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Abstract—A formalization of the recently proposed infinity 
hypothesis implying the common coevolution of the universe, 
life, mind, language, and society gives a possibility to introduce 
strict definitions of meaning and subjectivity, which spread 
beyond the traditional mathematics. This hypothesis leads to a 
semantic mathematics that is an implementation of the von 
Neumann’s idea of a low-level “primary language” (PL). In 
this paper the formalization of this infinity hypothesis is 
further developed and some of its consequences are considered. 
In particular, a phenomenology formalization, definite and 
conditional meanings of the PL’s words, their meaning 
complexity, categories and subcategories (hierarchies) of 
meaningful words, a way of the presentation of real numbers, 
the Cantor’s continuum hypothesis, the PL’s continuity-
discreteness unity and uncertainty, non-Gödelian 
arithmetization by natural numbers and its relation to 
Chaitin’s Omega-numbers, convention on truth, meaning 
ambiguity of words of different meaning complexity and its 
relation to Burali-Forti paradox are discussed. A validation of 
the PL is given. Some examples of meaningful computations 
using the technique of recently developed binary signal 
detection theory (BSDT) and the BSDT PL’s perspective 
applications to solving the problems concerning the brain, 
mind and their faculties are briefly considered. It is 
emphasized super-Turing computations are typical for the 
BSDT PL as well as animal and human regular everyday 
meaningful communication. 

Keywords-infinity; meaning; subjectivity; phenomenology; 
context; categorization; attention; randomness; complexity; 
continuity-discreteness unity and uncertainty; arithmetization; 
continuum hypothesis; super-Turing computations. 

I.  INTRODUCTION 

Recently proposed new infinity hypothesis [1] provides a 
possibility to strictly define such basic properties of mind as 
meaning and subjectivity. This hypothesis, contrary to the 
belief of some mathematicians [2], favors the view of 
mathematics as an invention of the mind. But mathematics is 
not only a product but also an instrument of the mind needed 
by humans to symbolically describe the world to better adapt 
to it. Mathematics may only be required and may only 
become possible in socially developed groups whose 
members are able to cooperate by means of a rather complex 
symbolic communication system or, in other words, by a 
language. In fact mathematics is an intrinsic part of the 
natural language (its fraction of maximal certainty) and can 
not be considered as something unrelated to it. Hence, 

mathematics as well as language is eventually the product of 
a particular human society and its culture, e.g., [3].  

While humans are directing their efforts to mathematical 
problems which are in essence external with respect to their 
minds and faculties of minds (language, intuition, creativity, 
sociality, etc.), mathematics may be conceived, developed, 
and successfully applied in a completely formal way, 
ignoring the fact that it is inseparable from the mind/ 
meaning/subjectivity – it has been the course of the 
development of mathematics during thousands of years of its 
history. Rather recently this history was culminated in the 
design of formal axiomatic systems for mathematics as a 
whole – a finite number of most basic statements or axioms 
from which all mathematical theorems (correct assertions) 
can be derived in a finite number of logical inferences. This 
approach is known as a “finitist” one. The most famous and 
practically important of axiomatic systems is the Zermelo-
Fraenkel (ZF) axiomatic system with the axiom of Choice 
(ZFC) [4]. The ZFC is widely recognized as a “standard” or 
“traditional” basis for all the contemporary mathematical 
formalism – a technique of writing out the axioms, theorems, 
and inference rules in a symbolic way. The very idea of the 
axiomatization and the goal of the famous David Hilbert’s 
program [5] are to exclude from mathematics even the 
smallest traces of the mind/subjectivity, to reduce in this way 
mind-related ambiguities and to ensure as a result the highest 
possible (in the ideal case “absolute”) logical rigor of it. But, 
as was demonstrated by Kurt Gödel [6], this enormous goal 
can never be achieved: in fact no finitist axiomatic system 
exists that leads to mathematical formalism that would 
simultaneously be consistent (all of its theorems do not 
contain logical contradictions) and complete (all of its 
theorems can be proved or, in other words, formally derived 
from the axioms). For the Hilbert’s program and the whole 
axiomatic approach, this Gödel’s incompleteness plays a 
destructive role. In spite of that, all theorems already proved 
and those that would only be proved in the future within the 
framework of the ZF/ZFC formalism remain valid while we 
are interested in problems that are not directed to our minds. 
An overwhelming majority of mathematical problems were 
till now exactly of this kind and, consequently, Gödel’s 
incompleteness exerts no effect on them. Computational 
abilities of mathematical formalism that is based on ZFC-
like axioms and ignores the mind were revealed and 
implemented by Alan Turing [7] as his famous abstract 
Turing machines. 
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The situation changes drastically as soon as humans start 
to address problems which are in essence internal with 
respect to their minds and faculties of minds. Now the minds 
have to symbolically describe themselves by means of 
methods created by them in a way that is comprehensible to 
other minds. Under such circumstances of self-reference, 
self-representation and self-awareness, standard (ignoring the 
mind) mathematics does not work and the impossibility of 
describing the mind by methods ignoring the mind manifests 
itself in some notorious paradoxes [4] and in Gödel’s 
incompleteness [6] which becomes immediately practically 
significant. But even the most dogmatic formalists can not 
completely exclude the mind from their theories because the 
need always remains to explain (interpret) their special 
symbols in words of a natural language that names our 
elementary subjective experiences (“primitive intuitive 
knowledge”). As a result, mind-related meaning variability 
of natural languages penetrates into the mathematical 
formalism making it vague and insufficiently rigor. Henri 
Poincaré [8] formulated this problem as his “vicious circle 
argument” drawing the attention to the fact that at least some 
basic notions of known axiomatic systems are defined one 
through the other and, consequently, can not be treated as 
genuinely fundamental. Emphasizing the intuitionist aspects 
of knowledge, he also enunciated the intuitive origin of the 
fundamental in mathematics principle of induction. To solve 
these problems at least partially, formalists gather colloquial-
word explanations of their symbols together, dub resulting 
collection the metamathematics, e.g., [9] and consider it as 
something different from the formalism itself.  

There is also technically unpopular but methodologically 
important branch of mathematics known as L. E. J. 
Brouwer’s intuitionism, e.g., [10]. It states that certain 
principal mathematical concepts (and, consequently, axioms 
as their symbolic representations) are immediately given to 
humans by their intuitions, though these concepts/axioms 
can never precisely be completed because over time they 
could be changed by further intuitions. Hence, the 
intuitionism and the formalism are axiomatic theories but 
with axioms introduced in different though similar ways 
(note, metamathematics, a part of the formalism, actually 
contains some elements of the intuitionism). It was John 
Lucas who first soundly stated [11] that the Gödel’s 
incompleteness theorem [6] does not allow formal finitist 
explanation of the mind and presenting it as a Turing 
machine. Later these ideas were further developed by Roger 
Penrose [12], [13]. He, in order to explain mind/ 
consciousness, has argued the need of appealing to a so-far 
unknown hypothetical physics known as a “correct quantum 
gravity” that would be responsible for the emergence of our 
subjective experiences. In any case, Turing methods are 
insufficient to ensure mind/mind-related computations and to 
do this something “super-Turing” is required.  

One can see, standard mathematics based on the ZFC or 
ZFC-like axiomatic approach becomes insufficient if we 
need to explain the mind and mind-related human/animal 
faculties. Numerous unsuccessful attempts to achieve an  
adequate description/understanding of such phenomena as 
mind/consciousness, e.g., [14], language, e.g., [15] or 

(mathematical) symbolism, e.g., [16] show these problems 
are tied in a Gordian knot and none of them, taken 
separately, could not fully be solved. It indicates we need a 
new mathematics spreading beyond the ZFC and equally 
successful in describing the phenomena that are external and 
internal with respect to the mind. Since standard 
mathematics successfully describes the mind-external world, 
it has to be a part of the required new mathematics. Hence, 
we need such a generalization of the ZFC that additionally 
takes into account a fundamental property of the world that is 
missed by the ZFC but crucially important for the emergence 
and maintenance of the human mind and mind-related 
faculties. We hypothesize [1], [17] this fundamental property 
is the infinity of common “in the past“ coevolution of the 
universe, life, mind, language, and society (cf. Edward 
Wilson’s idea of the “gene-culture coevolution” [18], 
Humberto Maturana and Francisco Varela’s autopoiesis 
theory [19], Lynn Margulis’s evolutionary symbiosis [20], 
and psychosomatic nets by Candace Pert [21]). In the present 
paper it is explained in which way this idea of infinity can be 
implemented by methods that are beyond the ZFC and 
regular Turing computations. The generality of our initial 
thesis entails the need to also address some other problems of 
great generality namely the context, meaning, attention, 
subjectivity, categorization, randomness, complexity, etc. In 
spite of that, this work is about science and not philosophy 
because it addresses a new mathematics and its practical 
computations.  

For the sake of completeness, it is also needed to point to 
the opposite view usually accepted in the field of machine 
consciousness: the ZFC and Turing machines are sufficient 
for modeling the mind and serious obstacles that hinder 
achieving this goal are caused by severe but within the 
existing framework solvable technical problems, e.g., [22] -
[24].  

The rest of this paper is structured as follows. In Sections 
II to IV the hypothesis of concurrent infinity, based on it 
phenomenology formalization, and an implementation of the 
von Neumann’s idea of a “primary language” (PL) are 
considered. It is also explained in which way the PL and 
recent binary signal detection theory (BSDT) [25] are closely 
related, why the BSDT PL spreads beyond the ZF/ZFC and 
why it may be treated as mathematics of meaningful 
computations. In Section V some details of the BSDT PL 
formalism are described, including the formalization of the 
notions of meaning, subjectivity and meaning complexity. 
Sections VI and VII describe a non-Gödelian arithmetization 
by natural numbers of all the BSDT PL expressions, their 
randomness and continuity-discreteness unity and 
uncertainty. The BSDT PL’s convention on truth is 
considered in Section VIII. In Section IX the notion of 
conditional meaning is described and used to account for 
meaning ambiguity of BSDT PL words of different meaning 
complexities. A connection between the meaning ambiguity 
and Burali-Forti paradox is also demonstrated. Section X 
presents some numerical and empirical validations of the 
BSDT PL, including the existence in animals/humans of 
mirror neuron systems that implement typical super-Turing 
computations and BSDT PL super-Turing computers. In 
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Section XI examples of practically important given the 
context meaningful computations and some BSDT PL 
perspective applications are briefly discussed. Section XII 
gives conclusions. 

II. BSDT PRIMARY LANGUAGE AS VON NEUMANN’S  

PRIMARY LANGUAGE  

It was John von Neumann who was perhaps the first 
mathematician claiming the need of another mathematics for 
brain computations. This article is an attempt of an 
implementation of his idea of a low-level “primary language 
truly used by the central nervous system,” and structurally 
“essentially different of those languages to which our 
common experience refer” [26, p. 92]. It is this primary 
language that is this new “essentially different” (we suppose, 
spreading beyond the ZFC) mathematics for describing the 
mind and doing mind/brain computations. 

Since the PL is a low-level language for a nervous 
system’s internal computations, its symbolism should be 
relevant to the usual style of signaling in nerve tissues of 
animals/humans by means of short electrical impulses of 
given amplitude often called “action potentials” or “spikes”. 
We assume informative messages of interest are conveyed 
and processed in the brain as patterns of such spikes. It is 
supposed, these patterns are represented in the PL as finite-
dimensional binary spin-like (with components ±1) vectors 
distorted by a non-additive “replacing” binary noise [27]. 
The coding by binary noise and, as a result, using the “one-
memory-trace-per-one-network” learning paradigm [28] are 
the main features of the BSDT [25] that gives the best 
coding/decoding rules for patterns of binary signals damaged 
by binary noise. Complete description of all non-discrete 
properties of neurons as, e.g., their electric-chemical 
interactions or refractory periods is included into the infinite 
context giving the meaning to a particular pattern of spikes 
or respective binary vector (Section V B). They also 
contribute to uncertainties discussed in Sections VI B and X 
E. BSDT +1/–1 code can not be replaced by the 1/0 code 
traditionally used in most computers. It is superior because 
binary +1/–1, ternary +1/0/–1, and quaternary “colored” +1/–
1 codes naturally describe 1) neuron assemblies in different 
states of their synchrony and 2) different ways of reciprocal 
(“phase”) transitions between them [27].  

To formalize the well-known vision of the brain as a 
selectional device, e.g., [29] within the framework of the 
BSDT, by analogy with Turing machines, we have 
introduced the abstract selectional machines, BSDT ASMs 
[30]. ASMs ensure the best BSDT decoding and give a 
technical implementation of the idea that meaning of a finite 
symbolic message is mainly defined by its infinite context. 
The BSDT and its ASMs became also the ground for the 
BSDT neural network assembly memory model, NNAMM 
[31], and BSDT atom of consciousness model, AOCM [32]. 
They employ explicitly the idea of the equivalence between 
the meaning of a message and subjective experience or 
primary thought of an organism (perceiving agent) 
recognizing this message. Such an approach inevitably 
requires an extending of standard mathematics beyond the 
ZFC, to ensure the consideration of the phenomenon of 

meaning/subjectivity/privacy at mathematical level of logical 
rigor. The latter is the mandatory prerequisite for solving 
what is called the “hard” problem of consciousness [33].  

At the same time the PL would remain an empty 
enterprise if there is no technique implementing it 
computationally. Fortunately, the BSDT gives such the best 
technique that is completely ready to be used. What is 
additionally needed to ensure its success is a methodology of 
its application to particular PL-specific problems, see Section 
XI. Hence, for the PL, the BSDT plays a two-fold role: on 
the one hand, it contributes to its substantiation; on the other 
hand, it gives its computational implementation. 
Consequently, it is natural to refer to the PL we propose as 
the BSDT PL. The PL in turn gives the BSDT the 
significance of the best technique of the PL’s meaningful 
computations (e.g., Sections IV, V, X, and XI). 

In the regular sense of this term, proofs are understood as 
finite sequences of formal symbolic logical transformations 
that draw the theorems from axioms. For BSDT PL 
statements, such formal proofs have strictly speaking no 
sense because, in this case, we are always interested in their 
meanings but standard mathematical formalism rejects 
meanings by definition. For the substantiation of BSDT PL 
statements, we will give neither theorems nor proofs. We 
will provide instead their unambiguous constructions, given 
our new premises (Section V) and known theorems of 
standard mathematics. Such a style of writing is 
“constructive” rather than formal. 

In order to arrive at the BSDT PL we have mainly been 
motivated by biological and mathematical reasons. For this 
reason, along all this paper we will focus on those problems 
of life, mind, language and society that standard mathematics 
fails to resolve. The most acute of them and most amenable 
for the first BSDT PL application are perhaps the reliable 
language communication without syntax in humans and 
communication without any language at all in human infants 
and animals of the same or relative species. These problems 
are of great importance for linguistics, cognitive sciences, 
and artificial intelligence because their study informs us 
about the dynamics of language as a population 
phenomenon, bodily forms of signaling, and about a 
cognitive and bodily infrastructure for social interaction [34]. 
We also highlight the ranges of BSDT PL applications and 
show where and in which way it could be reduced to the 
reining standard mathematics.  

The BSDT PL is of course not restricted to biology; it 
may also be useful, e.g., in physics but this direction of 
BSDT PL perspective applications remains out of the scope 
of this work.  

III. HYPOTHESIS OF CONCURRENT INFINITY, EBSDT AND 

BSDT  PL PHENOMENOLOGY 

The ZFC axiom of infinity postulates the infinity of the 
number of those elements/individuals that are used in ZFC 
theory of sets for the construction of these sets [4]. The 
meaning of the term “element/individual” is not specified in 
any way but it would be reasonable to believe (or at least one 
would prefer to believe) this infinity axiom reflects in a sense 
the tacitly assumed infinite richness of the world in which we 
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live in, though what is “the world” is again explicitly not 
specified. In spite of obscure terminology used we have to 
agree that the ZFC seems to imply the infinite versatility of 
the world but certainly does not inherently imply the 
possibility of its evolution and development. The ZFC world 
is a stationary one. This theory allows the allocation of 
different aggregates of elements (the world’s “currently 
visible” fragments) but does not allow any changes of neither 
the world as a whole nor its currently visible parts. The 
fragments of ZFC world (sets and subsets of elements) are 
“tautologically” [4] related to each other like ZFC 
theorems/tautologies that could be transformed one into the 
other with the help of simple or intricate but always 
reversible (as they produce the tautologies only) formal 
rules. The irreversibility of known irreversible functions 
originates from a randomness of processes, e.g., [27] they 
represent but are not from the ZFC. If one prefers to keep the 
elements as abstract and not related to the world entities then 
ZFC mathematics remains meaningless. In spite of that its 
computations may gain different meanings from different, 
e.g., physical problems they describe (see Section XI B). 
 

