commission,
without violating the permitted layer configurations, would other
layers of the machine operate as usual.If the answer to this question
is yes, the machine is deemed to be stable.

Task: Decommission 1 or 2 layers of the machine without
violating the valid layer configurations, to see if the remaining layer
or layers operate as expected.

Output Metric: 1 for Yes and 0 for No.
4) Testability: If the relevant functional characteristics of the ISO

9126-1998 specification can be applied to the machine under test,
then it is testable. The output metric for this attribute is 1 for Yes
and 0 for No.

F. Portability

1) Adaptability: This attribute relates to the ability of the
autonomic machine to be adapted from one operating environment
to another without modification. For example, if the autonomic
system has been written using a programming language that
runs on a virtual machine available to a number of considered
hardware/software platforms, then the autonomic system is said to
be adaptable. Adaptability is also aided in the proposed scheme
by the fact that the IMD uses already standardized protocols,
including the Policy Core Information Model (PCIM) [14][15] and
the Lightweight Directory Access Protocol (LDAP) [16].

Task: Count the number of hardware/software platforms being
considered. Store this value in Ptotal. Identify the number of
platforms on which the autonomic system will run without
modification. Store this value in Prun.

Output Metric: P = Prun
Ptotal

Metric Interpretation: The closer the value of P is to 1.0 the
better.

2) Co-Existence: This is a measure of the impact a deployed
ACS has on other systems running within the same resource domain.
Note that the generation of this metric, and its interpretation, are
highly system dependent.

Task: Count the number of applications that are impacted
negatively by a deployed ACS and set this value as Ctotal.

Output Metric: Ctotal

Metric Interpretation: The lower the value of Ctotal, the better.
3) Installability and Replaceability: These attributes are not

treated in this work.
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VI. CERTIFYING AUTONOMIC COMPUTING SYSTEMS

The International Organization for Standardization/ International
Electrotechnical Commission defines software evaluation as a four-
step process in ISO/IEC 14598 [6]. These four steps include; Es-
tablishing the evaluation requirements, Specifying the evaluation,
Designing the evaluation and Executing the evaluation. These four
steps are discussed here and subsequently applied to the evaluation
of an application use-case later in this paper.

A. Establish the evaluation requirements

There are three tasks associated with this step. The first of these
tasks has to do with establishing the purpose of the evaluation. This
will involve a description of the autonomic computing application,
specifically its goals. The second task is to identify the type of
software product to be evaluated. In other words, is this a complete
product or a component of a larger software application or a product
still undergoing development? Specifying the quality characteristics
that are to be measured is the last task for this step. Note that
these characteristics are the six defined in ISO/IEC 9126 discussed
in Section IV.

B. Specify the evaluation

This step also consists of three tasks including: (1) Selecting the
quality metric type i.e., External or Internal (see last paragraph of
Section IV). This task also involves establishing a common procedure
for assigning values for measured attributes. The same measurements
under the same conditions should produce similar and consistent
values. (2) Establishing a rating level for each of the selected metric.
This task mandates the certifier to state what specific quantifiable
values for the measured quality characteristics are acceptable and
those that are not. For example, the functional accuracy for a self-
management property acceptable for one application might be 0.9 and
for another 0.5 depending on the targeted application (see Section
V-A2 for the interpretation of the functional accuracy metric). (3)
Assigning weights to certain measurements. For instance, if the
targeted application domain is one where computing resources are in
abundance but operations need to be completed within a tight interval,
then it is sensible that attributes relating to resource utilization should
be assigned a lower priority and those relating to time behaviour
assigned a relatively higher weight.

C. Design the evaluation

The design of the evaluation procedure will depend on the au-
tonomic application. For instance, the evaluation for an application
targeted at space exploration will almost certainly be carried out
within a simulated environment. Other applications may be amenable
to real time testing in the field. Regardless, the evaluation plan
and design must be such that the most significant environmental
test factors are considered. The plans and designs for evaluating an
autonomic application is done in this step.

D. Execute the evaluation

This activity involves measuring the relevant quality characteristics
identified in Section VI-A based on the evaluation plan set out.
The computed results are matched against the acceptability rating
criteria established in Section VI-B. With the ratings, a final verdict
is pronounced on the system. For example, three possible certification
statements are:

The system meets all the specified and implied needs of the end
user.

or

The system meets all the specified and implied needs of the end
user but requires more hardware to meet the acceptable efficiency

characteristic rating.
or

The system does not adhere to relevant specifications and
conventions and therefore does not meet the specific and implied

need of the end user.

VII. THE APPLICATION USE-CASE

In Part I of this paper, an application called Path Finder (PF)
was used to demonstrate some of the technical proposals made.
For consistency, PF is used to demonstrate how the IMD and
the certification process proposed previously can be applied to an
autonomic application.

