
247

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Environment – Application – Adaptation (EAA) Architecture:
Introduction and Details of an Open Implementation

Rémi Emonet
Idiap Research Institute
Martigny, Switzerland
remi.emonet@idiap.ch

Abstract—This article considers the software problems of
reuse and evolution in the context of Ambient Intelligence. The
main contribution of the article is the Environment, Application,
Adaptation (EAA) approach, evolved from state of the art
methods used in software engineering and architecture. In the
EAA approach, the applications are written such that they only
reference some abstract functionalities. On the other side, the
capabilities of the environment are exposed as an individual
service. The power of EAA comes from its adaptation layer
that bridges the gap between capabilities of the environment
and functionalities required by the applications. The adaptation
layer can be dynamically enriched and controlled, giving the
end user an easy way to set up the system. The approach is
shown to favor development of reusable services and to enable
unmodified applications to use originally unknown services.
Overall the contributions of the article are: a) the introduction
of the EAA approach with an adaptation layer as first-class
citizen, b) an illustration through different use cases, c) a
feasibility evaluation with implementation details and complete
source code available on-line.

Keywords-Environment; Application; Adaptation; Open
Source; Community Architecture; Ambient Intelligence; DCI;
SOA; End-User Programming

I. INTRODUCTION

With modern devices and technologies, and with sufficient
engineering effort, it is relatively easy to implement smart
office and smart home applications. Such applications are
usually bound to the considered environment and hard to
adapt to a new environment. In the context of Ambient
Intelligence, such static application design fails because the
user is mobile and the environment evolves continuously.
Also, an Ambient Intelligence system is always running
and is open: new services (of possibly unknown types) are
introduced from time to time. The challenge of software
architecture for Ambient Intelligence is to provide a way of
maximizing reuse and limiting maintenance. For example,
applications should not require any modification or rede-
ployment to handle new service types. Our approach tackles
this problem and others.

This papers provides additional details over [1], on various
aspects of the work. Importantly, many implementation de-
tails had been omitted in [1] and were leaving the reader with
unanswered interrogations. To improve on this, we provided
both more details within the paper and an online release of

all the source code necessary to run the experiments, in the
form of a “git” repository (see [2]). Together with [1], this
article brings the following contributions:

• we review two important software architectures: the
Service Oriented Architectures (SOA), which are
widely used in Ambient Intelligence and Data Context
Interaction (DCI), which is a relatively recent innova-
tion in the design of “traditional” systems and often
ignored by the Ambient Intelligence community;

• we combine and adapt SOA and DCI, together with
the factory and whiteboard patterns, and propose a
new architectural approach that we name Environment,
Application, Adaptation (EAA) and that favors reuse
and runtime extensibility;

• we illustrate the EAA approach by detailing multiple
use cases of applications and showing the advantages
of the approach;

• we propose an implementation of the approach using
an existing open source service oriented middleware;

• finally, we provide an open-access release of the source
code of all the provided use cases to allow introspec-
tion, experimentation and reproducibility.

The article is structured as follows: relevant architectural
approaches are presented in Section II and we introduce the
new EAA architecture in Section III. Section IV introduces
the implementation, which is fully detailed with complete
examples in Section V. Finally, Section VI provides conclu-
sions and future directions.

II. RELATED WORK AND APPROACH FOUNDATIONS

Our approach can be seen in continuity with previous
architectural concepts. In this section, we introduce the
architectural concepts that motivate our approach and we
provide discussions about related work.

A. Related Work in Service Oriented Architectures (SOA)

Service Oriented Architectures (SOA) are used in many
different contexts ranging from business integration (within
and between companies) to Ambient Intelligence. The prin-
ciple of SOA is to expose software components as “ser-
vices”. Each service encapsulates a particular functionality
and provides access to it through a clearly defined interface.

248

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Service discovery, a fundamental aspect of Service Oriented
Architectures (SOA). To find concrete providers of the functionality they
are looking for, service consumers query a service repository to which
all providers are registered. With service discovery, the consumer and the
provider are properly decoupled.