Universe
Life

Mind

Language

Society

 
 

Figure 1. Hypothesis of concurrent infinity. Reciprocal relations between 
the universe, life, mind, language and society are shown as overlapping 
ovals of different colors. Arrows designate the course of their common 
infinite “in the past” (on the left) and open-ended “in the furure” (on the 
right) co-evolution. 

 
The BSDT PL infinity hypothesis we are inaugurating is 

needed to introduce in mathematics the idea of permanent or 
“eternal” open-ended evolution and development of our 
(physical) world including animals/humans and their minds 
as a part of it. In addition to the ZFC-like infinite richness 
of the world, we postulate the infinity of common “in the 
past” and open-ended “in the future” co-evolution (Figure 1) 
of the universe, life, mind, language and society [1], [17], 
[32]. We also equate a real-world physical device devoted 
to the recognition of particular meaningful symbolic (binary 
for certainty) message originated from a thing of the world, 
complete binary infinite on a semi-axis description of the 
story of designing this device in the course of its infinitely 
long evolution from “the beginning of the world” until now, 
and the meaning of the message under consideration or 
primary thought it conveys. In addition meanings are 
interpreted as subjective/first-person/private experiences or 
respective feelings (qualia) and vice versa [1], [17], [32]. It 
is assumed, the BSDT PL world (it coincides with our 
physical world), is the total collection of what we call 

things, i.e., any inanimate objects, animate beings, and any 
relationships between/within them. All the world’s things 
are permanently evolving, in the course of their common 
infinitely long coevolution, “in parallel” or concurrently, 
physically interacting with each other either directly or by 
their contributions to their common environment. To 
emphasize this issue we call our hypothesis the hypothesis 
of concurrent infinity. The BSDT extended by this 
hypothesis is referred to as the eBSDT; it is the basis for the 
BSDT PL we describe here as well as BSDT AOCM [32]. 

Our infinity hypothesis defines simultaneously a 
phenomenology (Figure 2), that is, explicit relationships 
between human subjective experiences and real world things 
humans perceive. The phenomenology is the branch of 
philosophy and science that emphasizes the role of/ 
concerns mainly with perceptual/subjective aspects of our 
knowledge and our minds. In its present form, it was 
established and strongly advocated by Edmund Husserl, 
e.g., [35]. For the recognition of the meaningful message of 
interest (a binary vector xj

i given its infinite binary context 
cxi, Section V), our phenomenology postulates the use of a 
real-world implementation of the BSDT ASM devoted to 
process the xj

i ([30] and box 1 in Figure 2) and, 
consequently, it is the BSDT PL phenomenology. It not only 
connects our feelings to things we perceive (boxes 1 to 3, 
some details see in [32]) but ensures also their formalization  
giving a possibility (box 4) of establishing a set of formal 
rules defining in which way to deal with meanings and 
feelings in terms of standard mathematics (Section V). From 
a common-sense point of view, taken together, explicit 
phenomenological traits of our infinity hypothesis do give 
the theories based on them (BSDT PL and BSDT AOCM 
[32]) a little taste of “strangeness”.  
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Figure 2. The BSDT PL phenomenology. Real-world physical devices 
recognizing the strings/vectors xj

i and their equivalents in meaning, feeling, 
and symbolism domains (boxes 1 to 4) give rise together to BSDT PL 
phenomenology (box 5). Bidirectional arrows are used to designate the 
signs of equivalence and “paradigm shifts” or transitions “between 
incommensurables” [36, p. 150]. 

 
The distinctive feature of the hypothesis of concurrent 

infinity, which is rather difficult to comprehend, is that it 
literary equates usually incommensurable entities, related to 
quite different domains – real-world physical devices (box 1 
in Figure 2), meanings of names of real-world things (box 
2), subjective feelings (box 3), and infinite strings of 
symbols (box 4). In particular, our suggestion (boxes 1 and 
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2) that the meaning of a thing’s name is identical to the 
physical device recognizing this name but not to the thing 
itself seems at the first glance counterintuitive. At least 
Ludwig Wittgenstein stated the opposite: “A name means an 
object. The object is its meaning.” [37, 3.203]. I.e., he 
equated meanings of words and the things to be named 
while we equate meanings of words and an agent’s devices 
recognizing these words. In other words, it is assumed the 
meaning of a thing’s name is a specific internal activity or 
psychological state or primary thought of an organism 
(sensory agent) perceiving this thing. Name meaning is the 
property (momentary internal state) of a perceiving agent 
and not the property (feature, trait, state) of the thing to be 
named. It is easier to intuitively acquire this statement, if to 
remember that the things of the world are always given to us 
indirectly, through our sensory organs and respective 
patterns of sensory signals in our nerve tissues. 

IV. THE IDEA OF PHENPMENOLOGY  FORMALIZATION 

AND SEMANTIC MATHEMATICS 

To do the formalization of BSDT PL phenomenology, 
we invoke our suggestion that an agent’s psychological 
states, name meanings, primary thoughts and physical 
devices devoted to recognize the names are equivalent to 
infinite on a semi-axis binary strings that share their infinite 
on a semi-axis initial parts/beginnings or, in other words, 
that have common prehistory. It is a prehistory and not the 
history because it describes the beginning of everything in 
the world and remains always essentially unspecified. We 
know about the prehistory that its existence is one-way 
infinite and common for all the things of the world but 
nothing more. Of this follows that a particular infinite on a 
semi-axis binary string describing the meaning of a thing’s 
name (the physical device that recognizes this name and 
feeling the thing causes in a perceiving agent) has infinite on 
a semi-axis beginning that coincides bit-by-bit with infinite 
on a semi-axis beginnings of other infinite on a semi-axis 
binary strings describing the meanings of names of other 
things of the world. Consequently, to formalize the 
operations with name meanings and respective feelings 
(Section V), it suffices to fix such an arrangement of their 
one-way infinite meaning descriptions when their infinite on 
a semi-axis beginnings (initial parts or prehistory) coincide 
completely and, after excluding these common beginnings 
from the consideration, to deal with their finite-in-length 
string remnants only by methods of standard mathematics. 
Such mathematics of computations with meaningful one-
way infinite and specially arranged strings we call 
meaningful or semantic mathematics.  

The fact that meaningful/semantic computations with 
finite binary strings are defined given their common 
infinitely long on a semi-axis prehistory or under condition 
that their infinite on a semi-axis beginnings coincide bit-by-
bit completely transforms them into a kind of conditional 
computations. Hence, BSDT PL computations obeying the 
demands of the hypothesis of concurrent infinity and 
respective BSDT PL phenomenology are ultimately the 
computations performed by methods of standard 
mathematics given additional boundary conditions specified 

by a binary text that occupies completely an infinite semi-
axis. The BSDT PL as a semantic mathematics is a 
generalization of standard mathematics for the case of 
operations with one-way infinite binary strings having 
common one-way infinite beginnings and, simultaneously, a 
kind of standard mathematics conditioned by infinitely 
large amounts of additional assumptions written as an 
infinite on a semi-axis binary string. Once these additional 
boundary conditions (assumptions) are discarded, the 
mathematics of meaningful computations disappears and 
becomes the standard ZFC mathematics that by definition 
ignores meanings of its theorems/computations.  

Since meaningful (semantic) computations are dealing 
with infinitely long strings/messages (i.e., taken as a whole 
genuine real numbers), they cannot be performed by regular 
Turing machines. To cope with semantic computations, a 
super-Turing computational technique and its 
implementation in the form of a physically constructible 
super-Turing computer [38] are obviously required (see 
Section X B and D). Like Turing machines implement the 
computations in standard ZFC or ZFC-like mathematics, 
super-Turing machines should implement the computations 
in semantic mathematics 

V. ELEMENTS OF THE BSDT PL FORMALISM 

The acceptance of the hypothesis of concurrent infinity 
transforms ZFC mathematics into the BSDT PL whose 
formalism differs to an extent from what we customary use.   

A. Alphabet of Meaningful Words 

As the BSDT PL is a kind of standard mathematics, the 
alphabet of the latter may be accepted as the alphabet of the 
former, with reservations concerning the specificity of 
semantic mathematics. The most important  of them is that 
basic BSDT PL objects are infinite on a semi-axis symbolic 
(binary for certainty) meaningful strings that have common 
coinciding bit-by-bit infinite on a semi-axis meaningful 
beginnings. The other is that all these strings are written in 
the BSDT format as spin-like ±1-sequences and their finite-
in-length end-fractions are processed by respective BSDT 
ASMs. In other words, it is assumed, all BSDT PL finite 
binary strings are coded using replacing binary noise [27] 
and decoded by BSDT ASMs [30] that give in this case the 
best decoding rules. The type of coding of infinite-in-length 
but explicitly unspecified common beginnings of 
meaningful strings does not matter. Meaningfulness of 
BSDT PL one-way infinite strings (and their equivalence to 
real-brain physical devices) is actually postulated by the 
hypothesis of concurrent infinity (Sections I and III, Figure 
1) and respective BSDT PL phenomenology (Sections III 
and IV, Figure 2).  

B. Vocabulary of Meaningful Words 

The distinctive feature of the BSDT PL is that its basic 
elements (words) are meaningful. Their meanings are 
introduced as follows.  

1) Meaningful simple words: Let us arbitrary choose 
one of BSDT PL one-way infinite binary strings, e.g., the cx0 
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as a “master string”. The length of it in bits, l(cx0), equals by 
definition 0א: l(cx0) = 0א where 0א is the Georg Cantor’s 
aleph-nought. If to divide the cx0 in the ith randomly chosen 
place into two parts then its finite and infinite fractions 
could respectively be thought of as an i-bits-in-length simple 
meaningful word xj

i naming the ijth thing of the world and 
the context cxi in which this word appears. Taken separately, 
xj

i is meaningless. Resulting string cx0 = cxixj
i may be treated 

as the jth value of the string function/form C(xi) = cxix
i 

where string variable xi is a string template of i empty cells 
needed to produce the strings xj

i by filling this cell template 
in different i-length arrangements of +1s and −1s (cxix

i is a 
concatenation of infinite binary string cxi and cell template 
xi). At a given value of i, with the help of the C(xi), 2i of 
different strings cxixj

i can be generated with the same context 
cxi and different affixes xj

i. An affix xj
i may simultaneously 

be treated as the ijth i-bits-in-length binary string, message, 
computer code/algorithm, vector or point in the space Sxi 
(xj

i Sxi; j = 1, 2, … 2i), element of the set Sxi of the 
cardinality |Sxi| = 2i, BSDT PL word or name (indices i and j 
point to a particular thing of the world, see Section V B3). 
Depending on the current context, these terms will further 
be used interchangeably. 



By changing the values of i from zero to infinity, the 
function C(xi) allows to generate (construct) any finite 
binary string xj

i of any length i = l(xj
i) given its infinitely 

long context cxi. All resulting strings cxixj
i constitute together 

an ultimate or proper class Scx0 – the set that is not a 
member of any other set [39], cxixj

iScx0. The term “proper 
class” may intuitively be interpreted “as an accumulation of 
objects which must always remain in a state of 
development” [40, p. 325]. The items of the Scx0, cxixj

i, are 
uniquely specified by their i-bits-in-length affixes (right-
most end-fractions) xj

i. The cxi is common infinite context 
for all the xj

i of the length i that have different arrangements 
of their ±1 components; i = 0, 1, 2, … and j = 1, 2, …, 2i. 
The principal property of elements of an Scx0 is that, in the 
sense of Cantor, they are all of the same infinite length 0א 
(are countable) but, in spite of that, they and their infinite 
fractions are explicitly comparable and may be a number of 
bits longer or shorter with respect to each other. Of the 
vantage of standard mathematics, the latter conclusion is 
fundamentally impossible though it is the norm for the 
BSDT PL due to the common infinite beginning of all its 
one-way infinite strings. For example, if meaningful simple 
words xj

i and xj
k obtained with the help of forms C(xi) and 

C(xk) given the same master string cx0Scx0 are of different 
lengths (e.g., k > i) then l(cx0) = l(cxixj

i) = l(cxkxj
k) = l(cxi) = 

l(cxk) = 0א but l(cxixj
i) − l(cxi) = i, l(cxkxj

k) − l(cxk) = k, l(cxixj
i) 

− l(cxkxj
k) = 0, and l(cxi) − l(cxk) = k − i > 0 (for cxixj

i and 
cxkxj

k, their the largest common infinite beginning is cxk; see 
Figure 3).  

Note, infinite words [41] of automata theory have no 
common infinite beginnings and remain within the 
framework of traditional mathematics 

2) Meaningful composite words/sentences and their 
focal and fringe constituents: If string variable xi consists of 
variables up and vq then xi = upvq with i = p + q; upvq is a 
concatenation of cell templates up and vq. The values of 

variables xi, up, and vq are respectively the strings xj
i, ur

p, and 
vs

q that are the members of sets Sxi, Sup, and Svq whose 
cardinalities are respectively |Sxi| = 2i, |Sup| = 2p, and |Svq| = 
2q; Sup Sxi and Svq Sxi. The values of composite variable 
xi = upvq are the composite words xj

i = ur
pvs

q, the order of the 
composite word’s constituents is essential for them (see an 
example in Figure 4). Composite variables consisting of any 
number of their constituents may similar be constructed. 
Composite space Sxi may also be interpreted as either the Sup 
whose vectors are colored in 2q colors or the Svq whose 
vectors are colored in 2p colors. If so, then p and q are the 
measures of discrete “colored” non-localities of vectors in 
spaces Svq and Sup, respectively [17], [27]. Similar colored 
(blue-and-red) binary spaces (three-dimensional “colored 
Boolean cubes”) have earlier been used for representing the 
Boolean functions of one-dimensional cell automata, e.g., 
[42, ch. 6]. The rainbow of colors in finite-dimensional 
binary spaces discussed here is a direct generalization of 
two-color spaces of any dimensionality we previously 
introduced [27] to describe the coding of signals in nerve 
tissues of animals/humans. 
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Figure 3. Meaningful simple words xj

i and xj
k (red line segments), their 

infinite on a semi-axis contexts cxi and cxk (blue line segments), and their 
meanings cxixj

i and cxkxj
k (red and blue line segments taken together). The 

lengths of red line segment in bits, i = l(xj
i) and k = l(xj

k), are ensemble 
complexities of xj

i and xj
k (k > i), the lengths of blue line segments, 0א = 

l(cxi) = l(cxk), are their context complexities (l(cxi) – l(cxk) = k – i > 0); the 
lengths of red and blue line segments taken together, 0א = l(cxixj

i) = l(cxkxj
k), 

are their meaning complexities (l(cxixj
i) – l(cxkxj

k) = 0, Section V C). 
Colored line segments denote the strings themselves, arrows designate their 
lengths. Dashed ending of lines on the left designate their infinity “in the 
past”. 

 
Isolated composite words are meaningless. Like simple 

words, they take their meanings from their infinite contexts 
and from themselves. For this reason, definite meanings 
have either whole composite words or their right-most 
fractions only. The right-most fraction of a composite 
meaningful word occupies an animal’s dynamically created 
“focus of attention” and is called the “focal” word. The 
composite word’s non-focal component is the focal word’s 
“fringe” (by analogy with fringes of memory and 
consciousness [31], [32]) or the focal word’s short-range or 
immediate or local context. If internal structure of a 
composite word is ignored then it is interpreted as a focal 
word that has zero-length fringe.  