The PF which is an Ant Colony Optimization (ACO) application
was selected as a use-case not only because it was sufficiently
complex to demonstrate the proposed technical mechanisms but also
because ACOs have a wide variety of applications. For instance, it
is relevant to several domains, including but not limited to robotics,
engineering, computer networks, finance, resource and job scheduling
etc. Specifically, in this section, a relatively detailed description of
the application is given. Its architectural configuration with respect
to the IMD and its implemented policy framework is defined.

A. Application Description

The PF application in which robots are guided to and fro between
a base (nest) and a target (food source) is used as a means of
demonstrating the process of evaluation and comparison of AMs,
using the techniques described in this work. A number of AMs are
devised to navigate a robot in a maze from its base, to a target
and back again in a simulated environment. The AMs have differing
sophistication, using a variety of techniques to find the best route.
The evaluation involves measuring a number of aspects of the AM’s
performance but the purpose of the exercise is not to find the absolute
performance of these AMs, rather, the emphasis here is on showing
how the evaluation of the AMs is performed and how they can be
rated in terms of their suitability for purpose, accuracy and efficiency.

In PF, a robot begins from the nest and tries to find its way to the
food source on a gridded map. When the food source is found, the
robot must then navigate its way back to the nest. This process is
repeated for the duration of the experiment. Regardless of how many
times the robot has found the food source, when it gets to the nest it
forgets the position of the food source and begins afresh to locate it.
The reason for this is to mimic varying food source locations. Each
robot has only local knowledge and only stigmergic communication
occurs between robots i.e., robots are only able to influence one
another indirectly through pheromones left on the paths. The lack of
global knowledge requires that robots depend on intelligent search
and navigational algorithms to find the food source or the nest. Each
robot is controlled by a separate AM instance. In autonomic parlance,
the robot is the Managed Resource while the AM is the Manager
Element.

At each time step or clock tick, an AM must decide and then
move a robot to the next square on the deployed map. The maps
considered in this work are shown in Figures 2(a) and 2(b). The
AM is allowed to move the robot in one of four available directions
i.e., Top, Bottom, Left or Right square. The ability of a manager to
steer its robot efficiently from the nest to the food source and back
is linked to the level of Intelligence of the search algorithm within
the manager. The implemented algorithms are discussed in detail in
Section VIII-A. The position of the food source and the nest can be
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Nest

Food Source

(a) Closed Map

Nest

Food Source

(b) Open Map

Fig. 2. Closed and Open Maps

seen on both maps. It is worth mentioning that the closed map in
Figure 2(a) is less complicated to navigate than that shown in Figure
2(b). The reason for this is that the open map has more pathways,
thus creating relatively more opportunities for the robot to wander
or get lost when searching for a target. Within the context of this
work, a round trip from the nest to the food source and back to the
nest is known as a Home Run. It should be noted that the collective
behaviour of the deployed robots and their managers as it relates
to the objective is what is important, not the performance of the
individual robots.

B. Application Use-Case Architectural Design

Recall from Figure 1, that all layers of the IMD are able to im-
plement the four self-management properties. The evaluation focuses
on the self-optimization management property i.e., it is the duty of
the self-optimization mechanism of the implemented IMD to attempt
to find the optimal path between the nest and the food source targets
and move the robot accordingly. In Section VII-D3, it is shown that
moves to the Top, Bottom, Right and Left Square on the gridded map
are realized by four different policy rules. From the maps shown in
Figure 2, on any clock tick, at least two moves (of the four valid
moves) are possible. Recall from Section V of Part I, that two or more
valid rules for a Context always generates a ContextAmbiguity event
message which must then be handled by the R3 layer of the AM.
Since every Context will generate a ContextAmbiguity event message,
the R1 layer of the IMD is not required. As a result, Configuration V
of the IMD, shown in Figure 3 and its message sequence shown in
Figure 4, is the most appropriate for the PF application (see Section
VI of Part I).
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With the description given above, the AM structure for the PF
application can be described by Expression (12).
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Fig. 4. Message Sequence for Configuration V

AM =

{ 5; ∅� R2� R3;
SMR1 = {∅, ∅, ∅, ∅}, SMR2 = {∅, ∅, SO2, ∅}
SMR3 = {∅, ∅, SO3, ∅}

}
(12)

The general form of the Expression can be found in Section III-C
i.e., Expression 7. From the expression it can be seen that since R1
is omitted from the PF application, all self-management properties
of R1 i.e., SMR1 are set to null. For R2 and R3 only the self-
optimization property is implemented for the reasons given earlier.
The self-configuration, self-healing and self-protection properties are
set to null for R2 and R3, as can be seen in SMR2 and SMR3 in
Expression (12). The numeral 5 in the Expression means that the
machine operates at the Autonomic Maturity Index (AMI) of five (5)
i.e., there is no human involvement in the operation of the autonomic
managers for this application.