One important characteristic of SOA is “service discov-
ery”: a service consumer first queries a service repository (or
service resolver) to be able to access a matching provider.
This discovery process is illustrated in Figure1. Most service
oriented frameworks operate with networked services: ser-
vices that can run on different machines and communicate
through a network. A notable exception is OSGi that is
broadly used as in [3]. With networked services, one effect
of service discovery is to simplify configuration: service
consumers only need to know where to find the service
repository.

SOA encourages good encapsulation, loose coupling and
abstraction. With little effort, it also helps service consumers
in reacting to runtime events like the absence or disap-
pearance of a particular service. With encapsulation and
discovery, SOA makes it possible to replace a service by
another equivalent one, providing the same interface.

As in many other domains, a variety of service oriented
initiatives have been proposed but no single standard is
clearly dominating. Also, even if service based approaches
provide a good way of implementing some “dynamic dis-
tributed components”, they fail at solving more advanced
integration problems.

Consider the use case of having an application dynam-
ically (and with no modification) start using services it
was not originally designed to use. Such case is typical
of Ambient Intelligence systems where applications and
services evolve continuously. SOA allows this if the services
have been properly abstracted out and if the integrators
make the effort of writing adapter services to bridge the
functionality gap. We consider that this integration use case
is actually a common one, rather than an exception. Our
approach is designed to encourage better abstractions and to
make adapter writing a simpler task.

B. Semantic Web Services (SWS) and Service Composition

The convergence of “Semantic Web” and SOA have been
trying to solve the integration problem by letting service
designers use their own ontology to describe their services.
Ontology alignment methods are then used to make corre-

spondences between services from different providers. Using
such correspondence, a service for a given provider can be
consumed by a consumer that was designed in ignorance of
this particular provider.

Multiple approaches mixes web services (WS) technolo-
gies with semantic web principles. These are called Semantic
Web Services (SWS). Two major set of technologies are
used for semantic web services: Web Ontology Language for
Services (OWL-S) and the Web Service Modeling Ontology
(WSMO) [4]. Both technologies have been very active. An
analysis in [5] places WSMO as more promising but less
mature than OWL-S; since this analysis was written, WSMO
has evolved and matured.

One interesting element of WSMO is the concept of
“mediators” that are used to do alignment, conversion or
adaptation of different concepts, data and functionalities.
From our point of view, this explicit role of mediators is
important and close to our approach with an adaptation layer.
Depending on the context of use, SWS technologies have
some important drawbacks. First, SWS build upon on web
service technologies which add complexity and overhead
not suitable for certain platforms and developers. Second,
service and functionality descriptions in SWS are very
detailed, describing IOPE (inputs, outputs, preconditions,
effects) of each operation. These details are used to make an
automatic, sound and complete reasoning possible, but put
an important modeling load on the service writers.

More recently, model driven approaches, such as UWE
(UML-based Web Engineering) [6], have been proposed to
try to do adaption. However, like other approaches such
as [7], the focus is put on the adaptation of graphical user
interface to different devices and contexts. The focus is put
on proper engineering of web application while ours is to
make ambient applications able to evolve and cope with the
dynamic nature of the environment. Our proposed approach
can actually be seen as orthogonal to such model driven
approaches. As web applications are becoming pervasive,
both approaches could be put in practice together, replacing
our implementation layer by adapting the model driven web
engineering technologies.

In Ambient Intelligence, many projects attempt to inte-
grate different services by building upon both SOA and ideas
from the semantic web. Fully automatic service composition
and adaptation have been explored, e.g., using multi-agent
reasoning as in [8]. Some interesting and well designed ap-
proaches are [9] and its evolutions. Also, the soft appliances
from [10] envision a systematic decomposition of all existing
appliances as independent services. In this vision, end-user
programming is used to recreate new innovative appliances
from services. One of the main difficulty (and limitation) of
end-user programming is to make it both accessible to any
end user and powerful enough.