Meaningful composite words xj
i = ur

pvs
q are thought of 

as BSDT PL meaningful sentences. The focal word vs
q 

corresponds to a sentence’s feature/attribute that is currently 
in the focus of an animal’s attention; its fringe ur

p is the 
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fringe of the animal’s memory or consciousness. A 
composite word’s “holophrasical” presentation (without 
noticing its internal structure), e.g., xj

i corresponds to the 
perception/understanding of a sentence as a whole whereas 
its “analytical” presentation as, e.g.,  a set of possible focal 
words vs

q with 1 ≤ q ≤ i gives the sentence’s meaning as a 
series of meanings of its simple focal words. Composite 
word’s holophrasical presentation describes the perception 
of a thing as a whole (diffuse focus of attention) whereas its 
analytical presentation describes its perception as a series of 
its attributes (acute focus of attention). Any paraphrase of 
BSDT PL sentences (any other choice of their constituents) 
cannot change their whole meanings and in that sense the 
BSDT PL lacks “compositional semantics” [43]. Owing to 
our infinity hypothesis (Figure 1) and its phenomenology 
(Figure 2), meaningful BSDT PL sentences (meaningful 
composite words) are simultaneously real-brain devices 
processing these sentences. For this reason, the number of a 
composite word’s constituents may be treated as an animal’s 
logical or reasoning deepness. Since logical or reasoning 
deepness measured in humans is 3 to 5 [44], the biologically 
most plausible number of components constituting BSDT 
PL composite words is expected to be of the same value, 3 
to 5. 
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Figure 4.  Meaningful composite word/sentence xj

i = ur
pvs

q; vs
q is a focal 

word of the sentence xj
i, ur

p is the focal word’s fringe. Designations as in 
Figure 3. 
 

As composite words are treated as BSDT PL sentences, 
the set of rules for the construction of meaningful composite 
words from a set of its possible constituents produces the 
BSDT PL syntax. Since any operations on simple and 
composite meaningful words should always be performed 
given their meanings (taking into account their common 
infinite beginnings), BSDT PL semantics (interpretations of 
words) is primary with respect to its syntax (rules for the 
construction of words) though they are of course closely 
related. If internal structure of meaningful composite 
words/sentences is ignored and they are perceived as a 
whole then communication with their help does not appeal 
to BSDT PL syntax and, consequently, it is performed 
without syntax, which is typical for animals and human 
infants [34]. 

3) Naming the things by meaningful words: All the 
meaningful words xj

i constitute the BSDT PL vocabulary – a 
set of words that name, given their infinite context, all the 
things of the world, known as well as unknown but only 
conceivable. The number of things of the world is supposed 

to be infinite but countable, like the number of different 
meaningful strings cxixj

i related to a given proper class 
(Section VI A). BSDT PL vocabulary is always limited 
though, by request, may arbitrary be enlarged to the extent 
constrained mainly by particular animal’s morphology only 
(new meaningful names may always be constructed and 
added to the vocabulary). Meanings of BSDT PL words are 
the ones that animals keep actually in their minds because, 
for an animal’s survival, it is needed, its nervous system 
does not lie to itself. That is the reason why the BSDT PL 
should be successful as a truly primary language.  

BSDT PL word xj
i (i-bits-in-length sequence of +1s and 

–1s) is the jth pattern of spikes in the ith brain area equipped 
by the ijth BSDT ASM devoted to recognize the xj

i, the 
name of the ijth thing of the world. This area may contain 
up to 2i of such ASMs (cf. Figure 8). The reservation 
concerning brain areas (perceptual submodalities) is needed 
to connect the xj

i to its context cxi that specifies together with 
the xj

i itself particular real-brain physical device recognizing 
the xj

i and giving a meaning to it. Hence, BSDT PL 
meaningful words (patterns of +1s and –1s) are 
simultaneously the patterns of nerve impulses (spikes) in 
specific brain areas but certainly not the words of any of 
natural languages. With respect to our primary language 
natural languages are the secondary ones [26]. Invoking the 
notions of neuroscience (e.g., spikes or brain areas) for 
underpinning the theory’s formal mathematical issues seems 
rather strange but does not reduce the theory’s rigor. A 
reference to neuroscience is inevitably needed to give an 
explicit specification of one of the theory’s principal 
paradigm shifts [36] shown by arrows in Figure 2, namely 
the shift from the domain of mathematical symbolism (box 
4) to the domain of physically constructible brain devices 
(box 1) devoted to the recognition and processing of 
symbolically presented messages originated from things of 
the world (cf. Section X B and D).  

C. Meaning Complexity and Levels of Meaning 
Uncertainty of Meaningful Words 

The first thing that is needed to operate with meaningful 
words is a way of comparing them. Available methods do 
not hold in the case of concurrently infinite words. 

1) The quest for a new infinity measure: All BSDT PL 
meaningful strings are one-way infinite, have an infinite 
length 0א, and share their infinite beginning the length of 
which is again 0א. Since their beginnings (distributed but 
precisely arranged and fixed “points of origin”) are always 
the same (completely coincide), their end-points may take 
different locations and respective one-way infinite strings 
may in general be a number of bits longer or shorter with 
respect to each other. Figure 3 shows meaningful words 
whose complete string representations have the same end-
points but whose string contexts have different end-points. 
Figure 5 illustrates another case: meaningful words whose 
complete string representations have different end-points 
but whose string contexts have the same end-points. We see 
the strings of the same infinite length in the sense of Cantor 
(that are countable) may be of different infinite length in the 
sense of the BSDT PL and, consequently, it is needed to 
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introduce a measure of lengths of such infinite strings (i.e., a 
measure of infinity) that should quantify their total lengths 
and the distinctions in positions of their end-points. 
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Figure 5. Meaningful words yr

p and xj
i of different in q bits meaning 

complexities, l(cxixj
i) – l(cupyr

p) = q. Taken separately, strings 1 and 2 are of 
the same infinite length, l(cxixj

i) = l(cypyr
p) = 0א. xj

i and yr
p are focal fractions 

of strings 1 and 2 and, consequently, are meaningful. If xj
i is a composite 

word, xj
i = ur

pvs
q, then ur

p is a fringe of meaningful focal name vs
q (in line 1 

and 2, yr
p and ur

p may bit-by-bit coincide). Designations as in Figure 3.  
 
2) Meaning complexity: We refer to the lengths l(cxixj

i) 
of infinite-on-a-semi-axis binary strings cxixj

i with their 
common infinite beginning (the context, cxi) and their 
different explicitly specified affixes/meaningful simple 
words xj

i as meaning complexities of these words (see 
Figures 3 to 5). If such strings have the same end-points 
then their affixes are understood as meaningful simple 
words of the same meaning complexity (Figure 3). If the 
end-points of such strings do not coincide then meaning 
complexities of respective meaningful words do not 
coincide too and the largest meaning complexity has the 
word whose meaningful string description has the end-point 
that is located to the right of end-points of other meaningful 
strings (in Figure 5, cxixj

i has larger meaning complexity 
than the cypyr

p because the difference l(cxixj
i) – l(cypyr

p) 
equals q > 0). The length l(cxi) of one-way infinite context 
string cxi we call the context complexity of meaningful word 
xj

i. For different meaningful simple words, their context 
complexities may be different (Figure 3) as well as the same 
(Figure 5). The length of the word xj

i (it equals i bits) we 
call ensemble or statistical or Boltzmann or Shannon 
complexity of this word. To explain the latter, let us note 
that according to Claude Shannon [45], information or 
entropy of a set of 2i of statistically independent binary 
messages xj

i (the values of string variable xi) is defined as 
H(xi) = −∑j log2(P(xj

i))/|Sxi| = −2ilog2(1/2i)/2i = i where P(xj
i) 

= 1/|Sxi| and |Sxi| = 2i are respectively the probability of 
occurring of any of the xj

i (they are here meaningless) and 
the total amount of different xj

i, j = 1, 2, …, |Sxi|.  
Hence, meaning complexity of a meaningful simple 

word xj
i equals the sum of its context complexity, l(cxi), and 

its ensemble complexity, l(xj
i) = i: l(cxixj

i) = l(cxi) + i where 
the first item gives the length of complete description of the 
common part of the story of designing the devices devoted 
to the recognition of different meaningful words xj

i and the 
second item gives the properties of any of the xj

i averaged 
over the set of them, Sxi. String description cxixj

i of the story 
of designing the device devoted to recognize the xj

i is 

actually the shortest evolutionary algorithm/instruction for 
such design and, consequently, the length of this 
algorithm/story is its Kolmogorov or algorithmic 
complexity, e.g., [46]. Of this follows, the notion of meaning 
complexity embraces the notions of Kolmogorov 
complexity/information and Shannon complexity/ 
information/entropy. Meaning complexity specifies the 
algorithm of designing a recognition device and reflects the 
complexity of this device dedicated to processing a 
particular meaningful word (an animal’s respective 
internal/psychological state) and not the complexity of the 
thing named by this word.   

3) Levels of meaning uncertainty: Let us now consider 
the case of meaningful composite words, e.g., cxixj

i with xj
i = 

ur
pvs

q. If to dynamically fix p left-most components of an xj
i 

as a particular ur
p then cxixj

i = cxi(ur
pvs

q) = (cupur
p)vs

q = cvqvs
q 

where cxi = cup, cvq = cupur
p, xj

iSxi, ur
pSup, and vs

qSvq 
(see line 1 in Figure 5). Infinite strings cupur

p Scu0 and 
cvqvs

qScv0 are the members of ultimate classes Scu0 and Scv0 
that are different because they are generated by master 
strings cu0 and cv0 = cx0 that share their beginning but differ 
in length in q bits. Owing to our infinity hypothesis the 
lengths of strings cupur

p and cxixj
i = cvqvs

q are comparable and 
the former is l(cxixj

i) − l(cupur
p) = i − p = q > 0 bits shorter 

(has smaller meaning complexity) than the latter (note, 
proper classes Scv0 and Scx0 coincide and, consequently, 
l(cxixj

i) = l(cvqvs
q)). Since they both have infinite contexts, 

infinite strings cxixj
i and cupur

p are meaningful (in Figure 5, 
cxi = cup). But xj

i (a simple focal word) and vs
q (a focal 

fraction of xj
i = ur

pvs
q) have the definite meanings while ur

p 
(a fringe of the vs

q in xj
i = ur

pvs
q) a conditional meaning (see 

also Section IX). The latter may be compared with definite 
meanings of meaningful focal words with 2q-state 
uncertainty defined by colored 2q-non-locality of fringe 
words ur

p. We refer to words whose meanings may only 
conditionally be defined as words of certain levels of 
meaning uncertainty. For this reason, the level of words of 
definite meanings is postulated to be zero (e.g., xj

i, yr
p, and 

vs
q in Figure 5) while the level of uncertainty of words 

having conditional meanings (e.g., ur
p in Figure 5) is a 

positive integer q = i – p > 0. The level of meaning 
uncertainty specifies the fringe’s position in the body of its 
composite word (q bits to the left of the end-point of the 
whole meaningful string) and simultaneously, the degree, 
2q, of its colored non-locality. If there are words of definite 
meanings of different meaning complexity, e.g., xj

i and yr
p in 

Figure 5 then the one that has larger meaning complexity, 
xj

i, may have a fringe, ur
p, that coincides bit-by-bit with the 

word of definite meaning of smaller meaning complexity, 
yr

p. In spite of that the meanings of yr
p and ur

p are essentially 
different. Attempts of comparing definite meanings of 
words of different meaning complexities (e.g., yr

p and vs
q or 

xj
i) also lead to meaning uncertainties we quantify by the 

level of uncertainty of the ur
p coinciding bit-by-bit with the 

yr
p, i.e., the q for the example in Figure 5 (see Section IX).  

4) Relative measurements of infinity using meaning 
complexity and levels of meaning uncertainty: Meaning 
complexity and levels of meaning uncertainty of BSDT PL 
meaningful words are the parameters needed to ensure a 
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relative comparison of lengths of one-way infinite strings 
sharing their infinite beginning and, as a result, the 
comparison of word meanings, definite as well as 
conditional. Traditional (in the sense of Cantor) comparison 
of lengths of such strings by counting the total amount of 
their bits has no sense here because resulting lengths are 
always the same and equal to 0א bits.  Consequently, 
meaning complexity and levels of meaning uncertainty (as 
parameters specifying the infinity) exist in the framework of 
the BSDT PL only and have their roots in the hypothesis of 
concurrent infinity and the technique of proper classes. 
Meaning complexity embraces, given the context cxi, 
Shannon-type ensemble complexity (the length of a word xj

i 
in bits) specifying the word’s ensemble properties (averaged 
over the ensemble of 2i of xj

i) and Kolmogorov-type 
algorithmic complexity (the length in bits of complete 
irreducible infinite evolutionary algorithm/instruction cxixj

i 
for designing the ASM that selects the meaningful xj

i) 
specifying the sameness or individual properties of the 
device selecting the xj

i and, through it only, the sameness or 
individual properties of the thing named by the xj

i.  
In this article, our meaning complexity is not compared 

with numerous other complexity definitions (the notion of 
the level of meaning uncertainty is new at all). We note only 
that most of them, to take into account the current actual 
context, attempt to estimate it, in one or another way, in a 
finite manner. For example, using a finite estimation of what 
is called an “effective complexity” (that is a loose 
counterpart to or a finite estimation of our context 
complexity), Murray Gell-Mann and Seth Lloyd [47] 
combine Kolmogorov complexity/information and Shannon 
complexity/information into a finite “total information.” 
Hence, the meaning complexity’s crucial distinction is the 
genuine explicit infinity of its descriptions of meaningful 
words/sentences – the faculty that is fundamentally 
impossible within the framework of standard ZFC or ZFC-
like mathematics.  

D. Categories and Subcategories (Ontologies, 
Hierarchies) of Meaningful Words, Semantic Rule of 
Identity, Randomness and Irreducibility of Synonyms  

Meaningful words could be organized in structures that 
are themselves meaningful and have rich properties. 

1) Categories and subcategories: The values cxixj
i of the 

form C(xi) = cxix
i define a category (notion, concept) of 2i of 

meaningful words xj
i that are here called synonyms. 

Meanings of these synonyms are given by the strings cxixj
i, 

xj
i Sxi and |Sxi| = 2i. Considering the xi as a composite 

variable, xi = upvq, allows (given the context cxi) a sub-
categorization of items of the category C(xi) = C(upvq). If to 
fix the context cxi = cup and a value of up, e.g., ur

p (ur
p



Sup 
and |Sup| = 2p) then we obtain the category’s the prth 
subcategory Cpr(v

q) = (cupur
p)vq = cvqv

q of synonyms vs
q of 

definite meanings (cupur
p)vs

q = cvqvs
q where vs

qSvq and |Svq| 
= 2q. If to fix the context cxi = cup only then we obtain the 
category’s the qth subcategory Cq(u

p) of 2p of synonyms ur
p 

of conditional meanings of q-level meaning uncertainty 
(strings ur

p occupy fringe positions in composite words xj
i = 

ur
pvs

q, q = i – p). The number of subcategories Cpr(v
q) whose 

synonyms have definite meanings equals the number of 
synonyms ur

p of the subcategory Cq(u
p) whose items have 

conditional meanings, i.e., 2p; for the considered case of two-
component composite words, the number of sub-categories 
whose synonyms have conditional meanings equals 1. If p = 
0, the category C(xi) = C(upvq) may be thought of as its own 
subcategory whose focal words vs

q = xj
i (q = i) have common 

zero-length fringe u0
0, C(xi) = C(upvq) = C00(v

q); meanings of 
synonyms of the C00(v

q) are given by the strings cxixj
i = 

cu0u0
0vs

q = cvqvs
q where cxi = cvq = cu0u0

0. For the case i = 3, 
Figure 6 demonstrates all possible sub-categorizations of the 
category C(xi) = C(upvq): line 1 (p = 0, q = 3) and its fan of 
segments display 2p = 1 of subcategories C00(v

3) of 2q = 8 of 
items (cu0u0

0)vs
3 = cx3xj

3 of definite meanings; line 2 (p = 1, q 
= 2) and its fan of segments show 2p = 2 of subcategories 
C1r(v

2) of 2q = 4 of items (cu1u0
1)vs

2 of definite meanings and 
the only subcategory C2(u

1) of 2p = 2 of synonyms cu1ur
1 of 

conditional meanings of 2-level meaning uncertainty; line 3 
(p = 2, q = 1) and its fan of segments depict 2p = 4 of 
subcategories C2r(v

1) of 2q = 2 of items (cu2u0
2)vs

1 of definite 
meanings and the only subcategory C1(u

2) of 2p = 4 of 
synonyms cu2ur

2 of conditional meanings of 1-level meaning 
uncertainty. For the category C(xi) = C00(v

i) and for all its 
subcategories Cq(u

p) and Cpr(v
q), the number of their zero-

level words having definite meanings, regardless of the sort 
of their particular sub-categorization, always remains the 
same because 2i = 2p + q (in Figure 6, 2i = 8). 
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Figure 6. A category C(xi) = C(upvq) of meaningful words and 
subcategories of them Cq(u

p) and Cpr(v
q), the case of i = 3. The largest 

common context, fringe and focal words are respectively shown as blue, 
olive and red line segments; thick line segments coincide completely bit-
by-bit; definite meanings of circled words are directly incomparable, the 
distance between neighbor vertical dashed lines equals 1 bit. Other 
designations are as in Figure 3. See text for details.  
 