C. Application I-1 and I-2 Interface Information Structure

In Section IV of Part I, it was said that the information for the
Sensory (S) interface, I-1 and that for the Effecter (E) interface, i.e.,
I-2 must conform to the object class structure stipulated in RFC 2252
[17]. The object classes: pfSensory and pfEffecter defined in Sections
IV-A and IV-B of Part I of this paper are used for the I-1 and I-2
interfaces of the PF AM, respectively.

D. Application Use-Case Policy Framework Design

The Policy rules, conditions and actions to be used by any AM
targeting this application domain are to follow the standardized policy
core information model (PCIM) framework specified in RFC 3060
and 3460. The compliant rules, conditions and actions that should be
implemented are defined in the subsections that follow.
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1) Policy Condition Format: The defined PCIM policy condi-
tion class for this application i.e., pfCondition has six attributes,
namely:isActive, isValidMove, topDirection, bottomDirection, right-
Direction and leftDirection. All these attributes are of Boolean data
types and are discussed in Section VII-B of Part I of this paper.

C = {isActive, isV alidMove, topDirection,

bottomDirection, rightDirection,

leftDirection} (13)

then the structures of the four realizable policy conditions are;

Policy Conditions =



C1 = {True, True, True, False,
False, False}
C2 = {True, True, False, T rue,
False, False}
C3 = {True, True, False, T rue,
False, False}
C4 = {True, True, False, False,
False, True}

An explanation of how a policy condition of type pfCondition
object class is evaluated can be found in Section VII of Part I.

2) Policy Action Format: The policy action implemented in the
PF application is of type pfAction and it consists of a single object
attribute i.e., functionID. As noted in VII-C of Part I, it is of data
type string and it points to the function that creates an instance of
the pfEffecter object class.

If A in Equation (14) is the general structure of a policy action for
this application;

A = {functionID} (14)

then the four acceptable instances of the pfAction class are;

Policy Actions =


A1 = {moveTop}
A2 = {moveBottom}
A3 = {moveLeft}
A4 = {moveRight}

3) Policy Rule Format: Recall from Part I, that a policy rule
consists of one or more policy conditions and actions and attributes
that govern how these conditions are evaluated and how actions are
to be executed. Conditions and actions are associated with a policy
rule by adding the distinguished names (DNs) of the relevant policy
conditions and actions to the rule’s ConditionList and ActionList
attribute, respectively. If the condition within a policy rule evaluates
to true, all actions within that policy rule are executed subject to the
other attributes of the rule. For the Path Finder application considered
in this report, only four policy rules are required. These rules are
based on the four conditions and actions described in the last two
subsections.

Assume that Equation (15) represents the general structure of a
rule;

R = {C,A} (15)

where C is the DN of a policy condition and A the DN of a policy
action.

The valid policy rules for the PF are;

Policy Rules =


R1 = {C1, A1}
R2 = {C2, A2}
R3 = {C3, A3}
R4 = {C4, A4}

VIII. EVALUATION REQUIREMENTS FOR USE-CASE

This is the first of four defined steps set out by ISO /IEC 14598 that
must be carried out when attempting to evaluate a software system
(see Section VI-A). There are three tasks associated with this activity.
These tasks are discussed within the context of the PF application in
Sections VIII-A- VIII-C.

A. Purpose of Evaluation

The purpose of this evaluation is to establish how well in relative
terms six different autonomic managers (AM) are able to achieve
the objectives of the pathfinder (PF) application described in Section
VII-A. All six AMs considered in this work implement a Fuzzy Logic
algorithm in the R3 layer. This algorithm helps the AM decide the
next move for its robot. Note that placing the Fuzzy Logic algorithm
in this layer is in line with the idea that the R3 layer is the most
intelligent of all three layers and houses the artificial intelligence
mechanism, if implemented. The difference between the six evaluated
AMs (described later) is in their implemented path search method and
the quality of the inputs to the Fuzzy Logic algorithm.

Before discussing the AMs , it is pertinent to mention the common
features of the managed robots:

• When a robot has found food, it deposits pheromones on the
squares of the map it transverses on its way back to the nest.
Depending on the navigational algorithm implemented in the
AM, these pheromones may or may not be used by other robots
as inputs to the Fuzzy Logic algorithm. Deposited pheromones
evaporate after a controlled number of ticks of the clock.

• The robots do not have a global view of the considered map.
• Every time a robot sets out from the nest, it has no idea where

the food source is located. The idea is to mimic multiple food
sources.