As a conclusion, SOA provides a good basis for Ambient
Intelligence but it does not ensure good integration capabil-

249

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Common representation of the Data, Context, Interaction (DCI)
architecture, which complements the Model, View, Controller. Each use
case or interaction (I) is implemented using only roles that are fully abstract.
The Data (D) are plain objects holding only data and no business specific
logic. The Context (C), assembled automatically or through user interaction,
is responsible for making some objects play a certain role in the interaction.

ities. Semantic web services are well designed solutions to
some of these integration problems but go somewhat to tech-
nical and fail at being usable and focused on the adaptation
problem. We also think that fully automatic approaches are
not desired by the end user: these are not optimal and thus
can create frustration, and they prevent end users to express
their creativity. Classical end-user programming is also too
limited to exhibit, at the same time, these two important
aspects: enabling anyone to customize and innovate with
applications, and enabling some users to help in integrating
new devices. The approach we propose has an explicit
adaptation layer and focuses on it, removing the need to
describe every possible element in the computational world
and making it accessible to most developers.

C. Data Context Interaction: DCI

In our opinion, the most interesting and relevant evo-
lution in recent software architecture and design is the
Data Context Interaction (DCI) [11] approach. DCI can be
seen as a second attempt to make object orientation (OO)
right. The original goal of object oriented programming (and
design) was to align the program data model with the user’s
mental model. This feature is the key to a good human
computer interaction: you cannot hide a bad design behind
any interface. This becomes more and more important in
Ambient Intelligence where user interaction is augmented.

The main principles of DCI are illustrated in Figure2
and can be explained as follows. The data objects have the
only responsibility to access data (e.g., from a database or
memory). In DCI, any use case of the software is a piece of
code that manipulates some roles, which are fully abstract. A
use case is actually an interaction between roles and can be
pictured as the scenario involving different roles. A use case
uses only a set of roles and never manipulates directly data
objects. The concept of role together with the context are
the cornerstone of DCI. A context is responsible for doing
the mapping of some roles onto some concrete data objects.
The context is populated in response to user interaction (e.g.,
selecting things then clicking on a submit button) and then
the use case is executed using this context.

Figure 3. Proposed EAA architecture – Environment provides low-level
services. Applications manipulate only high-level abstract services. Adap-
tation bridges the two and is dynamically extensible and user-controlled.
Lighter chain on the right: inversion due to the whiteboard pattern.

As an example, we can consider a banking application
with the use case of making a money transfer between two
accounts. More precisely, consider the MoneyTransfer use
case: it involves three roles that are the SourceAccount role,
the DestinationAccount role and the MoneyAmountProvider
role. The MoneyTransfer code will start a transaction, then
query the amount to transfer from the MoneyAmount-
Provider, then call withdraw on the SourceAccount and call
credit on the DestinationAccount. The context is created
and populated by the application when the user is asked
to select a source account (e.g., his CheckingAccount data
object) and a destination account (e.g., one of his SavingsAc-
count) and an amount (e.g., could be just a plain “int” value).

D. Other Related Work

A mobile agent is an autonomous program that can
migrate between computers over a network. Even if this is
an interesting feature for Ambient Intelligence, it can be
seen as orthogonal to the subjects discussed in this article
and can complement the proposed approach. An example of
using mobile agents as an infrastructure is presented in [12].

The domain of human computer interaction tends to
evolve from desktop-like applications to Ambient Intelli-
gence. In this context, an emphasis is put on how to dynam-
ically split and distribute user interfaces based on the avail-
able devices. The concept of meta-User Interfaces (meta-
UI) has been introduced in [7] and consists in having an
interface to control and introspect an Ambient Intelligence
environment. A deep and interesting analysis related to our
problems is conducted in [7], however, their application is
limited to the migration and adaptation of graphical user
interfaces between devices.