Since synonyms are always defined given an infinite 
context, they should also be compared given the context. For 
example, in Figure 6, for subcategories C00(v

3), C1r(v
2) and 

C2r(v
1), their items shown as thick lines are bit-by-bit 

equivalent and the meanings of focal words vs
3 = xj

3, vs
2, and 

vs
1 of these strings may directly be compared. Since these 

focal words have different fringes or immediate contexts u0
0, 
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ur
2, ur

1 and, consequently, different resulting total contexts 
cu0u0

0, cu1ur
1, cu2ur

2, they have different definite meanings 
and name the same thing’s features (parts, attributes, 
properties, traits) under condition that “visual area” is 
gradually shrinking and covers gradually smaller number of 
“visible” features (from 8 for vs

3 to 2 for vs
1). Words that are 

circled in Figure 6 have different contexts and as a result 
directly incomparable meanings. Such a comparing should 
conditionally be performed.  

2) Ontologies/conceptual spaces of meaningful words 
and hierarchies of brain devices for processing these words: 
We refer to particular arrangement of synonyms of definite 
and conditional meanings that are the members of all focal, 
Cpr(v

q), and fringe, Cq(u
p), subcategories of particular 

category, C(xi) = C(upvq), as particular BSDT PL partial or 
sub-ontology of meaningful words that name the features of 
particular multi-feature thing of the world (in Figure 6 lines 
1, 2, and 3 with their fans show three possible for this 
example sub-ontologies). Taken together sub-ontologies or 
conceptual subspaces devoted to meaningful naming the 
features of a particular multi-feature thing produce the 
whole ontology or conceptual space of words specifying 
this thing (all fans taken together in Figure 6). As has been 
mentioned earlier, in humans, the biologically plausible 
number of components of composite words is expected to be 
3 to 5 [44] and, consequently, biologically plausible BSDT 
PL ontology is expected to contain 3 to 5 levels of 
subcategories. Zero-level subcategories represent the 
synonyms of definite meanings, all other the ontology’s 
subcategories consist of items of conditional meanings with 
the level of meaning uncertainty q that has 3 to 5 grades of 
values. The case of more than two constituents of composite 
words as well the case of multiple multi-feature things will 
not be discussed. 

Each synonym related to a given sub-ontology or 
ontology is processed in an animal’s brain by a synonym-
specific network/ASM device devoted to processing this 
synonym only. We refer to the arrangement of such real-
brain recognition devices serving the sub-ontology or 
ontology as a real-brain network/ASM sub-hierarchy or the 
whole hierarchy (neural subspace or the whole neural space 
[28]) devoted to recognize and process the patterns of 
signals originated from different features of a multi-feature 
thing whose sub-ontology or ontology of names implements 
this network/ASM sub-hierarchy or hierarchy. Regardless of 
whether they are in focal or fringe positions, between the 
ontology’s separate words (patterns of +1s and –1s), the 
hierarchy’s separate recognition devices, and the separate 
features of a multi-feature thing of the world a one-to-one 
correspondence exists. It is assumed the hierarchy’s 
recognition devices are real-brain implementations of BSDT 
ASMs (cf. Figure 8). The BSDT even makes a distinction 
between the ASMs dedicated to the recognition of fringe 
and focal constituents of composite words; they are passive 
ASMs and active ASMs, respectively [30]. As usually, the 
ontology’s zero-level (focal) constituents have definite 
meanings (they are processed by active ASMs), all the other 
its constituents have conditional meanings and are processed 
by passive ASMs. This explains why we effortlessly 

recognize and name the whole multi-feature things (e.g., 
human faces) or their separate salient features (e.g., eyes or 
lips) and why we experience difficulties when recognizing 
and naming the relationships between these features or 
between these features and the whole thing. The same 
concerns the arguments for their allocation.  

Multi-feature-thing-specific ontologies and network/ 
ASM hierarchies may dynamically be constructed for 
temporal purposes in the process of an animal’s adaptation 
to permanently changing environment (e.g., a short-term 
memory for the traffic on a street cross) and may almost 
“for ever” be embedded (“hardwired”) into an animal’s 
anatomy in the process of animal evolution, development 
and, finally, learning from experience (e.g., long-term 
memory for faces). 

3) Semantic rule of identity: Given the context, the 
category/subcategory’s synonyms name different sub-
devices of the same multi-purpose real-brain recognition 
device and simultaneously respective features of the multi-
feature thing of the world generated the signals this device 
is devoted to process. For this reason, direct 
interchangeability of synonyms is only possible among the 
members of the same category/subcategory (Figure 6): the 
change of a synonym changes the choice of an animal’s 
focus of attention (Sections V B2 and VI B2) and changes 
the feature of current interest of the given multi-feature 
thing of the world – that is the BSDT PL’s semantic rule of 
identity. In the BSDT PL, there is in principle no possibility 
of ascribing different names to the same thing or to the same 
feature of this thing because by definition each meaningful 
word is unique and its meaning is actually keeping in the 
mind of behaving organism. If it is not the case a 
malfunctioning of the organism appears. 

4) Randomness and irreducibility of synonyms: To name 
a feature of a thing by one of 2i of the category’s synonyms 
xj

i from the set Sxi (to teach one of 2i of the hierarchy’s sub-
hierarchies to recognize the xj

i), particular xj
i (particular 

network/ASM sub-hierarchy devoted to store and recognize 
an i-bit message) is chosen in random because none of the 
category’s features to be named, none of binary patterns xj

i 
that may be used for their naming, and none of the network/ 
ASM sub-hierarchies that may be chosen and taught to 
recognize the xj

i have any priority over the others. Hence, 
for naming the features of a multi-feature thing, BSDT PL 
category’s synonyms can only be chosen from their given 
range of values in random. But, on the other hand, once 
random choice of a name for naming a thing has been done 
(particular network/ASM sub-hierarchy has been taught to 
store and recognize a name), this name (respective sub-
hierarchy) is then rigidly associated with one particular 
thing of the world or the thing’s attribute. Thanks to this 
BSDT PL’s peculiarity, it reconciles the notions of rigidity 
and contingency of names usually treated in semantics as 
different, e.g., [48].  

The category’s synonyms xj
i can also be understood as 

natural numbers ranged from zero to |Sxi| – 1 = 2i – 1 or 
from 2i – 1 to 2(2i – 1) and written in binary string notations 
(see (1) in Section VII A). Since the synonyms constituting 
a category/subcategory are randomly chosen natural 
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numbers, they cannot be reduced to simpler mathematical 
expressions and are consequently irreducible (cf. Figure 8). 

VI. BSDT PL REAL NUMBERS, CONTINUUM, AND 

CONTINUITY-DISCRETENESS UNITY AND UNCERTAINTY 

BSDT PL meaningful words could further be interpreted 
as traditional mathematical structures but written in a non-
traditional way. This entails essential consequences. 

A. Real Numbers and the Cantor’s Continuum Hypothesis 

BSDT PL meaningful words are traditional real numbers 
but have a common infinite beginning. 

1) Real numbers and their countable continuum: All the 
strings cxixj

i, generated by the same master string cx0, have a 
common infinite beginning of the same infinite length 0א 
and taken together they produce the proper class Scx0, 
cxixj

iScx0. The number of elements of the ith fraction of the 
Scx0 (it comprises all the cxixj

i with affixes xj
i that are not 

longer than i bits) is given by the sum |Scx0
i| = ∑2k = 2i + 1 – 1 

where |Scx0
i| is the cardinality of the fraction Scx0

i and k = 0, 
1, …, i. Consequently, between natural numbers in their 
usual order and all the members of the Scx0 a one-to-one 
correspondence can be established (see also (1) and Section 
VII A). That means the cardinality of the Scx0, |Scx0|, and the 
cardinality of the totality of natural numbers, 0א, are equal to 
each other, i.e.,  |Scx0| = 0א. On the other hand, if to posit i = 
and neglect the 1s in above expression for the |Scx0 0א

i| (they 
are in this case inessential) then it gives the cardinality of 
the Scx0 as 20א, i.e., |Scx0| = 20א where 20א is the size of the 
Cantor’s continuum. 

The members of the proper class Scx0 do not exhaust the 
totality of all the BSDT PL’s possible meaningful strings. 
Along with the master string cx0, any of its infinite fractions 
cxI that shares with the cx0 its infinite beginning but is 
shorter in I bits also generates its own proper class ScxI of the 
size 0א2 = 0א (I = 1, 2, 3 and so on without an upper limit). 
Each proper class ScxI with I > 0 has the same number of 
items as the Scx0 (ScxI with I = 0) but comprises meaningful 
words that have I-bits-smaller meaning complexity with 
respect to meaningful strings of the Scx0. Hence, the totality 
of BSDT PL meaningful strings consists of all the members 
of all proper classes ScxI that produce together BSDT PL 
continuum – the totality of all its real numbers (to remind, 
BSDT PL meaningful binary strings cxixj

i of the length of 0א 
bits can be understood as real numbers written as one-way 
infinite strings with common infinite beginnings and i-bits-
in-length explicitly specified right-most fractions). As the 
number of elements of each of the classes ScxI with I = 0, 1, 
2, … is 0א2 = 0א and the number of such classes is 0א, the size 
of the totality of BSDT PL real numbers is also 0א2 = 0א. In 
other words, BSDT PL continuum is countable.   

2) Refutation of Cantor’s continuum hypothesis: The 
countability of the BSDT PL continuum radically 
contradicts to Cantor’s continuum theory stated the 
existence of two kinds of infinities: the countable infinity of 
natural numbers (the cardinality of their totality is 0א) and 
the uncountable infinity of real numbers (the cardinality of 
their totality is 20א). With the help of its diagonal argument 
Cantor found that 0א2 > 0א. Additionally he conjectured his 

continuum hypothesis, CH, stating that there is no infinite 
set whose cardinality would be in between 0א and 20א. But 
thanks to Kurt Gödel [49] and Paul Cohen [50], [51], it is 
known the CH is independent on the ZF or ZFC and can be 
neither proved nor disproved assuming the ZF/ZFC holds. It 
means simultaneously such extensions of ZF/ZFC are 
possible for which the CH either holds or fails. BSDT PL 
extension of the ZF/ZFC by the hypothesis of concurrent 
infinity is in this respect special because it leads to the 
countable continuum. This property of the continuum 
contradicts to Cantor’s diagonal argument but is highly 
desirable of the view of such mathematicians as, e.g., 
Leopold Kronecker, Henri Poincaré, L. E. J. Brouwer or 
Hermann Weyl who were the opponents of Cantor’s 
continuity/infinity theory. Thus, BSDT PL rather refutes 
than solves the CH or the first David Hilbert’s problem [52].  

Why in the case of the BSDT PL Cantor’s diagonal 
argument does not work can be explained in the following 
way. We assume, as Cantor did, all the real numbers 
preexist and may be presented as infinite symbolic strings of 
the length 0א. Cantor also postulated that each symbol in 
these strings is known and at any moment its identity, if one 
desires, may immediately be disclosed at least in principle. 
But contrary to Cantor, for each real number, we assume 
that the amount of its string symbols whose identities are 
known and at any moment may immediately be disclosed is 
always finite, whereas the amount of symbols of unknown 
identity is infinite. The reason for this fundamental 
distinction is that, in string descriptions of BSDT PL real 
numbers, the amount of their explicitly known symbols is 
always finite because they are defined by an always finite 
process of their construction. 

B. Continuity-discreteness and other Related Unities and 
Uncertainties, Elusiveness of the Focus of Attention, the 
Symbolism’s Insufficiency 

Meaningful words in the form of real numbers sharing 
their infinite beginning provide a new view of possible 
symbolic representations of knowledge and computations.  

1) Continuity-discreteness, quality-quantity, and reality-
symbolism unities and uncertainties: The constructability of 
BSDT PL real numbers and the countability of the totality 
of them do not exert any influence on practical 
computations because they are in fact always performed 
with infinite real numbers presented by finite binary strings 
only. But the very fact of knowing the real numbers’ 
constructability is of great practical importance because it 
shows that though the amount of symbolic information 
about a thing is always infinite its finite part may only be 
known at any moment.  

A particular meaningful pattern of i signals originated 
from a thing of the world is processed by an animal’s 
recognition device (an implementation of the BSDT ASM 
[30]) deliberately designed for this aim. The complete 
description of this device and the meaning of the pattern of 
signals it recognizes are given by an infinite binary string 
cxixj

i whose finite i-bits-in-length fraction xj
i represents the 

pattern to be recognized. Consequently, the finite fraction of 
the cxixj

i, xj
i, does represent currently relevant symbolic, 
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explicitly formalized, quantitative, discrete-valued 
information about the thing. The remaining infinite fraction 
of the cxixj

i and infinite amount of symbolic information it 
contains, cxi, are presented in a non-symbolic, informal, 
qualitative, implicit, real-valued, continuous way as the 
mentioned real-world recognition device. Hence, complete 
representation of any finite symbolic meaningful message 
should always consist of this message itself and of the real-
world device devoted to recognizing it (cf. Section X B and 
D). The reason why we invoke such unity or 
complementation of symbols and things (in other cases the 
items of incommensurable domains) is our infinity 
hypothesis and our phenomenology equating infinite strings 
of symbols and real-world things (boxes 1 and 4, Figure 2).  

Due to inherent unity of BSDT PL domains of symbols 
and of real-world things/real-brain devices, any meaningful 
discrete-valued description of any thing should inevitably 
contain some traces of continuity caused by intrinsic 
connections between meaningful patterns of symbols (finite 
vectors xj

i) and real-brain things/devices (infinite strings 
cxixj

i) devoted to process them. Purely discrete-valued 
symbolic messages are always meaningless, as in the case of 
Shannon [45]. BSDT PL messages or natural numbers or 
finite symbolic strings are meaningful because they are 
always conditioned by real numbers or one-way infinite 
strings of symbols. Of this follows a continuity-discreteness 
or quality-quantity or reality-symbolism unity and 
uncertainty of BSDT PL meaningful finite-in-length 
symbolic messages (cf. Section X E). That is why the 
world’s BSDT PL discrete (quantitative, symbolic) and 
continuous (qualitative, real-world) representations must 
compete and coexist at anytime and anywhere. It is indeed 
the fact in real brains where cooperative and simultaneously 
competitive discrete-continuity effects are ubiquitous (it is 
sufficed to recall, e.g., close relationships between spike and 
wave neuron activities [53], [54]). Research concerning 
brain mechanisms and brain organization of uncertainty are 
reviewed, e.g., in [55]. An example is in Section X  E. 