The distinguishing characteristics of the evaluated AMs are pre-
sented below:

1) Autonomic Manger-Basic (AM-B): In order to locate the food
source or the nest, this AM uses an algorithm called Basic.
In the Basic algorithm, the AM remembers the position of
the last four squares crossed by its robot leading up to its
current position. The current location of the robot, the available
squares for the next move, the information relating to the last
four squares crossed and the pheromones detected in each of
these squares are passed to the R3 layer by the R2 layer of the
manager using a contextAmbiguity message. The Fuzzy logic
algorithm in R3 uses this information as input and then outputs
what it considers the best move for the robot. This output is sent
to R2 using a contextResolved message. R2 selects the policy
rule that corresponds to that move and passes the associated
policy action to the Effecter (E). The effecter moves the robot
accordingly. The message sequence for this process is shown
in Figure 4. Note that the Basic algorithm does not consider
the relative strength of the pheromones on the squares when
deciding the next move.

2) Autonomic Manger-Pheromones (AM-P): This AM imple-
ments an algorithm similar to AM-B, only this time the square
with the strongest pheromones are given higher weights when
the decision is being made for the next move towards the
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food source. The algorithm implemented by AM-P is called
Pheromones.

3) Autonomic Manger-Memory(AM-M): AM-Memory imple-
ments a variant of the Basic algorithm called the Memory
algorithm. The difference here is that rather than remembering
the last four squares traversed, the AM remembers all squares
its robot passed through before getting to the food source. Once
the food source is found, it traces its way back to the nest using
the same path i.e., the one stored in its memory

4) Autonomic Manger-Hill Climbing 1 (AM-HC1): This AM
implements an algorithm called the Hill Climbing 1 algorithm.
Like the Memory algorithm, it remembers the squares crossed
to get to the food source, but unlike the Memory algorithm,
it does not follow the route in its memory blindly back to
the nest. It uses the stored information more selectively by
applying the Hill Climbing search algorithm. The output of the
Hill Climbing algorithm is used as one of the inputs to the
Fuzzy Logic algorithm when the robot is trying to find its way
home. This AM does not use pheromones.

5) Autonomic Manger-Hill Climbing 2 (AM-HC2): AM-Hill
Climbing 2 implements the Hill Climbing 2 algorithm. This
algorithm is similar to that implemented in AM-HC1. The
difference is that AM-HC2 additionally uses pheromones in the
environment as inputs to its Fuzzy logic algorithm in exactly
the same way as the Basic algorithm used in AM-B.

6) Autonomic Manger-Hill Climbing 3 (AM-HC3): Imple-
mented in this AM is an algorithm called Hill Climbing 3.
This utilizes the Hill Climbing algorithm to find the shortest
path back to the nest while giving higher weights to trails with
the strongest pheromones when selecting the path to the food
source in the same manner as AM-P.

B. Type of Product

The autonomic managers targeted at this application are self-
contained and part of a larger system. They do not require additional
components to carry out their activities.

C. Product Quality Model

The software quantitative metrics evaluated are:
• The Functionality attributes of Suitability to the objective and

Accuracy with which the objective is achieved, if achieved at
all (see Sections V-A1 and V-A2).

• Two attributes of the Maintainability characteristics are dealt
with in this evaluation i.e., the Coupling and Modularity (C &
M) attributes (see Section V-E2).

IX. EVALUATION SPECIFICATION FOR USE-CASE

There are three tasks associated with this second evaluation activity
as discussed in Section VI-B. These tasks are applied to the PF
application and are presented in Sections IX-A- IX-C.

A. Metrics Selection

From the description of the PF application in Section VII, it is
clear that the R2 layer is mostly dependent on the R3 layer for
the policy rule choice for the next move of the robot. Put more
succinctly; the machine is heavily dependent on the R3 layer. As
a result, only the Functional Suitability and Accuracy of R3 as it
relates to the machine’s self-optimization property is evaluated. Note
that it is only when the Functional Suitability is confirmed to be a 1
is the R3 Functional accuracy computed. All six AMs evaluated are
functionally suitable.

The procedure for computing the Functional Accuracy metric of a
self-management property at the R3 layer is given in Section V-A2
as;

A1 =
Nsuccess

Ntotal
(16)

where Ntotal is the total number of times the R3 layer was called
upon to resolve the a policy rule conflict/ambiguity by the R2 layer
and Nsuccess the total number of times these R2 requests were
successfully resolved.