III. PROPOSED APPROACH

In this section, we introduce our Environment, Applica-
tion, Adaptation (EAA) approach and how it can interact
with a community built around it. In the same way as DCI

250

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
CORRESPONDENCE BETWEEN DCI AND EAA TERMS, TOGETHER WITH

TYPICAL IMPLEMENTATION (OUTSIDE THE WHITEBOARD PATTERN).

DCI Term EAA Term Implementation
Data Environment service providers

Context Adaptation adapter factories
Interaction Application service consumers

is an attempt to make OO right (see Section II-C), EAA is
an attempt to make SOA right.

A. Environment, Application, Adaptation

The Environment, Application, Adaptation (EAA) ap-
proach builds on top of Service Oriented Architectures
(SOA) and takes similar inspiration as Data, Context, Inter-
action (DCI). In EAA, most of the elements are services: in
some sense, services act as objects (with interfaces) that can
be distributed and dynamically discovered. As in SOA, the
capabilities of the environment are exposed as plain services
in EAA. In a parallel with DCI, these environment services
are corresponding to the data part from DCI.

Most importantly, EAA has the equivalent of roles in DCI.
Any application only manipulates some abstract services
(roles) that correspond to its exact requirements. The design
of the application is done without bothering about what
concrete service can or will be used to fulfill the role. With
this choice, the environment will never directly provide any
service that an application needs.

In DCI, the context is responsible for the casting: concrete
data objects are recruited to play some roles. In EAA, the
adaptation layer is responsible for the equivalent, which
consists in using services from the environment to create
services required by the applications. The adaptation layer
is populated through implicit or explicit interaction with the
end user (same as in DCI).

In Figure 3 (ignoring the lighter rightmost elements), a
set of applications, environment services and adapters are
shown. Colors are used to distinguish service types coming
from the environment (in blue), the applications (in red)
or the adaptation (in green). Table I provides a mapping
between EAA and DCI terms, and indication on how EAA
elements are implemented.

B. Using Service Factories for Adapters

To populate the adaptation layer, some adapter factories
are used. Each factory is actually a service that exposes
which kind of adapters it can create and that creates them on
demand. The concept of service factory is taken from [13]
and restricted to adapters: we do not consider the case of
“open factories” that can create services without requiring
any other service. With our restriction, the number of instan-
tiable adaptation paths becomes finite and it is thus possible
to filter and display them to the user (see Section IV).

C. Refinement using the Whiteboard pattern

A useful pattern in service oriented design is the “white-
board” pattern [14]. The goal of this pattern is to simplify
the design of clients of a particular service. Let’s consider
a Text2Speech service that is designed to receive some text
sentence and that outputs it as speech through loud speakers.
In a classical approach, any client of the Text2Speech service
would first look for the service, then connect to it and then
send the message to it. Eventually, the search-and-connect
code is here duplicated in all clients.

Using a whiteboard pattern, the situation is reversed
and the Text2Speech service is actually doing the
search-and-connect. Each client just declares itself as
Text2SpeechSource and the Text2Speech will connect to it
as soon as it finds it. With the whiteboard pattern, some
code is moved from the client to the “server”, which limits
redundant code writing and makes backward compatible
evolutions easier (the server handles the various versions
of clients). From a service point of view, now the “server”
looks for its clients, which causes an inversion of the
provides/requires dependency as shown in Figure 3 (on the
right) and in Figure 4 (on the right).

In EAA, the whiteboard pattern is typically used on the
view side, i.e., when the application state needs to be brought
back to the user (through the environment). The above
example of voicing the output of an application using a
Text2Speech service is a typical example of this.

D. Community Architecture and Sharing

The structure of the proposed EAA makes it a “commu-
nity architecture” [15] in a double sense. First, the approach
encourages the creation of a community around it and
provides a structure for it, and second, it is the community
itself that is creating the actual, live, evolving architecture.

We distinguish four entry points in EAA for innovation
and extension, each requiring different skills. Compared to
some end-user programming approach where there is trade-
off to make between the expressive power of the program-
ming and the required skills to use it, EAA has multiple
values for this trade-off. It would be interesting to investigate
how EAA can be combined with an end-user approach
targeting more ease of use than power of expression (higher
expression power being provided by EAA).