2) Elusiveness of the focus of attention: In the domain of 
symbols, information exchange is performed by finite 
symbolic meaningless messages to be processed by Turing 
methods. In the domain of real-world devices, 
communication is performed by unspecified (e.g., chemical 
[21]) non-symbolic messages that can not be processed by 
Turing methods. Isolated symbolic messages take their 
meanings from their interactions with the domain of real-
world devices. Such interactions define for an animal/ 
human the sort and the amount of currently relevant 
meaningful symbolic information to be communicated. 
Simultaneously, they define the sort and amount of non-
symbolic but potentially symbolic contextual information 
that is not communicated together with symbols but is 
crucial for giving them meanings. The mechanism of 
selecting the relevant symbolic information (e.g., right-most 
line segments designated the whole words xj

i or their “focal” 
fractions vs

q in Figures 3 to 6) resides in the domain of 
things and defines for a perceiving agent/living organism 
the choice of its current focus of attention. Recent studies 
indeed demonstrate the importance of non-symbolic, e.g., 

wave-like interactions observed by EEG 
(electroencephalogram) or/and fMRI (functional magnetic 
resonance imaging) methods that are essentially continuous 
and implement large-scale network interactions supporting 
attention mechanisms in humans, e.g., [56], [57]. Moreover, 
a current empirical finding seems to directly indicate [58] 
that the purely symbolic approach, restricted to considering 
the spike brain activity only, is insufficient to explain the 
effects of attention and, consequently, “other processes must 
have a key role” [58], [59]. The reason is that an “SC 
inactivation caused major deficits in visual attention tasks” 
while simultaneous “attention-related effects in MT and 
MST remain intact,” despite the usual view of selective 
spike activity of neurons in MT and MST as the main 
correlate and distinctive feature of visual attention [58]. SC, 
MT, and MST are respectively the superior collicus, middle 
temporal, and medial superior temporal monkey brain areas 
involved in motion-detection tasks.  

3) Incompleteness of the BSDT PL formalism: BSDT PL 
discrete-valued formalism informs nothing of mechanisms 
of the arrangement of its composite words or sentences 
(Section V B2) and of selecting their fragments that are to 
be placed into the current focus of an animal’s attention 
(Figure 4). Thus, in spite of its perfection and efficacy 
(Sections X and XI), discrete part of BSDT PL formalism is 
incomplete and, consequently, insufficient to ensure its own 
running in full. Its incompleteness is a manifestation of the 
continuity-discreteness or symbolism-reality uncertainty 
predicted by the BSDT PL. It is this uncertainty that is the 
reason why complete symbolic theory of anything, including 
the BSDT PL itself, is fundamentally impossible. 

VII. BSDT PL ARITHMETIZATION BY NATURAL NUMBERS 

AND ITS ESSENTIAL RANDOMNESS 

Considering the right-most finite fraction of meaningful 
words as natural numbers provides unexpected solutions to 
some mathematical problems of great generality. 

A. Arithmetization by Natural Numbers of Mathematical 
Expressions of Different Meaning Complexity 

Every cxixj
i  Scx0 generated by master string cx0 is 

uniquely labeled by its affix xj
i or by its indices i and j. The 

xj
i encodes i and j as its own length and its own content 

understood as an arrangement of this vector’s positive and 
negative components. As it is usually done in computer 
sciences (see item two in (1)), strings xj

i may also be treated 
as natural numbers written in binary notations and ranged 
from zero to 2i – 1. In such a form, the xj

i with different i but 
same j correspond to same natural numbers. To ensure the 
unique bijection from strings to numbers, let us introduce 
decimal equivalents to strings xj

i, the numbers Gij
x0, as   

 
            





 

1

0

1

1

1 2)1)((2
i

k

ki
j

i

k

k kx0x
ijG      (1)          

 
here x i(k) is the kth component of the x i (it equals either +1 

without an upper limit.  

w j j

or –1); the second item of the sum (1) is, for this xj
i, the value 

of j given the value of i. At i ≥ 1, Gij
x0 = 1, 2, 3 and so on 
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The affixes xj
i of all the conceivable strings cxixj

iScx0 
may be treated as all the conceivable written in binary 
not

t the totality of such classes generated by 
dif

ntial Randomness of  their Use as Names 

nd 
i that, 

giv ue

ations meaningful (given the cxi) or meaningless (if the cxi 
is ignored) mathematical expressions/assertions not longer 
than i bits. It means, strings xj

i provide the labeling of 
themselves and of the mentioned expressions and 
consequently may be considered as Gödel vectors/strings 
that, because of (1), are one-to-one related to BSDT PL 
Gödel numbers Gij

x0. Gödel numbers (1) are natural numbers 
and enumerate themselves and all the conceivable 
mathematical meaningful expressions cxixj

i or meaningless 
expressions xj

i. Consequently, the numbers Gij
x0 provide for 

these expressions their complete arithmetization by natural 
numbers.  

The Gij
x0 enumerate all the members of a given proper 

class, Scx0. Bu
ferent master strings cxI is infinite (Section VI A) and for 

each of them, ScxI, its own system of Gödel numbers Gij
xI can 

by analogy be defined (I = 0, 1, 2, ... ; if I = 0, Gij
xI = Gij

x0). 
At different values of I, the totalities of strings xj

i and natural 
numbers Gij

xI are the same but they enumerate meaningful 
mathematical expressions of different meaning complexities 
(Section V C). The arithmetization just introduced is a non-
Gödelian one though already in 1946 Kurt Gödel seemed to 
have envisaged something similar when he said about the 
possibility “to take the ordinals themselves as primitive 
terms” [60]. 

B. Natural Numbers, Gödel Numbers, Omega Numbers 
and Esse

Every cxixj
iScx0 contains an infinite-on-a-semi-axis a

always unspecified initial part cxi and a finite fraction xj

en the val  of i, has random (incompressible and 
incomputable, Section V D4) arrangement of its binary 
components. This property of BSDT PL meaningful strings 
or real numbers (Section VI A) reflects their constructability 
(“random computable enumerability” [61]) and, given the 
value of i, the randomness of the xj

i (its “algorithmic 
randomness” [62]). The xj

i is to be processed by a special-
purpose self-delimiting computer existing, we suppose, as a 
BSDT ASM [30] and dealing with random binary computer 
algorithms not longer than i bits. This property of BSDT PL 
words reflects their inherent connections with the devices 
that process them in the best way, of course, if their previous 
learning was perfect [31]. The mentioned properties of 
strings cxixj

i demonstrate that they are in fact binary string 
representations of computably enumerable random real 
numbers that, according to [61], are simultaneously Omega-
like and Omega numbers. Gregory Chaitin’s Omega number 
Ω gives the halting probability of randomly chosen binary 
algorithms running on a computer given its hardware and 
software [62]. The affix of the cxixj

i, xj
i, is an i-length fraction 

of Ω or a “partial” Ω, Ωij
x0, providing the halting probability 

of random binary algorithms running on the ijth self-
delimiting in i bits computer. Omega-like numbers were 
introduced as a generalization of Ω but it later turned out, 
they and another generalization of Ω known as enumerable 
random real numbers are equivalent to Ω numbers [61].  

The ijth numerically written partial halting probability 
can be presented [62] as 

 
                 


k

ki
j kx

0

12/)1)((
ix

ij
0                        (2) 

whe e same probability written
not ions, x i(k) is the kth component of the x i (it equals 

ms, and partial Ω written in 
bin

of which 
“ev

e truth value T(cxixj ) of its 
rue” or, in other words, if strings 

c  

 
re xj

i is th  in binary string 
at j j

either +1 or –1), k is the length of a random binary algorithm 
running on the ijth computer (we suppose, BSDT ASM 
[30]), 1/2k is the probability that this algorithm halts on this 
computer (if it halts, (xj

i(k) + 1)/2 = 1 otherwise (xj
i(k) + 1)/2 

= 0). Halting probabilities Ωij
x0 correspond to cxixj

i generated 
by the master string cx0. Master strings cxI whose meaning 
complexities are I bits smaller than the meaning complexity 
of the cx0 generate proper classes ScxI and partial halting 
probabilities Ωij

xI with I = 0, 1, 2, … (if I = 0, ScxI = Scx0 and 
Ωij

xI = Ωij
x0; cf. Section VI A). At different values of I the 

totalities of strings xj
i and halting probabilities Ωij

xI are the 
same but concern randomly chosen meaningful algorithms of 
different meaning complexity.  

BSDT PL words xj
i are simultaneously natural numbers, 

Gödel numbers, random algorith
ary notations. That is, BSDT PL Gödel numbers Gij

xI are 
essentially random-valued. This “strange” property can be 
explained if one notices that given the i the values of their 
indices j are randomly chosen from the range of zero to 2i – 1 
or (see (1) and Section V C4) from 2i – 1 to 2(2i – 1) where 
2i – 1 = Gij

x0 at j = 0 and 2(2i – 1) = Gij
x0 at j = 2i – 1. In other 

words, from 2i of equal in rights ways of the enumeration of 
indices j, the second item in (1) gives only the one that was 
randomly chosen here for the reason of its analytical 
convenience only. As the size of the totality of different xj

i is 
equal to the size of the totality of natural numbers 0א (Section 
VI A), the totalities of BSDT PL Gödel numbers (1), Chaitin 
numbers (2), random binary algorithms and self-delimiting 
computers devoted to process them are also of the size 0א. As 
it was first demonstrated by Alan Turing [7], halting 
probabilities are incomputable. According to [62], they may 
be treated as true, unprovable assertions or irreducible 
mathematical facts (axioms) that in our case represent/name 
the things of the world or their particular features.  

The totality of meaningful strings cxixj
i may be interpreted 

“as an alphabet of human thought” with the help 
erything could be described and distinguished by means 

of the combination of the letters of this alphabet,” to use 
words of Gottfried Leibniz (quotations from [63, p. 56]). 

VIII. BSDT PL THRUTH AND UNDERSTANDING THE TRUTH 

Defining and confirming the truths of meaningful words 
is inevitably needed for their successful practical use.  

A. Convention on  Truth 
i iThe name xj  is true if th

meaning M(xj
i) = cxixj

i is “t
xi and xj

i are correctly joined to each other. If there is no 
such correct correspondence, the truth value T(cxixj

i) of 
meaningful name is “false”.  



506

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Completeness of Truths and Gödel’s Incompleteness 

Since the cardinality of the Scx0, |Scx0| = 0א, is infinite, the 
d, 

ere introduced as a 
correspondence between names (finite strings xj

i) and things 

me

number of BSDT PL truths is also potentially infinite an
for u a i any meaningful string, its tr th v lue T(cxixj ) certainly 
exists and equals either “true” or “false”. Each true 
meaningful name (infinite symbolic representation of a 
primary thought), e.g., cxixj

i names by definition the ijth real-
world thing given to an animal through its ijth psychological 
state (physical implementation of the primary thought) or, in 
other words, through the activity of physically implemented 
real-world BSDT ASM devoted to process  the xj

i, ASM(xj
i) 

[28], [30]. Thus, for meaningful words, the truth is the norm 
and the falsity is an anomaly caused, e.g., by an animal’s 
dysfunction or disease. In any case, there is no lie and no 
liar paradox – a source of Kurt Gödel’s incompleteness [6] 
which does not hold for BSDT PL meaningful [30], [32] 
names cxixj

i (Section VII). Axioms, theorems, and 
metamathematical expressions/assertions of a formal 
axiomatic system for which the Gödel’s incompleteness 
holds are in our terms an infinite fraction of infinite in 
number meaningless strings xj

i [17], [32]. These inferences 
are caused by the fact that BSDT PL name meanings are 
always the ones that animals/humans keep actually in their 
mind, like meanings of hypothesized by W. V. Quine 
“eternal” sentences [64]. It means, to survive, an animal 
does not lie to itself and it is the reason why the BSDT PL 
works so well as a primary language or a language of 
primary thoughts [28], [65], [66]. At the same time, a zero-
level name’s fringe words, due to their colored non-locality, 
have no definite but conditional meanings (Section IX and 
Figure 7). Fringe words are fuzzy/vague in meaning or “in 
limbo” in words of Quine [64], but their truths are not 
conditioned and always remain of certain values. The 
vagueness of meanings of fringe names is a BSDT PL 
manifestation, for the case of infinite sequences, of the 
famous Burali-Forti paradox (Section IX C) but it does not 
concern the truths.  

BSDT PL convention on truth essentially differs from 
Alfred Tarski’s convention T [67]. Tarski’s definition is in 
fact syntactical and holds for an axiomatically defined pair 
object-language/meta-language only, whereas BSDT PL 
definition is semantical and uses the real world for checking 
the truths. Truth values of BSDT PL names are unique and 
conclusive. Any hierarchy of these truths is neither possible 
nor required, contrary to Tarski’s syntactical approach 
implying that for any meta-language its meta-meta-language 
can in turn be conceived and so up. For this reason, for each 
of Tarski’s meta-languages its higher-level meta-meta-
language and respective higher-level truth (the truth of 
sentences of respective higher-level meta-language) could in 
general always be defined. Here, in words of Quine, “there 
is interlocking of class hierarchy with truth hierarchy” [64, 
p. 90], which may be traced back to early Bertrand Russell’s 
theory of types [68]. Hence, Tarski’s truths are relative 
while BSDT PL truths are absolute. 

C. Discovering, Understanding and Confirming the Truths 

The BSDT PL truths are h

of the world (infinite strings cxi or cxixj
i). Indeed, each true 

ianingful name cxixj Scx0 names by definition the ijth 
real-world thing given to an animal through its ijth 
psychological state or the activity in the ijth BSDT ASM, 
ASM(xj

i), designed, im lemented in a physical form, and 
learned beforehand to recognize/select exactly the ijth thing 
by its symbolic name xj

i [1], [17], [32]. As truth value 
T(cxixj

i) is never communicated together with the xj
i, it 

should always be discovered in the process of decoding or 
understanding the meaning of the received name xj

i and 
confirmed by checking the correspondence of this name to 
that reality or, more accurately, to an animal’s psychological 
state (an activity of respective recognition device) 
represented this reality. In living organisms, it is most 
probably done by physical/anatomical segregation and 
specification of communication channels (input/output 
sensory submodalities) or/and by the choice of different 
physical carriers for different types of symbolic signals to be 
communicated. By means of such segregation and 
specification, the required ijth neural subspace/ASM 
hierarchy (the ijth computer for particular mental 
computations, Section VII B) is eventually allocated. By the 
following convergence of relevant channel-specific 
symbolic information from different communication 
channels an integral or holistic and, consequently, most 
reliable estimation of the current state of the animal’s 
internal or/and external environment has to be achieved. 

It is supposed the hierarchies (ontologies) of meaningful 
names/strings but not their truth values are implemented in 
the brain by means of BSDT neural subspaces/ASM 
hier

p

lways the members of a proper 
class and this exerts essential influence on the possibility of 
com cases, 

xi j escribe respectively the 
static part or a “hardware” of the ASM(xj

i) already fixed in 
the course of evolution and its dynamic part or “software” 
designed in the course of the hardware’s adaptive learning 

archies for signal processing, memory, decision-making 
and consciousness [28], [31], [32]. The truth value of each 
meaningful word of such hierarchy is not a property of the 
organism’s device serving this word but a result of 
evaluating the state of this device. For this reason, of the 
third person perspective, it exists as a psychological state of 
an external observer who should intentionally define/ 
discover this value of truth (“true” or “false”) by comparing 
the result of running the device serving the word of interest 
and respective thing of the world. Of the first person 
perspective, each meaningful word’s truth value is postulated 
to be “true” because in terms of truths this fact reflects 
simply a distinctive feature of the definition of such words, 
namely that the word’s meaning is the one that an animal 
actually stores in its mind.   

IX. BSDT PL MEANING AMBIGUITY 

Meaningful words are a

paring their meanings. In particular, in many 
meanings are directly incomparable and, consequently, 
meaning ambiguities are inevitable. 

A. Definite Meanings of Simple Words 

It is assumed that, in a meaningful string cxixj
i, its context 

c  and its simple focal name x i d
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and development. The length of xj
i in bits, i, defines the 

num

: 
mposite one, xj  = ur vs , then strings 

cupu

xi j

r s

r

of x  is l(c x ) 
− l

ber of now essential (explicitly considered) features of 
the ijth thing named by the xj

i; the jth arrangement of ±1 
components of xj

i is the jth BSDT PL description of this ijth 
thing (e.g., the value +1 or –1 of a component of the xj

i may 
mean that the respective feature is included to, +1, or 
excluded from, –1, the consideration). The complexity of 
meaning of the name xj

i reflects the meaning complexity of 
the physically implemented real-world ASM(xj

i) and an 
organism of which the ASM(xj

i) is a part but not the 
complexity of the thing named by xj

i. 

B. Definite and Conditional Meanings of Constituents of 
Composite Words 

Different constituents of composite words are the 
members of different proper classes or of different meaning 
complexity. For this reason, relations between their 
meanings may be rather intricate. 