Within the context of the PF application, Nsuccess is interpreted as
the number of home runs (Nhr) achieved within the time considered.
Ntotal represents the total number of steps i.e., the total number of
squares (Csqr) crossed by the robots, as instructed by the navigational
algorithm in R3 to achieve Nhr . Nhr and Csqr cannot be plugged
into A1 in Equation (16) directly as these are two different quantities.
A means to convert Nhr to steps or squares is required. To do this,
the lowest (ideal) number of squares that can be traversed to achieve
a single home run on a map is found and this number is the value
of a single home run in squares (Chr) for that map. For instance,
for the Closed map in Figure 2(a), the lowest number of squares
between the nest and the food source is 21 squares. Therefore, 42
(2×21) squares must be crossed for a round trip or 1 home run i.e.,
nest 7→ food 7→ nest in the best case scenario. This implies that
for the Closed map Chr = 42 squares. For the Open map in Figure
2(b), Chr = 30 squares. With the above, the R3 functional accuracy
for the closed and open map can now be computed using Equation
(17);

A1 =
Nsuccess

Ntotal
=

Chr ∗Nhr

Csqr
(17)

The other metric evaluated in this work are the Coupling and
Modularity attributes of the Maintainability characteristic (see Section
V-E2). For the PF application, if the AM conforms to the configura-
tion shown in Figure 3, the metric for these attributes is assigned a
Yes or 1, otherwise it is assigned a 0. All six AMs evaluated conform
to the configuration.

B. Rating Levels

A Functional Suitability metric value of 1(Yes) is a must for all
AMs considered. For the purpose of this evaluation, if an AM is
able to achieve a value of R3 Functional accuracy greater or equal
to 0.4 for the self-optimization property, it is accepted. A Coupling
and modularity value of 1(Yes) is mandatory for all evaluated AMs.

C. Criteria for Assessment

All three attributes discussed in Section IX-A to be measured i.e.,
Suitability; Accuracy; Coupling and Modularity are to be assigned
equal weights in the final certification.

X. EVALUATION DESIGN FOR USE-CASE

To assess the relative capabilities of the AMs with respect to the
objective i.e., maximizing the number of home runs, each type of AM
is tested in a simulated environment. The AMs guide their respective
robots through the Closed and Open maps shown in Figures 2(a) and
2(b) for a set amount of time. Each simulation is run 30 times. At the
end of each set of 30 simulation runs, the mean number of home runs
(Nhr) is computed and extracted at a 95% confidence interval. Also
extracted from the experiments are the number of squares traversed
(Csqr) to achieve the home run (Nhr) values. The Csqr and the
mean ordinate of the Nhr values, in conjunction with the Chr value
of the map under consideration are subsequently used to compute
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the Functional Accuracy (A1). This is done using Equation (17). The
Functional Accuracy along with the other two relevant metrics are
compared to the threshold set in Section IX-B to arrive at a final
certification statement for each type of AM.

It should be noted that pheromones deposited on the squares of
the map are set to evaporate after 10 ticks for the evaluation carried
out.

As mentioned in Section VII-A, the metrics evaluated are consid-
ered based on the collective behaviour of AMs of a similar type, not
on individual AM performance.

XI. EVALUATION EXECUTION FOR USE-CASE

The execution of the evaluation process defined in Sections VIII-
X is repeated for two scenarios. In the first set of evaluations, the
execution run time is fixed and the number of robots is varied for
each type of AM. For the second set of execution, the simulation run
time is varied, while the number of deployed robots is fixed.

A. Evaluation I

As noted previously, a robot is moved to the next square en route to
the food source or nest at the tick of the clock. In this first evaluation,
the number of ticks is held constant at 1200 ticks for each robot on
both the Closed and Open maps. The number of robots deployed
is steadily increased from 20 to 100 in intervals of 20. Since it is
the collective behaviour of the robots that is being evaluated, if 20
robots are deployed in a scenario then there will be 24000 moves
in total i.e., 20 robots × 1200 ticks. Table I shows the cumulative
number of squares crossed (Csqr) or moves by the robots based on
their deployed numbers for both maps.

TABLE I
CUMULATIVE NUMBER OF SQUARES (Csqr ) TRAVERSED BY ROBOTS ON

THE CLOSED AND OPEN MAP

No. of deployed robots Total No. of Moves
20 24000
40 48000
60 72000
80 96000
100 120000

From the graph shown in Figure 5, it can be seen that robots
controlled by managers of types AM-P, AM-HC2 and AM-HC3 have
the best performance in terms of the number of Home Runs (Nhr)
achieved on the Closed map. The relative superior performance of
these three AMs has to do with the quality of the mechanism by which
the food source is found and the algorithm that guides the robot back
to the nest. For instance, for the Closed map, managers of type AM-P
and AM-HC3 have an advantage when it comes to finding the food
source, as their navigational algorithms are biased towards paths with
the strongest Pheromones. Type AM-HC2 and AM-HC3 managers
are better at finding the nest on the return trip, primarily because
both rely on the Hill Climbing algorithm to achieve this. Although,
managers of type AM-HC1 also employ the Hill Climbing algorithm
when trying to find the nest, its ability to achieve a comparative
number of home runs when compared to AM-HC2 and AM-HC3 is
hampered by the fact that it does not rely on Pheromones to find the
food source.