The first two entry points are for a relatively large
audience. First, most end users will be able to innovate at
the adaptation level by doing a smart and original choice of
adapters for a particular application in their environment.
Also, any end user can take part in the community by
suggesting new ideas for services, applications or adapters.
With proper documentations and examples, we can expect
a reasonable part of the users (surely less than 10%) to be
able to create new adapters by copying an existing one or
using a wizard tool (in current implementation, an adapter

251

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is an XML file that can be easily copied and tuned as shown
in following sections).

More advanced extension points concern the contribution
of new applications or new environment services. Both
require more advanced computer skills but really different
ones. Application developers will probably write their ap-
plication and maybe a couple of adapters to integrate it into
the existing ecosystem: the skills required here are mostly
classical application development skills. The contributors of
new environment services will probably be people that like
hacking with new devices or new signal processing methods
(image or audio processing, accelerometers, etc.): their goal
would be to innovate by providing innovative input or output
medium to transform existing applications.

The EAA does not define by itself what kinds of services
are used by the people. It is the community itself, by creating
new environment services, applications and adapters that
decides on what is the actual architecture. We cannot rely
on any user to make the best architectural choices. However,
if the community is sufficiently large and open, we can
expect to find a small proportion of “architects/moderators”
as in other open community projects: their role could be for
example to avoid proliferation of totally similar concepts and
avoid fragmentation of the community.

IV. GENERAL IMPLEMENTATION ASPECTS

To experiment with the proposed approach, we imple-
mented different test cases. The source code of all use cases
can be found on-line [2] for additional details and reference.
For easier understanding and to allow for reproducibility of
the approach, we detail the main aspects of the test case
implementation.

Throughout this section and the following, we may refer-
ence projects or files from the code available on-line [2]. It
is interesting that most of the tasks presented, from coding
applications or services to deciding which adapters to use
can each be executed by different actors (each with their
own skills). This illustrates that most tasks are actually
independent and that the resulting system is thus highly
extensible.

We implemented the whole presented EAA approach.
Most of the tools are written in Java but some commands,
usually available under Linux, are used for special function-
alities (e.g., text to speech). The “community architecture”
aspect, that was totally left out in [1], is now provided. A
simple script now allows for an easy download of adapters
shared on a central web server. Write access to the server
is currently restricted: interested users need to contact us
to upload new adapters, or another custom repository can
easily be used.

A. The OMiSCID Service Oriented Middleware
Our implementation is based on the open-source OMiS-

CID [16] service-oriented middleware. A service in OMiS-
CID can be written in almost any programming language

(Java, C++, Python, and most languages running on the
JVM) and is discoverable on the network. Each service has a
name and may have state variables (also used as properties).
In our implementation, we use service variables to expose
the information related to the EAA architecture.

Each service can also have connectors. The term “con-
nector” refers to a communication port that can be used
to receive messages, broadcast messages or do both. Each
message is of arbitrary type but most often either plain text,
JSON, or XML. Connectors are the normal mean of passing
information between services and we will use it as such.

OMiSCID comes with a graphical user interface (GUI)
that can be used to list, monitor and control the services
running on a network. The GUI is designed to be highly
extensible and allows the user to install plugins in an easy
way. As illustrated in the examples and in Figure 4 (detailed
later), we designed an interface for the user to decide which
adapters should be instantiated among the possible ones.
This interface is actually implemented as a plugin for the
OMiSCID GUI.

B. Environment Implementation

To compose the environment, we created a set of small
reusable functionalities, all exposed as services. Each func-
tionality is actually exposed as a service and an OMiSCID
variable “provides” is used to specify which functionalities
are provided by the service. In the case of inversion due to
the whiteboard pattern, the services from the environment
might instead have a “requires” variable.