1) “Virtual” devices for processing the “virtual” things
If the string xj

i is a co i p q

r
p and (cupur

p)vs
q = cvqvs

q describe, given the context cxi = 
cup, an ASM(ur

p) and ASM(vs
q) that may for a time period 

dynamically be created from the ASM(xj
i) that in turn is the 

product of a similar process described by the string c x i. 
ASM(ur

p) and ASM(vs
q) are “virtual” ASMs (i.e., temporally 

designed for) selecting the names ur
p and vs

q of the prth and 
the qsth “virtual” things (i.e., of temporally highlighted/ 
allocated fractions of the ijth composite thing named by its 
ijth composite name xj

i). In other words, virtual ASMs 
highlight the prth and qsth “partial” meaningful fractions of 
the ijth description of the ijth thing (cf. Figure 6). Composite 
names essentially enrich the BSDT PL semantics but raise 
the problem of comparing the meanings of names selected by 
ASM(ur

p), ASM(vs
q), and ASM(xj

i). 
2) Comparing the meanings of whole composite words 

and their focal fractions: Zero-level names xj
i and vs

q (vs
q is 

a part of the xj
i = ur

pvs
q) name given the context the same 

thing in the same way but from different points of view 
defined by their contexts (static for xj

i, cxi, and in part 
dynamically created for vs

q, cvq = cupu
p; Figure 7(a)). The v q 

is selected under condition cxi = cup (for xj
i and vs

q their 
common context is cxi) by the ASM(vs

q) that is “virtual” 
with respect to the ASM(xj

i). Thus, the ASM(xj
i) can 

temporally serve as the ASM(vs
q) but in any case the same 

thing is under the consideration and the meaning of xj
i, 

M(xj
i) = cxixj

i, and the meaning of vs
q, M(vs

q) = (cupur
p)vs

q = 
cvqvs

q, may unambiguously be related. As thick line 
segments in Figure 6 demonstrate, a cvqvs

q is simply another 
realization of the cxixj

i. 
3) Comparing the meanings of whole composite words 

and their fringe fractions: If ur
p is a q-level fringe of zero-

level focal string vs
q and they are the fractions of the xj

i = 
ur

pvs
q  (Figure 7(a)) then ur

p has no definite meaning 
(Section V B and C). But it could get a conditional meaning 
if one supposes that u p is conditioned by the color of a 
colored zero-level name ur

p(color) selected by a respective 
q-stages-back-in-evolution ASM. If it is, uncolored zero-
level names xj

i in Figure 7(a) are unambiguously related to 
colored zero-level names ur

p(color) in Figure 7(b). Vectors 

ur
p(color) and ur

p conditioned by one of the q colors color 
have conditional but certain meanings. But once colors are 
deleted (only uncolored strings are used in computations) 
the one-to-one correspondence between xj

i and ur
p(color) 

disappears and, instead of it, we obtain 2q-state uncertainty 
between the xj

i and ur
p and between the definite meaning of 

xj
i and conditional meaning of ur

p (Figure 7). 
4) Comparing the meanings of words naming 

evolutionary predecessors and successors: If, given the 
context cxi = cup, names xj

i and ur
p (or yr

p in Figure 5) are 
both of the level of zero, then their meanings are to be of 
different proper classes and should have different meaning 
complexities (to remind, meaning complexity i i

j xi j

(cupur
p) = i − p = q bits larger than that of ur

p; see Figures 
4 and 5, Figure 7(a) and (c)). This means they describe 
different things from the same point of view or the same 
thing at different stages of its evolution. The names xj

i 
(Figure 7(a)) and ur

p (Figure 7(c)) are respectively selected 
by present-stage-of-evolution ASM(xj

i) and q-stages-back-
in-evolution ASM(ur

p) and refer to animals of evolutionary 
different species. Meaningful string cupur

p and respective 
part of cxixj

i = (cupur
p)vs

q may coincide bit by bit but even in 
this case meanings of xj

i and ur
p may only conditionally be 

related to each other and 2q additional conditions (strings vs
q 

in Figure 7(a)) are required to uniquely establish their 
correspondence. 

5) Graphical illustration of meaning ambiguities:  
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Figure 7. Comparing given the context different-level BSDT PL meaningful 
names of different proper classes: (a) zero-level names, (b) colored zero-
level names corresponding to names in (a), (c) zero-level names that are 
predecessors to names in (a) and counterparts to names in (b). 

 
In Figure 7, panel (a) demonstrates zero-level names xj

i

nd v q of meaningful strings c x i and (c u p)v q (x i = u pv q; i

j

Gödel 
num

 
 a s xi j xi r s j r s

= 5, p = 3, and q = i – p = 2); the rectangle has the height i 
bits and the width |Sxi| = 2i = 32 bits, the ijth bar of the height 
i in the jth horizontal position designates the name x i that in 
a numerical form (see (1) and (2)) corresponds to 

ber Gij
x0 and partial Chaitin number Ωij

x0; bars x4
5 = 

u6
3v1

2, x12
5 = u6

3v2
2, x20

5 = u6
3v3

2 and x28
5 = u6

3v4
2 that 

correspond to four colored highlighted bars in (b) are also 
highlighted (u6

3 is q-level fringe of zero-level names vs
q that 

is a focal fraction of the xj
i); substrings v1

2, v2
2, v3

2, and v4
2 

may encode the colors of colored strings ur
p(color) in (b). 

Panel (b) shows conditioned zero-level names ur
p(color) that 

in a numerical form  (see (1) and (2)) correspond to colored 
Gödel numbers Gpr

u0(color) and colored partial Chaitin 
numbers Ωpr

u0(color); under condition that the word color is 
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a parameter, names ur
p(color) are uniquely related to names 

xj
i in (a) and selected by conditional q-stages-back-in-

evolution ASMs; colored words ur
p(color) conditionally 

name the things unconditionally named by the xj
i; equal-in-

size rectangles colored in |Svq| = 2q = 4 colors consist of |Sup| 
= 2p = 8 bars of the height p; uncolored bars in (a) and 
respective colored bars in (b) (e.g., u6

3(green) and x4
5) denote 

different descriptions of the same thing. Panel (c) displays 
uncolored zero-level or focal names ur

p (yr
p in Figure 5) of 

meaningful strings cupur
p that name evolutionary 

predecessors of things named by the words xj
i; the prth bar of 

the height p in the rth horizontal position (it is shaded) 
designates ur

p for the case ur
p = u6

3 (in a numerical form it 
corresponds to Gödel number G3,6

u0 and Chaitin number 
Ω3,6

u0).  
In (a), (b), and (c), strings that are bit-by-bit equivalent to 

the u6
3 are shaded in the same way. Contexts are shown as 

thick arrows and equal to each other bit by bit, cxi = cup. 
Uncolored and colored names name real-world unconditional 
and real-world conditional (“virtual”) things, respectively. 
Between i p names in (a) and in (b) a bijection x ↔ u (color) 
exi

mate/proper classes caused in turn by BSDT PL 
is of 
 were 

., [39]. Of this follows the 
fam

 by the Furali-Forti paradox but in terms 
of 

ly long context or 

is the 
n 
e 

e 
BSDT PL simple 

j  r

sts that may be for example x28
5 ↔ u6

3(magenta) or x4
5 ↔ 

u6
3(green). A bijection also exists from names ur

p in (c) to 
given-color names ur

p(color) in (b). For example, it may be 
ur

p ↔ ur
p(green). But if such a bijection was already 

established then other conceivable bijections, e.g.,  ur
p ↔ 

ur
p(magenta) become impossible. Once colors are deleted, 

these bijections (they are indicated as curved bidirectional 
arrows) disappear producing, instead of 2q-state (4-state in 
(b)) discrete colored non-locality of vectors ur

p, 2q-state (4-
state in (b)) uncertainty (degeneracy) of meaning relations 
between names in (a) and (b), in (b) and (c), and in (a) and 
(c).  

 
C. Relationships between Meaning Ambiguities and 

Burali-Forti Paradox  

The origin of conditional relationships between meanings 
of names of different meaning complexities is the properties 
of ltiu

ninfi ity hypothesis or vice versa, as the hypothes
concurrent infinity was introduced when proper classes
already known in literature, e.g

ous Burali-Forti paradox according to which “there can 
be two transfinite (ordinal) numbers, a and b, such that a 
neither equal to, greater than, nor smaller than b” [8, p. 157] 
means in our terms that meanings of BSDT PL names whose 
meaning complexities differ in q bits can only be compared 
with 2q-state uncertainty. In Figure 7 infinite strings cxixj

i and 
cupur

p are like Burali-Forti’s transfinite ordinals a and b 
mentioned above. 

The Burali-Forti paradox reflects the meaning-ambiguity 
properties of BSDT PL infinite symbolic statements/strings 
of different meaning complexities but in terms of transfinite 
ordinals. On the other hand, BSDT PL provides specific 
quantification of the ambiguities stated for different 
transfinite ordinals

BSDT PL strings of different meaning complexities. The 
reason is in end our infinity hypothesis.  

X. NUMERICAL AND EMPIRICAL BSDT PL VALIDATION 

Now it is time to consider the BSDT PL validation.  

A. Disappearing the Bounds between Mathematics and 
Reality 

On the one hand, given the infinite
“boundary conditions”, the BSDT PL performs traditional 
mathematical computations with finite binary messages and 

certainly a kind of mathematics that we call 
mathematics of meaningful computations (Section IV). O
the other hand, the BSDT PL is a kind of natural scienc
because infinite-in-length boundary conditions used in its 
computations are implemented as real-world physical 
devices and, consequently, the computations themselves 
contain inevitably indispensable, inseparable from the 
symbolism elements of reality. Resulting symbolism-reality 
unity and uncertainty/dichotomy (cf. Section VI B) is not a 
failure or misunderstanding, it is the inherent property and 
distinctive feature of the BSDT PL caused directly by the 
hypothesis of concurrent infinity and its phenomenology 
formalization. Owing to this feature, within the BSDT PL 
framework, the distinctions between mathematics and 
reality, between mathematics and natural sciences become 
rather vague and sometimes disappear. That is also the 
reason why the BSDT PL can not be validated by the 
traditional in pure mathematics method of formal proofs, 
i.e., by deriving theorems from axioms. BSDT PL 
computations are conditioned by infinite-in-length context 
and for this reason contain some elements of mind/ 
psychology (i.e., meanings of words) whereas standard 
mathematics ignores meanings by definition. That is why 
the only way to confirm the validity of the BSDT PL 
remains to compare its predictions with real-world 
meaningful computations that are abounds in living 
organisms. In sum, to validate the BSDT PL, it is needed to 
appeal to neuroscience, cognitive sciences, and psychology 
and compare their results with the BSDT PL predictions.  

B. Solving the Communication Paradox 

The first principal point needed to be understood is how 
in practice to communicate the meaningful words if they are 
by definition fundamentally infinite and how animals/ 
humans solve this problem, routinely and immediately.  

1) Serving the subconscious, basic behaviors and th
simplest sociality: In Section V we saw 
words are those BSDT PL sentences that are perceived 
“holophrasically” and do have definite meanings. Internal 
structure of such sentences (the manifold of their possible 
focal and fringe constituents) is ignored and, consequently, 
they are presented without BSDT PL syntax. This fact and 
the fact that meanings of BSDT PL names are the ones that 
animals/humans keep actually in mind [1], [17], [30], [32] 
make the BSDT PL an appropriate tool for the description 
of communication without syntax or without any language 
at all – the style of communication that is typical for animals 
and human infants, e.g., [34] and references therein.  

Meanings of BSDT PL words are simultaneously 
animal/human primary thoughts [32], i.e., the simplest or 
primitive or elementary patterns of involuntary, automatic 
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or sub- or unconscious activity of their brains. This activity 
is in fact the activity in a particular BSDT neural 
subspace/ASM subhierarchy (Sections V D and X E) that 
may most naturally be observed by an external observer as 
inv

ciality that is typical in 
ani

 cope with infinite 
sym

pecial-purpose Turing 
com

– 

sele

and, 
in 

mory. This paradigm is 
sire of designers and 

eng

ry trace 
sho

ection X B). These mirror ASMs implement 
ansmitter 

eeded to perform the 
pre

oluntary, automatic or unconscious behaviors of an 
animal that is under examination. We refer to these 
behaviors or body movements as basic or inherent ones 
because they truly reflect respective animal/human internal 
states. Among basic behaviors or invariant elements of a 
“paralanguage” [18] there are the ones (e.g., breathing or 
heart beating) that are truly innate and the ones (e.g., 
walking or directing the gaze) that originate from innate/ 
primitive behavioral reflexes, e.g., [69], [70], [71] but 
demand, after an animal’s birth, for their further tuning and 
maturation in the course of “prepared” animal leaning and 
development (cf. Section XI E). 

 As the BSDT PL is well suited to describe not only 
meanings and primary thoughts but also basic behaviors, it 
is also capable of describing the behavioristic part [72] of an 
animal’s cognition and based on basic animal behaviors 
communication without syntax or without any language at 
all. We hypothesize, this simplest type of communication 
suffices to support the simplest so

mals and human infants, e.g., [34].  
2) Communication paradox: Since complete symbolic 

descriptions of BSDT PL meaningful names, cxixj
i, are 

fundamentally infinite, during any finite time period none of 
them can ever be communicated in full even in principle 
while in fact many times a day everybody observes in others 
and experiences himself/herself numerous successful 
meaningful information exchanges. To

bolic messages for a finite time period, super-Turing 
devices with super-Turing computational capabilities are 
certainly required. Hence, this communication paradox [1], 
[17], [32] demonstrates that, in spite of the fact that real-
world super-Turing computers are unknown and many 
experts believe even impossible [38], an everyday, routine, 
ubiquitous use of super-Turing computations is a norm in 
human meaningful communication.  

3) Mirror transmitter and receiver devices for solving 
the communication paradox: In practice, communication 
paradox can be solved by appealing to BSDT infinity 
hypothesis (Section III and [1], [17], [32]) and the technique 
of BSDT ASMs [30]. On the one hand, these ASMs are 
devoted to process infinite-in-length meaningful messages 
but, on the other hand, they are s

puters running in the specific to each of them real-world 
environment. As in ASMs their programmatic and 
computational processes are in time completely separated, 
they do not waste their computational resources on serving 
themselves and, as any other special-purpose Turing 
computer, are faster than universal Turing computers [7].  

But, dividing in time the programming and program 
running is insufficient to overcome the communication 
paradox. To cope with it, let us additionally suppose that in a 
communication process the ASM-transmitter and the ASM-
receiver share in full their evolutionary history, i.e., they 
were designed, implemented in a physical form, and learned 
beforehand to perform the same meaningful function 

cting the same finite binary message xj
i given the same 

infinite context or the same boundary conditions cxi. If it is, 
and not in any other case, the meaning of xj

i, cxixj
i, is equally 

encoded, decoded, interpreted and understood by both 
parties and for both parties the value of its truth, T(cxixj

i), is 
the same. For this reason, and because the name’s meaning is 
simultaneously a psychological state an animal experiences 
producing as well as perceiving this name, in the process of 
meaningful symbolic information exchange, the transmitter 
and the receiver are to be physically, structurally, and 
functionally equivalent in full or to be the “mirror” replicas 
or “clones” of each other (cf. Section X D). The fact that any 
two animal/human individuals, even identical twins or 
clones, always have different life-long individual 
experiences and, consequently, are never completely 
equivalent, is compensated by the tolerance of ASMs to their 
partial internal distortions and external noise [30], [73].  

 Several important BSDT PL predictions that are 
amenable for their empirical examination come out.  

C. Coding by Synaptic Assemblies 

Where meanings are essential (e.g., in living organisms) 
BSDT network learning paradigm “one-memory-trace-per-
one-network” [28], [73] must be widespread in practice 

particular, any memory for meaningful records  must be 
built of the number of networks that coincides with the 
number of records to be stored in me
not consistent with the usual de

ineers to store in a network as many traces as possible 
but it is the mandatory BSDT PL requirement ensuring the 
meaningfulness of memory records (Section V B).  