The poor performance of managers of type AM-M is due to the
fact that if its robots take the non-optimal route to find the food
source, they will also take the non-optimal route back to the nest,
as dictated by the Memory algorithm. The inability of AM-B to
compete favourably with the other AM types is due to the mechanism
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Fig. 5. Home Runs (Nhr) for the Closed Map

of the implemented Basic algorithm. Recall that managers with this
algorithm have short-term memory with respect to where the robots
have been. Another disadvantage is that the algorithm does not give
higher weights to paths with the strongest pheromones. As expected
for most of the AM types save AM-B, an increase in the number of
deployed robots increases the number of home runs achieved.
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Fig. 7. Home Runs (Nhr) for the Open Map

The Functional Accuracy (A1) of the 6 types of AMs is computed
and shown in Figure 6. These values of A1 are computed using
Equation (17) with the mean ordinates of the Home Runs of Figure
5 as Nhr , the corresponding values of Csqr in Table I and the Chr

value for the Closed map as inputs.
From the Figure and for the Closed map, it can be seen that only

AM-P, AM-HC2 and AM-HC3 meet the 0.4 threshold set for R3
Functional Accuracy in Section IX-B.

The performances of the AMs on the Open map tell a slightly
different story from the Closed map. The most significant difference
is in the performance of the managers of type AM-P. In Figure 7, the
number of home runs (Nhr) achieved by the AMs implementing the
Pheromones algorithm is Zero. Recall that the Open map is a more
complicated map, in that robots wander about; as there are many more
paths here than those on the Closed map. A close examination of how
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Fig. 8. Food Found Count for Open Map

the Pheromones navigational algorithm works revealed the reason
for this subpar performance. Figure 8 shows the amount of times
the food source was found by the various navigational algorithms.
Notice that the AMs with the Pheromones algorithm found the food
source a number of times. This suggests that the problem has to
do with the robots not being able to find their way to the nest
afterwards. This problem is further compounded by the fact that
given the increased opportunity to roam on the Open map, robots
with food are unable to find their way home will deposit pheromones
on every square crossed. This in turn will lead other robots looking
for the food source astray, as type AM-P managers depend heavily
on paths with the strongest pheromones. Note that type AM-HC3
managers also have a bias towards paths with stronger pheromones
but unlike the AM-P, the Hill Climbing algorithm implemented in
managers of type AM-HC3 intelligently guides robots back to the
nest. Hence, the reason for the higher home run counts for AM-
HC3 shown in the figure. Another significant change of note is the
performance of robots controlled by type AM-M managers. It appears
the ability of the Memory algorithm to trace the path back to the nest,
albeit suboptimally, was an advantage in terms of home runs achieved
relative to the Pheromones algorithm as shown in Figure 7.

Again, the performance of robots managed by AM-B was relatively
poor for the same reasons given for its performance in Figure 5. How-
ever, the non-reliance on the path with the strongest pheromones by
the Basic algorithm is the reason for its relative higher performance
in terms of home runs achieved when compared to those of managers
of type AM-P.
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Fig. 9. Functional Accuracy for the Open Map

The Functional Accuracy (A1) for the Open map in this evaluation
is shown in Figure 9. The computation of A1 was done in the same
manner as that shown in Figure 6. Note that the Csqr = 30 for the
Open map (see Section IX-A). From Figure 9, it can be seen that
only managers of type AM-HC3 meet the required threshold of 0.4

for Functional Accuracy set in Section IX-B.

B. Evaluation II

For the evaluation contained in this section, the number of robots
was held constant at 20 and the number of clock ticks increased
steadily from 24000 to 72000 in steps of 12000. As the robots
are allowed to cover more ground (or squares) given the increased
number of ticks, one would expect that the number of home runs
achieved would increase as well. This is the case as shown in Figure
10 and 12 for the Closed and Open map, respectively. Even though
the parameter varied in this evaluation is different from that varied in
the evaluation of Section XI-A, the analysis of Evaluation I applies
here as well. This can be verified from the graphs depicted in Figures
10 - 14.

600

900

1200

M
e

a
n

 N
u

m
b

e
r 

o
f 

H
o

m
e

 R
u

n
s

 (
N

h
r) AM-B(Basic) AM-P(Pheromones) AM-M(Memory)

AM-HC1(Hill Climb 1) AM-HC2(Hill Climb 2) AM-HC3(Hill Climb 3)

0

300

24000 36000 48000 60000 72000
M

e
a

n
 N

u
m

b
e

r 
o

f 
H

o
m

e
 R

u
n

s
 (

N

Total Number of Squares Traversed (Csqr)

Fig. 10. Home Runs (Nhr) for the Closed Map
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Fig. 12. Home Runs (Nhr) for the Open Map

From Figure 11, it can be seen that for the Closed map AM-P,
AM-CH2 and AM-CH3 consistently meet the Functional Accuracy
threshold set in Section IX-B i.e., 0.4. Managers of type AM-M meet
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Fig. 14. Functional Accuracy for Open Map

this threshold only when the number of steps exceeded 24000. For the
Open map, only managers of type AM-CH3 meet this requirement
(see Figure 14).