The developed services that are available online [2] in-
clude the following ones: exporting a display area (on a
screen or video projector), exporting a mouse pointer, and
exporting a “chat” service to allow to open pop-up messages
on a computer. Also, under Linux operating systems, we
provide additional features like a text-to-speech service
based on “espeak”, a volume controller and a service to
generate synthetic keyboard events on a computer (this one
is used for example to control presentations, slide-shows or
games). We also provide a computer vision based button to
allow user interaction via the real world (e.g., the program
detects when the user “clicks” a post-it that he put on a
board).

C. Applications Implementation

The applications are also implemented as OMiSCID ser-
vices that explicitly require some functionalities. The needed
functionality is expressed using the “requires” variable.
Symmetrically to the environment, when the whiteboard
pattern is applied, the “provides” OMiSCID variable is used
instead.

The applications that we provide at [2] are a TicTacToe
game and a MagicSnake game. It is important to be noted
that, thanks to the whiteboard pattern, it is possible to
combine multiple services from the environment with only

252

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

adapters, without having any application. This can also be
seen as a logic-less application. An example of this is to use
a button (e.g., any event or a computer vision based button
as in Figure 8) to step to the next slide in a presentation.

D. Adaptation Implementation: adapter factories

For the adapters, we designed a generic program that
takes an XML description of a family of adapters and
starts the corresponding adapter factory (that can start an
adapter instance on demand). By convention the service
name for adapter factories is AdapterFactory. The XML
description contains information about the adapter such as
which functionality it takes as “input” and to which one it
converts it. The adaptation code, that is usually simple, can
be provided within the XML file using languages such as
JavaScript, XSLT or dedicated custom languages. Examples
of XML descriptions are provided in Section V.

The factory description contains information about what
adapter the factory can create (see Figure 7 for an example
fully detailed in Section V). A “from” variable contains the
name of the functionality that the adapter will take as input.
The “to” variable is used for the target functionality that
the adapter produces. Some parameters can be used in the
“to” variable and are defined in the “parameters” variable. In
the “parameters” variable, a special construct can be used to
specify that the parameter must take a value that corresponds
to an existing requirement (a value present in the “requires”
variable of a running service).

E. Adaptation Implementation: user interface

As mentioned in previous section and illustrated in Fig-
ure 4, we implemented the control of the adaptation layer
as an OMiSCID GUI plugin. This plugin mainly involves
Netbeans Platform programming (source to be found in
projects/AdapterFramework) and won’t be detailed
here, only its behavior will be described.

Using service discovery, the plugin lists of all relevant
services:

• any service having a “provides” variable,
• any service having a “requires” variable,
• any service named AdapterFactory.

Then the plugin displays all provided functionality, together
with all required ones and all possible adaptation paths
that can get constructed using the running adapter factories.
The adapters on the paths are initially not instantiated and
displayed using a shaded style. When the user double clicks
on an adapter, the GUI plugin automatically formats a
message and sends it to the appropriate AdapterFactory that
in turn will create the necessary adapter. Once the adapter
is started, it changes from shaded to solid in the GUI panel.
The user can also easily stop any started adapter, by using
a dedicated action provided in the OMiSCID GUI service
tree.

V. DETAILED TEST CASES

To showcase our approach, we detail the case of a
simple tic-tac-toe game we developed, starting by a global
architecture, which is then detailed.

A. Tic Tac Toe Architecture and Benefits

For now, we consider that the environment contains only
two computers, and from each one we export some services:
a Display, a Mouse3 (mouse pointer with 3 buttons) and a
Text2Speech. In total we thus get six environment services
running, three on each computer. Each exported Display
service has a unique identifier and follows a whiteboard
pattern to connect to any matching DisplaySource it finds.
A DisplaySource is expected to send drawing commands to
the Display.

The game logic is implemented as a service that exposes
a TicTacToeModel functionality. The TicTacToeModel en-
capsulates the state (current board, current player) and the
rules of the game (only the current player can play, who
wins, etc.). In addition it also requires some functionalities
for the input of the players, more precisely, it needs two
Grid3x3Clicker with two different unique identifiers. Fol-
lowing a whiteboard pattern, the game logic automatically
connects to the matching Grid3x3Clicker it finds.