A recent empirical neuroscience finding of coding by 
synaptic assemblies [74], [75] demonstrates this BSDT PL 
requirement is fulfilled in practice. In laboratory, mice were 
trained to perform new motor tasks. In behaving animals, 
changes in the number of synaptic contacts associated with 
learning new skills were measured. In complete accordance 
with the BSDT PL assumption that each new memo

uld be written down in an always new separate network 
or synaptic assembly, it turned out “that leaning new motor 
tasks (and acquiring new sensory experiences) is associated 
with the formation of new sets of persistent synaptic 
connections in motor (and sensory)” brain areas [76, p. 
859].   

D. Real-brain Mirror Neurons for Super-Turing 
Computations by Mirror ASMs 

To ensure correct understanding of the meanings of 
finite symbolic messages, the ASM-transmitter and ASM-
receiver that are the mirror replicas of each other are to be 
used (S
meaningful super-Turing computations: for the tr
and the receiver, they ensure the use of the same infinitely 
long “boundary conditions” cxi n

viously programmed Turing computations with finite-in-
length strings xj

i, e.g., as in [28], [65], [66]. Mirror ASMs 
physically divide the infinite meaningful message to be 
processed into infinite, cxi, and finite, xj

i, parts and take the 
former into account as common for both parties “hardware”, 
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designed and physically implemented beforehand in the 
course of animal evolution and development. Thanks to this 
“trick”, to correctly understand the meaning of the cxixj

i, it is 
enough to correctly transmit, receive, and decode the xj

i 
only. The origin and theoretical substantiation of this trick is 
the BSDT PL phenomenology formalization (Sections III 
and IV) that equates infinite symbolic strings (e.g., cxi or 
cxixj

i) with real-world physical things. 
Mirror ASMs also explain why meaningful 

communication without syntax is successful only between 
animals of the same or relative species: such animals are a 
priori equipped with the same “hardware” and “software” 
needed to finish meaningful super-Turing computations for 
a finite time period (small ASM changes or distortions do 
not matter because of ASM tolerance to damages and noi
[30

ly. In the brain, conventional free-of-
me

 from their finite range of values (Section V 
er and 

 
tha

se 
D4), particular random choice of a name does not matt
the following effect was predicted [17]. By empirical 
examination of an ASM hierarchy/neural subspace [28], [73]], [73]). The picture described is well supported by the 

empirical finding and studying of mirror neurons – the ones 
that are active when an animal behaves or only observes 
respective behaviors of others; see, e.g., [77], [78], [79] and 
numerous references therein. The mirror-ASM 
computational system just described and the mirror-neuron 
circuitries already observed in animals and humans [77], 
[78], [79] may respectively be treated as theoretical and 
real-brain implementations of until now hypothetical super-
Turing machines with infinite inputs [38] that are capable of 
computing with infinite strings, which is the same as real-
valued numbers. 

One would object that the scheme proposed is nothing 
more than a regular Turing computer because nobody saw in 
animals anything else than regular Turing computations. But 
these Turing computations are “the tip-of-the-iceberg” of 
genuine super-Turing computations, the overwhelming part 
of which remains invisible if one looks for symbolic 
computations on

aning Turing computations are immediately transformed 
into meaningful super-Turing computations once a finite 
symbolic message to be processed becomes rigidly 
connected (as it is actually the fact, Section X C) to its 
infinitely long context, non-symbolically presented as a real-
world physical recall/recognition device or brain circuitry. 
In other words, any super-Turing computer processing a 
meaningful symbolic message might indeed be considered 
as a special-purpose regular Turing computer but running in 
the unique, specific to it real-world environment that is also 
a part of computational process and computational device. 
A Turing-type computer is inevitably a part of a super-
Turing computer that is a qualitatively distinct 
computational machine because it combines symbolism and 
physical reality to process particular infinite-in-length 
symbolic strings or real-valued or continuous numbers for a 
finite time period. Another essential innovation is the use of 
mirror super-Turing machines, in order that communicators 
would be able to understand (correctly decode) a finite 
meaningful symbolic message addressed from one of them 
to another (see also Section X B3). BSDT PL super-Turing 
computations are not purely symbolic “tautological” 
transformations and super-Turing computers are not a set of 
connected elementary discrete-logic devices for doing these 
transformations – both of them are “an inseparable mix” of 

symbolism and reality. It is worth noting, that is also the 
reason why referring to this combined symbolism-reality 
computational method, we prefer the terms “primary 
language” and “language of primary thoughts” over 
“semantic mathematics” and “mathematics of meaningful 
computations.” 

E. Memory Performance without Knowing Memory 
Records, Continuity-discreteness Unity and Uncertainty 

Since the BSDT PL employs for naming the things to be 
named a non-Gödelian arithmetization by natural numbers xk

i 
(Section VII A) and since these natural numbers are 
randomly chosen

t generates the meaning of a trace xk
i (Figure 8), all the 

parameters describing the ASM(xk
i) may successfully be 

found but the content of the xk
i – specific given the i 

randomly-established arrangement of its ±1 components – 
will always remain unknown. If it is, then, for example, the 
content of a particular given-length memory record does not 
affect memory performance and can not empirically be 
found. This rather surprising prediction [17] has well been 
corroborated by numerical BSDT PL analysis [66] of 
empirical receiver operating characteristics, ROCs (functions 
providing memory performance).  

 

...k = 0 k = 1 k = 2 k = 2i - 1

                              The kth
                       given the i 
         neural subspace/
ASM subhierarchy

Sensors of the ith submodality

 
 
Figure 8. Neural subspaces/ASM subhierarchies generated the meanings of 
2i of given the i words xk

i. All the subhierarchies (trapeziums) of the ith 
submodality are fed by impulses generated by the same set of sensors (lower 
rectangle) and the kth subhierarchy produces the kth pattern (arrow) of 
impulses to the kth apex ASM (ASM(xk

i), the kth upper rectangle) learned to 
store and recognize the xk

i. The correspondence between the kth given the i 
name (the arrangement of components of the xk

i stored in the kth uppe
 and the thing it names is fixed but randomly established and

ace specific to it [30]; for example, the ASM(x i) serves the 
x i.

r 
 rectangle)

empirically can not be found [66]. 
 

In [66] discrete-valued memory-for-meaningful-words 
ROCs measured in healthy humans and patients with brain 
disorders [80] were fitted by the BSDT. For this purpose, 
words and networks storing these words were presented as 
binary vectors xk

i and respective BSDT ASMs. These ASMs 
are devoted to recall/remember/recognize the only memory 
tr k

k  In Figure 8, the ASM(xk
i) is an apex ASM of the kth 

ASM subhierarchy/neuron subspace generating the inputs to 
this ASM and giving the xk

i its meaning (this scheme is 
called a semi-representational memory model [28], [73]). 
The size N of the network storing the xk

i (in Figure 8, N = i), 
the intensity q of the cue used in the process of a memory 
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trace retrieval, the preferred rate j of the expected in 
experiment decision confidence, and the arrangements of 
components of vectors xk

i (in Figure 8, they are enumerated 
by the index k) were used as fitting parameters. As a result of 
fitting, empirical discrete-valued ROCs for healthy subjects 
and patients with brain disorders were numerically 
reproduced by BSDT calculations (Figure 3 in [66]) and 
values of parameters N, q, and j were successfully found 
(Table 1 in [66]) without any reference to arrangements of 
components of vectors xk

i. Thus, in full accordance with the 
BSDT PL prediction, complete BSDT description of 
performance of the memory-for-meaningful-words can 
indeed be achieved without knowing the memory records. 
Consequently, the ideas of non-Gödelian BSDT PL 
arithmetization by natural numbers (Section VII A) and, 
simultaneously, BSDT semi-representational memory model 
[28], [73] have indeed numerically and empirically been 
substantiated. 

In spite of the BSDT’s essential discreteness, it contains 
one continuous physical/physiological parameter, namely the 
neuron triggering threshold θ [66], [81]. In the course of 
ROC fitting [66], all the values of the θ from their jth finite-
in-width range ∆θj, θ∆θj, are transformed into the only 
integer value of the decision confidence j from its range 0 ≤ j 
≤ N + 2. Reverse tr ation of this value of j into a 
cer

omput i e C nual 

s 
surprisingly sim mmends, before the 
beg

nning of 
e 
 

of 

T PL, an FAS (e.g., ZFC) is 
nite 
ngs 

ansform
tain θ∆θj that just generated the j is impossible and this 

fact is the BSDT implementation [66] of the predicted by the 
BSDT PL continuity-discreteness unity and uncertainty 
(Section VI B). This prediction and its BSDT 
implementation are well supported by the empirical 
discovery of irremovable spike onset potential (neuron 
triggering threshold) variability up to 10 mV [82]. In terms 
of neuroscience this variability is explained by fluctuating 
synaptic currents and by inherent statistics of the opening 
cell channels while in BSDT terms it is the width of the ∆θj 
in voltage units.  

XI. EXAMPLES AND PERSPECTIVE BSDT PL 

APPLICATIONS 

Practical examples of BSDT PL meaningful 
computations could help to better understand their features 
and the perspectives of their further applications.  

A. BSDT PL C at ons, th oncept and the Ma

The BSDT PL’s concept of semantic computations i
ple because it reco

inning of calculations, to know complete formal 
description of reality. At the same time, it is surprisingly 
complex because it recommends, before the begi
calculations, to find complete formal description of th
reality. As such a description (the context) is by definition

an infinite length, these recommendations can of course 
never be fulfilled completely. That is, the main problem of 
meaningful computations is the incompleteness of 
knowledge of their context or, in other words, the 
incompleteness of available formal or “mathematical” 
descriptions of reality. As soon as such a description has 
been found and fixed, BSDT PL semantic computations are 

reduced to usual Turing computations and could easily be 
performed, e.g., [28], [65], [66].  

In addition to these general recommendations, the BSDT 
PL gives also a manual for meaningful computations. It is 
based on the BSDT (a theory providing the best encoding-
decoding rules [31, 73] for binary finite-dimensional vectors 
xj

i damaged by replacing binary noise [27]) and the 
technique of BSDT ASMs (abstract selectional machines 
[30] implementing the BSDT encoding-decoding rules or 
BSDT PL inference rules). Given the context, the BSDT 
implements the main distinct features of meaningful BSDT 
PL computations: 1) the discreteness of all the computations 
with finite binary vectors xj

i [65], [81], 2) the uniqueness of 
the vector xj

i a particular ASM is devoted to process in the 
best way [30], and 3) the ability of each ASM to generalize 
even from a single example [73]. The first of these features 
leads to a fundamental discreteness of all BSDT PL 
computational predictions found at precisely fixed context. 
The second feature generates one-memory-trace-per-one-
network network learning paradigm. The third feature 
ensures the BSDT PL’s tolerance to damages and noise and 
its capability of coping with “effective stochasticity” of an 
agent’s permanently changing environment.  

For the study of meaningful information exchanges, 
their actual context should empirically be estimated with 
maximal possible accuracy. This is not a trivial problem and 
it is a subject of intensive research, e.g., [83], [84], [85]. 
Results available in this field are so far insufficiently rich 
because the required measurement methods remain till now 
in the state of development.  

B. Meanings of Traditional Solutions of Mathematical 
Problems of Science and Practice 

Besides the axioms, any formal axiomatic system, FAS, 
comprises symbolic descriptions of all its theorems and 
inference rules. In the BSD
represented as an infinite fraction of meaningless fi
binary strings, xj

i, that are the affixes of meaningful stri
cxixj

i  Scx0 (Section V B). For this reason, any FAS 
com

hysical sense. For professionals (P) and 
lay

putations are also BSDT PL computations and 
numerous already available computational results, e.g., in 
physics or biology may be treated as examples of BSDT PL 
computations performed given a context defined formally 
and informally.  

A separate infinite BSDT PL string cxixj
i that gives a 

meaning M(xj
i) = cxixj

i to a finite symbolic message xj
i (it 

may be, e.g., a physical formula written in binary notations) 
includes an infinite description cxi of the FAS needed to 
derive this formula and of the physical problem that gives 
this formula a p

persons (L), this formula has different meanings we 
denote as MP(xj

i) and ML(xj
i), respectively: MP(xj

i) = cxi(P)xj
i 

= cxi(IP)cxi(FP)xj
i and ML(xj

i) = cxi(L)xj
i = cxi(IL)cxi(FL)xj

i 
where finite-in-length strings cxi(FP) and cxi(FL) represent 
the formal knowledge (F) and infinite-in-length strings 
cxi(IP) and cxi(IL) represent informal knowledge (I) about 
the formula and the problem of interest. Formal knowledge 
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can be found in books or any other relevant texts, informal 
knowledge can only be acquired from individual 
experiences of professionals and laypersons, respectively. 

Since professionals and laypersons have essentially 
different backgrounds in a particular knowledge domain, 
cxi(IP)cxi(FP) ≠ cxi(IL)cxi(FL), they understand the meaning 
of the xj

i in a different way. Since cxi(FP) and cxi(FL) are 
finite and may explicitly be specified, they may be 
compared explicitly (e.g., by the grading of school exams). 
Sin

– we acquire from our personal 
exp

C. 

y reservations. For particular 
, cxixj

i, of 
 

xj , 

ce cxi(IP) and cxi(IL) are one-way infinite and essentially 
unspecified, it is impossible to compare them explicitly. We 
may only know that they are of different meaning 
complexities (Section V C) and have somewhere “in the 
past” a common infinite initial part. If to remember our 
phenomenology formalization (Figure 2) then it becomes 
clear that informal or “implicit” knowledge is presented in 
the brain as non-symbolical properties of real-brain devices 
serving this knowledge. Informal character of implicit 
knowledge also indicates the crucial role of the teacher and 
educational environment (the supervisor and research 
environment) for acquiring knowledge. Consequently, as an 
important source of informal knowledge, the teacher/ 
supervisor can never be excluded from the process of 
teaching/research training. 

Formal or “explicit” knowledge – strings cxi(FP) and 
cxi(FL) – is not the content of books we have read in a 
school or university but their individual internal symbolic 
representation that, in terms of the BSDT PL, may be 
different in different minds. Informal or implicit knowledge 
– strings cxi(IP) and cxi(IL) 

eriences under different teachers/supervisors in different 
educational/research environments and, consequently, it is 
also different for each of us. For these reasons, different 
professionals and different laypersons read the same books 
but understand them differently. In particular, for different 
professionals which we call P1 and P2, the formula xj

i 
always has to an extent different meanings, MP1(xj

i) ≠ 
MP2(xj

i), and, consequently, even in so-called “exact” 
sciences a vagueness of meanings of their formal results is 
unavoidable and can not completely be excluded. In other 
words, for traditional FAS computations their context and, 
consequently, their meanings for different peoples can never 
precisely be fixed. Hence, in this case, the BSDT PL may 
only approximately be applied: its inherent discreteness is 
masked by the vagueness of knowledge each of us have 
about the context of ZFC computations. At the same time, 
as all humans (professionals and laypersons) are of the same 
species, their knowledge is internally represented by infinite 
strings of the same meaning complexity and, consequently, 
all of us can understand anything that understands anyone 
else on the condition of course that beforehand we were 
equally prepared/trained (see also Section X D).  

Relationships, which were just described, between 
formal/informal knowledge and traditional computations, 
draw our attention to the fact that any manipulations with 
numbers will be meaningless until their giving-the-meaning 
context is added and fixed.  

Processing Meaningful Memory Records and 
Meaningful Images Given their Precisely Fixed Contex 

A situation may of course be conceived when the 
context of different symbolic messages is completely, bit-
by-bit the same without an
animal/human, it may be, e.g., the case of members
the same category of names, C(xj

i). If the context of names
i cxi, is precisely fixed then the inherent discreteness of the 

BSDT PL should be visible as inherent discreteness of 
respective empirical data and these inherently discrete data 
should successfully be described by the inherently discrete 
BSDT PL computations. The main obstacle is the need of 
discovering such inherently discrete natural phenomena and 
developing a methodology of research that will not hide 
their discreteness.  