C. Evaluated Autonomic Manager Acceptability

In Section IX, three metrics were identified as the basis for which
an AM targeted at the PF application is accepted. These metrics
were; Functional Suitability (FS), R3 Functional Accuracy (A1) and
Coupling and Modularity (C & M). The thresholds for acceptability
for these three metrics were set in Section IX-B. All AMs targeting
the PF application must meet the FS requirement (i.e., a ‘Yes’ value).
For the A1 metric, all AMs must achieve a value of 0.4 or better in
terms of the objective of the PF. The C & M, like the FS must have
a value of 1 or a Yes.

TABLE II
MANAGER RATINGS FOR EVALUATION I (NUMBER OF DEPLOYED

ROBOTS VARIED ON THE CLOSED MAP

AM Type C & M FS A1 (Closed map)
AM-B(Basic) X X
AM-P(Pheromones) X X X
AM-M (Memory) X X
AM-HC1 (Hill Climb 1) X X
AM-HC2 (Hill Climb 2) X X X
AM-HC3 (Hill Climb 3) X X X

From Section IX-A, it was made clear that all the AMs evaluated
followed the architectural configuration of Figure 3, and as such, the
C & M metrics is achieved (i.e., ‘Yes’) for all of them. The AMs were
also said to be functionally suitable to the objective of the PF (see
Section IX-A), therefore they all meet the FS attribute. The different
performances of the AMs as it relates to the Functional Accuracy
were presented in Sections XI-A and XI-B. Based on this, Tables II,
III, IV and V show how each type of AM measured up to expectations
with regards to the selected metrics for Evaluation I and II. Where a

TABLE III
MANAGER RATINGS FOR EVALUATION I (NUMBER OF DEPLOYED

ROBOTS VARIED ON THE OPEN MAP

AM Type C & M FS A1 (Open map)
AM-B(Basic) X X
AM-P(Pheromones) X X
AM-M (Memory) X X
AM-HC1 (Hill Climb 1) X X
AM-HC2 (Hill Climb 2) X X
AM-HC3 (Hill Climb 3) X X X

TABLE IV
MANAGER RATINGS FOR EVALUATION II (NUMBER OF CLOCK TICKS

VARIED ON THE CLOSED MAP

AM Type C & M FS A1 (Closed map)
AM-B (Basic) X X
AM-P (Pheromones) X X X
AM-M (Memory) X X
AM-HC1 (Hill Climb 1) X X
AM-HC2 (Hill Climb 2) X X X
AM-HC3 (Hill Climb 3) X X X

TABLE V
MANAGER RATINGS FOR EVALUATION II (NUMBER OF CLOCK TICKS

VARIED ON THE OPEN MAP

AM Type C & M FS A1 (Open map)
AM-B (Basic) X X
AM-P (Pheromones) X X
AM-M (Memory) X X
AM-HC1 (Hill Climb 1) X X
AM-HC2 (Hill Climb 2) X X
AM-HC3 (Hill Climb 3) X X X

metric is met, the column for that metric is ticked for an AM type,
and where it falls short, the column is left blank.

Based on the contents of Tables II, III, IV and V, it can be said that
only managers of type AM-HC3 consistently meet the rating levels
set by the PF certifiers.

XII. CONCLUSION

To address the lack of a framework for certifying autonomic com-
puting systems (ACSs) a novel five level Autonomic Maturity Index
(AMI) was proposed and applied to the Intelligent Machine Design
(IMD) architecture. These defined indices reflect how independent the
AM is i.e, the amount of resources the AM is expected to expend
in terms of intelligence, computational complexity and speed before
it engages the human operator to solve a management task. An
Expression that describes an autonomic machine was derived. The
parameters for this expression include the AMI, the layer configura-
tion of the machine and the implemented self-management properties.
As a consequence, the derived expression indicates if the machine
conforms to the dictates of the IMD architecture or not. If it does not
conform, no further certification activity is carried out on the machine.
If the machine’s expression satisfies the established architectural
rules, the certification process continues by measuring the machine’s
attributes relating to performance using the proposed quantitative
metrics. How these metrics are computed and how the results are
interpreted was discussed. These quantitative metrics are based on
the six software quality characteristics of the ISO/IEC 9126-1998
specification i.e., the Functionality, Usability, Portability, Reliability,
Efficiency and Maintainability characteristics. Evaluation steps that
utilize the proposed quantitative and qualitative metrics for autonomic
computing certification purposes were presented. These steps were
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guided by the ISO/IEC 14598 software evaluation specification.
To demonstrate applicability of the architectural and metric systems

proposed for building and certifying Autonomic Computing Systems
(ACSs), an Ant Colony Optimization application called Path Finder
(PF) was chosen. The main goal of managers targeted at the PF
application is to guide robots from the nest to a food source and
back. Six different managers were designed and implemented, each
with a different navigational algorithm. The purpose was to compare
the performances of these AMs to a specified rating level. From
an architectural perspective, the PF demanded that each manager
conform to Configuration V of the Intelligent Machine Design
(IMD). Since the objective of the PF application is to find the
most optimal route between the nest and the food source, only the
self-optimization property of the four autonomic self-management
attributes is implemented in the machine.

With respect to certification, all four procedures leading up to a
final certification statement on the AMs were followed. Three metrics
were identified as relevant to the evaluation of AMs targeted at the PF
application. These metrics include; Functional Suitability, Functional
Accuracy and Coupling and Modularity. Given the conformity of
each type of AM to Configuration V of the IMD, each type of AM
scored full marks for the Coupling and Modularity metric. They were
also awarded full marks for Functional Suitability. For Functional
Accuracy, each type of AM was evaluated and rated within the
context of how well they performed when directing their robots on
two different maps. Based on these three metrics, it was shown that
only managers of type AM-HC3 met the specified rating threshold
consistently.

APPENDIX

This appendix deals with a couple of special cases that may arise
when trying to define an autonomic manager using Expression (7)
presented in Section III-C.

R3
POHC

R2

POHC

R1
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OSelf-Configuration Self-Protection

Self-Healing Self-Optimization

Human Operator

AMI 2 AMI 3

Fig. 15. Autonomic Manager 1 (AM1) Before Normalization

Consider a situation where an AM is designed such that some of
the self-management properties specify a particular AMI while others
specify another. For instance, the designers of AM1 shown in Figure
15, specify an AMI of 2 for the self-configuration and the self-healing
properties in R2. The self-optimization and self-protection properties
specify an AM1 of 3. Since this machine specifies two AMIs it cannot
be described using Expression 7 (see Subsection III-C).

AM1 =

{ ????;R1� R2� R3;
SMR1 = {SC1, SH1, SO1.SP1},
SMR2 = {SC2, SH2, SO2, SP2}
SMR3 = {∅, ∅, SO3, SP3}

}
(18)

To rectify this anomaly, the machine shown in Figure 15 and
partially described by Expression (18) must be normalized. The
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C* Dummy Self-Configuration
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Fig. 16. Autonomic Manager 1 (AM1) After Normalization

normalization process for AM1 involves creating dummy implemen-
tations of the self-configuration and the self-protection functions in
R3. These dummy implementations are empty functions that simply
redirect any request from R2 to the human operator as shown in
Figure 16. The normalized AM design is rated with the higher of the
two AM1 values it specified before normalization. The normalized
expression for AM1 is shown in (19).

AM1 =

{ 3;R1� R2� R3;
SMR1 = {SC1, SH1, SO1, SP1},
SMR2 = {SC2, SH2, SP2, SP2}
SMR3 = {SC∗

3 , SH
∗
3 , SO3, SP3}

}
(19)

The asterisks in the SMR3 variable of Expression (19) signify
dummy function implementation. A comparison between Figure 15
and 16 shows that the normalization process does not violate the
intention of the AM designers.
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Fig. 17. Autonomic Manager 2 (AM2)

AM2 =

{ 3;R1� R2� R3;
SMR1 = {SC1, SH1, SO1, SP1},
SMR2 = {SC2, SH2, SO2, SP2}
SMR3 = {SC3, SH3, SO3, SP3}

}
(20)

Recall that from the AMI of an expression describing an AM,
one can quickly deduce a number of characteristics including how
intelligent and complex the system being observed is. Speaking
strictly from an AMI perspective, expressions (19) and (20) erro-
neously convey a sense of equivalence between AM1 in Figure
16 and AM2 in Figure 17. In fact, since AM1 is able to rely on
the human operator for some of its management function in R2; it
should be judged lower than AM2. In a case like this, some of the
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quantitative metrics discussed in Section V will ensure that AM2

is rated relatively superior to AM1 at the end of the certification
process. For instance, when the self-management functions at R3 of
AM1 are being measured for the functionality accuracy metric(A),
the dummy functions will be rated with a zero value (see Subsection
V-A2). This will not be the case for AM2; thus ensuring its higher
overall rating.
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