As has been demonstrated in [28], [65], [66] all the 
mentioned conditions can be satisfied. As a result, we have 
already three particular examples of complete successful 
application of given the context discrete-valued BSDT PL 
computations to account for practically important cognitive 
(where the role of mind is essential) phenomena in humans. 
They are in particular 1) judgment errors in cluttered 
environments [65], 2) remembering/retrieving the words 
from a memory for meaningful words [66], and 3) 
recognition of meaningful images (human faces) by healthy 
humans [28]. In the first of these cases, with the help of the 
BSDT, the data measured in rating experiments when 
healthy subjects identify target stimuli in a cluttered visual 
environment, confound them with competing stimuli, and 
demonstrate high confidence of their erroneous decisions 
were quantitatively explained (Figure 4 in [65]); in the 
second case, memory-for-meaningful-words ROCs 
measured in healthy humans and patients with brain 
disorders were quantitatively described by the BSDT and 
memory-for-meaningful-words parameters were found 
(Figure 3 and Table 1 in [66]); in the third case, 
psychometric functions measured in human face recognition 
experiments were reproduced by the BSDT keeping the 
Neyman-Pearson objective (Figure 5 in [28]).  

In each of these examples, BSDT discrete-valued 
numerical analysis has been applied to fitting empirical data 
measured by traditional techniques and analyzed by the 
authors of original publications [80], [86], [87] using 
traditional continuous computations. The authors of these 
publications did not recognize the discreteness of their 
results, in particular, because of the essential continuity of 
mathematical models they employed for empirical data 
analysis. We take the opposite view of these models 
motivated by the BSDT PL and its hypothesis of concurrent 
infinity. Namely, results of cognitive experiments found at 
the precisely defined context are to be discrete because in 
such a case the continuous/real-valued component of 
meaningful messages (infinite-in-length context or the set of 
real-brain circuits/devices involved in serving the cognitive 
tasks) is strictly the same, fixed, excluded from explicit 
consideration and “invisible” in practice as a result. Indeed, 
if a given person recalls different meaningful words or 
recognizes different meaningful images then he/she is 
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dealing with different finite symbolic messages xj
i given bit-

by-bit the same context cxi defined by this person’s unique 
previous experience that shapes his/her unique mind, 
relevant to a particular problem. This mind or particular set 
of real-brain learned circuits or particular neuron subspace 
or particular context cxi is surely the same in all the tasks of 
the same type this mind (person) currently performs (cf. 
Figure 8). On the other hand, it is the discreteness of 
empirical data that is a manifestation of certainly definite 
meanings of symbolic messages, involved in context 
specific cognitive tasks. In other words, meaningfulness of 
messages to be processed and their precisely known context 
are simultaneously the source of this type of data. The 
continuity of observed cognitive performance indicates the 
vagueness of the context’s estimation (inability of keeping 
the fixed context) that may be caused by irrelevant choice or 
inaccurate use of measurement protocols. It is supposed, if 
meanings are fixed and exactly communicated then the 
context is completely the same and communication 
(encoding/ decoding) performance should surely be discrete. 
As the fitting of empirical data measured in these three 
different types of cognitive experiments demonstrates [28], 
[65], [66], some popular study protocols seems to produce 
discrete-valued data in cognitive sciences though, to be 
convinced, new BSDT fitting results and some control 
experiments are surely required [66]. 

The need to keep the same context to ensure accurate 
meaningful communication/computation is rather well 
known, e.g., [83], [84], [85]. In cases where this demand is 
accurately satisfied, methods developed by other authors 
coincide with the BSDT PL sometimes almost literally. For 
exa

/her students 
formula of 
erstand its 

me

mple, what is called in [88] “meaning-generating 
capacity” of a complex dynamic system, namely “the 
proportion between the size m of the set of final attractor 
states and the size n of the set of all initial states of a system, 
i.e., MC = m/n” is in BSDT terms the ASM(xk

i) probability 
of correct decoding given the size of the network N = i, 
intensity of cue q, and decision confidence rate j. This 
probability is denoted as P(N, q, j) or P(N, q, Fj) (Fj is false 
alarm probability given the j) and was already successfully 
used to analyze the results of real cognitive experiments 
[28], [65], [66]. The main distinction between the MC and 
the P(N, q, j) is that the former is defined given the finitely 
estimated context whereas the latter is fixed given an 
infinitely defined context. The fact that the P(N, q, j) is 
perfect [31], [89] and may even analytically be found [89] is 
secondary with respect to the context infinity.  

D. A Lecturer and Students in a Lecture Room 

Let us consider a lecturer who intends to deliver students 
the meaning of a physical formula as he/she understands it. 
At the beginning of a lecture, he/she and his
have different background knowledge of the 
interest and students can not correctly und

aning. The lecturer’s aim is to give them a piece of 
additional knowledge and, in this way, to equalize, for all of 
them, the context needed to equally understand the 
formula’s meaning. At the end of the lecture, for the lecturer 
and for his/her students, infinite BSDT PL strings 

describing this specific knowledge should become bit-by-bit 
equivalent not only “in the past” but also “in the present”, 
and the formula’s meaning should be understood by all the 
parties in the same way. If it is not for any reason, a 
misunderstanding arises. 
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Figure 9. BSDT PL model of information exchange between the lecturer 
(line 3) and students before (line 1) and after (line 2) the lecture. The 
amount of information of interest is q bits, the “gap” (it is circled) between 
the knowledge of the lecturer and the knowledge of students equals p bits 
(examples for q = 2, p = 1; i = q + p). The fan of line segments attached to

ne 1 represents given the context cup the set of possible meanings of the

terested in mechanisms of translation of a natural 
lan

 
 li

formula of interest in students before the lecture. The fan attached to line 2 
gives the set of possible meanings after the lecture (after bridging the 
knowledge gap), thick line segments coincide bit-by-bit with the BSDT PL 
representation of the lecturer’s knowledge (the thick fraction of the line 3). 
Other designations as in Figure 6. 
 

In Figure 9 some aspects of the process of teaching and 
learning are presented in BSDT PL terms. It means, we 
ignore so far the fact that the lecturer and students use a 
natural language for their communication and we are not 
in

guage into the BSDT primary language and vice versa. 
As the lecturer and students are of the same species, they all 
use the same primary language (we suppose, BSDT PL) and 
their meaningful words are of the same meaning 
complexity. Such a representation is person-dependent and 
natural-language-independent. Line 1 in Figure 9 represents 
the ith submodality (a particular set of brain circuits that are 
ready to be changed or a plasticity area, cf. Figure 8) 
allocated in the brain of a student before the lecture to write, 
store and then retrieve particular information this student 
intends to acquire from the lecture. Line 2 gives the same 
for a successful student after the lecture; line 3 represents 
the lecturer’s same brain area. One-way infinite fractions of 
these lines, cxi = cup (from the left to the first vertical dashed 
line), designate a description of everything that is in 
common in the lecturer and his/her students, from genetic 
code to textbooks they have read. Composite vector xj

i = 
ur

pvs
q describes new knowledge the lecturer intends to 

deliver. This vector can be divided into two constituents one 
of which (vs

q) describes the physical formula of interest and 
the other (ur

p) describes the additional information (“local 
context”) needed to connect the vs

q to already available 
background knowledge, cxi = cup. A vector ur

p or, more 
accurately, the form up (Section V B) may be treated as p-
bits-in-width “gap” between the knowledge of the lecturer 
and the knowledge of students that should be bridged before 
the students would be able to understand the formula. As a 
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result of teaching, a student’s area of plasticity responsible 
for acquiring this specific knowledge changes and reduces 2i 
of different ways of understanding the message the lecturer 
communicates to the only one, the same as of the lecturer. It 
means, all the parties have now the same BSDT PL internal 
representation of the knowledge of current interest (thick 
line segments in lines 2 and 3) and equally understand it.  

E. Non-syntactic and Non-language Communication by 
Basic Bihaviors 

In the previous example (Section XI D), non-syntactic 
messages represent a very small fraction of the general flow 

at 
is 

even non-language message (bodily 
sig

eling, e.g., 
[95

to as a primary language 
 

me

incommen sm and reality, to 

of information. Among them it may be, e.g., the facts th
the lecturer is walking when he/she gives his/her talk. Th
non-syntactic and 

nal) is effortlessly understood by everyone who is in the 
room because all people are members of the same species, 
have the same innate bodily infrastructure and the same 
basic behaviors (Section X B1) developed from their same 
innate behavioral reflexes, e.g., [69], [70], [71] in the course 
of human learning and natural ageing (maturation) in a 
mostly common environment. As a result, adults or infants 
of relevant ages have common mirror neuron systems 
(Section X B3 and D) to produce and perceive/understand 
their basic behaviors included, for example, walking. For 
this reason, humans/animals produce and perceive such non-
syntactic non-language messages originated from their basic 
behaviors automatically, with practically no chance of 
misunderstanding. For all given the species animals (or 
humans), meanings of their basic behaviors are given by 
practically equivalent brain circuits or infinite BSDT PL 
strings of the same length (to remind, possible the strings’ 
distinctions are inessential because of BSDT ASM tolerance 
to damages and noise [30], [73], Section X B3). 

The role of mirror neuron systems for understanding the 
actions and possibly the intentions of others, e.g., [90], [91], 
[92] and their role in evolutionary language development 
are rather well recognized [93], [94] and even to a degree 
studied by the method of computational mod

], [96]. In these publications, the importance of training 
the innate brain structures for a design, on their ground, of 
mirror neuron systems and the importance of mirror systems 
for mimicking actions and language production are in 
particular emphasized. At the same time, contrary to the 
BSDT PL assumption, Michael Arbib and his colleagues 
suppose [93] - [96] that super-Turing computability is not 
relevant to brain computations. Such an attitude seems 
indeed rather natural while we are dealing, as it is usually 
the case, with meaningless computations only and do not 
pay attention to their meanings. But as soon as meanings 
become essential super-Turing computability escapes from 
the shadow of conventional Turing computations and 
becomes crucially important. It is what is the case for the 
BSDT PL because it does imply that super-Turing 
computability, as an indispensable part of animal/human 
communication process, maintains mechanisms of doing all 
the meaningful actions the brain serves (Section X B3 and 
D), including all kinds of non-language and language 
meaningful information exchange. 

F. Natural Languages and Consciousness, Intuition, Free 
Will and Creativity 

One of distinctive features of the BSDT PL is that truth 
values of its names are always in the norm true (Section 
VIII). That is why it serves so well 
for maintaining an animal’s ongoing internal activity. For
the same reason, it can serve as a “source language” whose 

aningful words (an animal’s psychological states) may 
next be translated into vocal, gesture, etc tokens of a more 
elaborate symbolic communication system needed to 
support information exchange between animals of a group. 
The more complicated the group’s sociality, the more 
complicated communication system is required to support it, 
and vice versa. Since among other animals humans do have 
most complicated sociality, human natural languages are to 
be most complicate and elaborate. The BSDT PL may be 
used as a basis for the construction of such “secondary” [26] 
languages whose capacities may be up to the level of human 
natural language capacity. If so, semantics and syntax of 
natural languages should be based on semantics and syntax 
of the BSDT PL and should be implemented by mechanisms 
of (and innate brain structures for) the translation of 
words/sentences of the primary language into words/ 
sentences of a secondary language. In that sense the BSDT 
PL is a counterpart or a precursor to what is known as Noam 
Chomsky’s “universal grammars,” e.g., [97], [98].  

The BSDT PL phenomenology formalization literary 
equates one-way infinite binary strings and animal 
psychological states or subjective experiences/qualia. It also 
represents given the context computations with finite binary 
meaningful strings as operations with animal subjective 
experiences. In other words, the BSDT PL solves the “hard” 
problem of consciousness [33] (the quest for a description of 
subjective experiences) as a whole and at once, simply by 
postulating the logically strict BSDT PL definition of qualia 
(Sections III and V B). For this reason, the BSDT PL is 
actually a theory of subjectivity (meaning, feeling, 
perception) or a theory of the subconscious. The problem 
remains to apply this theory to solving particular practical 
consciousness problems, as it has, e.g., been done in the 
case of BSDT atom of consciousness model, BSDT AOCM 
[32]. In particular, the mentioned above problem of 
translating the primary language into a secondary one may 
also be treated as the problem of translating the 
subconscious served by super-Turing computations into the 
conscious served by Turing computations. In both cases, the 
process of translation should inevitably be based on so far 
unspecified mechanisms of intuition, free will and creativity.  

XII. CONCLUSIONS 

The BSDT PL is based on the hypothesis of concurrent 
infinity and its phenomenology formalization (Sections I to 
IV). It provides what is called a “paradigm shift” [36]: a 
possibility to equate the items of such usually 

surable domains as the symboli
define strictly indefinable in traditional mathematics notions 
of meaning and subjectivity, and to perform explicitly given 
the context meaningful computations. Such computations 
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are an inherent mix of symbolism and specific to it reality 
implemented by a qualitatively novel computational device 
– a super-Turing computer with infinite inputs implemented 
in an animal’s brain as a system of mirror neurons (Section 
X D). The range of perspective BSDT PL applications 
covers everything where meanings are important or, in other 
words, everything we, humans, may be interested in. In this 
sense it may be “a theory of everything”. As soon as 
meanings become inessential, the BSDT PL is reduced to 
traditional ZFC mathematics. Available empirical and 
computational results support this view (Sections X and XI).  

BSDT PL provides a framework that is sufficient to 
perform principal semantic computations and based on them 
communication without syntax. BSDT PL seems also to be 
sufficient to explain the computational part of intelligence 
of animals of poor sociality and, consequently, to design the 
com

the

any cases, of 
rela

ly beg the reader not to make up 
his

el Arbib for his comments to its published version. I 
am grateful to my to my 
son Dr. Mykhaylo G nd support. 

rance, 
2012, pp. 47-53. 

, pp. 173-198.  

putational part of intelligence of artificial devices (e.g., 
robots) or computer codes mimicking the behavior of such 
animals. At the same time, the BSDT PL is unable to 
symbolically explain the mechanism of splitting its 
composite words (sentences) into focal and fringe 
constituents (Section VI B2) and, consequently, of directing 
an animal’s attention to a particular thing – we hope it may 
be done by methods beyond the discrete BSDT formalism. 
To explain/reproduce the “attentive” part of animal 
intelligence in a biologically-plausible way and to design 
the “attentive” part of the intelligence of intelligent robots, 
analog (e.g., wave-like) computational methods similar to 
those that are used in real brains are most probably required. 

Contrary to traditional formal languages, e.g., [98], [99] 
that are in end the products of traditional ZFC mathematics, 
the BSDT PL is a consistent and complete (Sections VI to 
VIII) calculus of finite binary strings (spike patterns or 
“symbols”) with infinitely defined contexts. It is based on 1) 

 new infinity hypothesis and its phenomenology 
formalization (Sections I to IV) providing the technique of 
super-Turing (semantic) computations with infinite binary 
strings that share their infinite initial part and 2) the BSDT 
[25] and its ASMs [30] providing a technique for the best 
encoding/decoding in binary finite-dimensional spaces [27] 
and implementing BSDT PL inference rules. BSDT PL is the 
simplest language of its kind and has great potential for 
designing the adequate models of higher-level languages, 
including in perspective the natural languages of humans. At 
the same time, meaning ambiguity of BSDT PL names of 
different meaning complexity that has been established as 
their fundamental property (Section IX) raises many 
intriguing problems to be solved in the future. 

The BSDT PL describes a way for the communication of 
meanings of symbolic messages by means of basic animal 
behaviors (Sections X B1 and XI E) that could represent the 
behavioristic part [72] of more complex adaptive animal 
behaviors. For animals of the same and, in m

tive species, thanks to their mirror neurons, e.g., [77] - 
[79] and common “bodily infrastructure” [34], it is 
intelligible without any efforts. For animals with most 
primitive sociality (including human infants) or for their 
artificial counterparts, a version of the discrete BSDT PL 
formalism may serve as an exhaustive but incomplete 

(Section VI B3) set of tools needed for their routine 
communication. How the primary language generates 
secondary (natural) languages and consciousness [32] is the 
problem of future research. 

Following Rudolf Carnap [100, p. 204] let us finish this 
article by a quotation from Bertrand Russell (his term 
“denotation” may here be understood as “meaning”): “Of 
many other consequences of the view I have been advocated, 
I will say nothing. I will on

 mind against the view—as he might be tempted to do, on 
account of its apparently excessive complication—until he 
has attempted to construct a theory of his own on the subject 
of denotation. This attempt, I believe, will convince him that, 
whatever the true theory may be, it cannot have such a 
simplicity as one might have expected beforehand” [101, p. 
518]. 
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