To bridge the gap between the environment (Display,
Mouse3) and the application (Grid3x3Clicker, TicTacToe-
Model), we introduced a set of simple adapters. The first
ones are for input and can be heavily reused in other context:
one adapter converts a three button mouse Mouse3 to a
single button mouse Mouse1, the second adapter converts
a Mouse1 to a Grid3x3Clicker by converting clicked x, y
position to some grid index from 0 to 8. We could have
skipped the distinction between Mouse3 and Mouse1 but
we kept it as it is useful in some other contexts. On
the display side, a specific adapter was written to convert
TicTacToeModel to a DisplaySource: the tic-tac-toe state
change events are converted to drawing commands such as
drawing circles.

By letting the user control the adaptation layer, EAA
makes the tic-tac-toe become ambient. The use of properly
decoupled services (“SOA done right”) makes it possible for
the user to dynamically select where and how to display the
game and how to control it. EAA, with its explicit adaptation
layer, makes it also possible to easily create variations
of the game that integrates into an Ambient Intelligence
vision. To this end, different adapters can be used. A first
adapter, which is simple but specific, transforms the game
state (TicTacToeModel) to some short textual output to be
processed by a Text2Speech service. A reusable adapter,
used for input of the game, could use a SpeechRecognizer
and converts voice commands such as “play in three” to a
Grid3x3Clicker. In addition to the audio modality, computer
vision is also used as a possible input: by sticking post-its

253

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Screen capture of the OMiSCID Graphical User Interface (GUI) for service monitoring and control. On the left side, the default service tree
provided by the GUI. On the right, the panel provided by the plugin for the EAA architecture. All provided and required functionalities are shown, using
a color for each functionality type. The plugin also considers information from all running adapter factories and proposes all possible adaptation paths to
the user. The user can click on a instantiable adapter (shaded), then the plugin queries the corresponding factory for the creation of the adapter. Once it is
started, the adapter becomes opaque. Note that due to the whiteboard pattern, the provides/requires relation is reversed for the display side (right part of
the panel) where the environment (Display) requires services from the applications (TicTacToeModel).

on a surface, the user can transform it to a Grid3x3Clicker
thanks to a dedicated adapter.

B. Tic Tac Toe Implementation Details
The source code for all elements mentioned in this section

is provided at [2]. As suggested by the feedback received
about [1], we provide a detailed view of how different parts
of the system are implemented and articulated. To help in
following the explanations of this section, Figure 6 provides
a sequence diagram of the interactions between different
elements of the system.

Environment – In the provided use case, the environment is
populated using a single Java program, the code of which can
be found in projects/ComputerExporter. The user
interface for exporting environment capabilities is shown on
the right of Figure 5. This interface can be used to export
any number of views, each being a frame, only one being
shown on the left of Figure 5. Using multiple views is useful
for example when multiple screens or video projectors are
plugged to a single computer: in such case, exporting one
view per physical display makes more sense.

Each view can be used as input, exporting a “Mouse3”
functionality, which is backed by an OMiSCID service,
which sends XML messages for each mouse event such
as motion events and click events. Each view is also a
“Display”, also backed by an OMiSCID service that expects
to receive messages containing some rendering code frag-
ments. The display service handles multiple simultaneous
clients and merges their rendering code fragments. A typical

example of a display having multiple clients is the case
where we want to display the tic-tac-toe game and also add
the rendering of a mouse cursor on top of it (e.g., the cursor
of a remote player or a cursor controlled using some hand
gestures) as it is the case in Figure 5.

Technically, the rendering code fragments are expressed
in JavaScript. The display service sets up a script engine
for JavaScript interpretation and fills some context variables
so that the snippet can access the rendering context of the
frame. Then, the received code fragment is interpreted in
context, and this results in graphical elements being drawn
in the frame.

Overall, all the services exported by the ComputerEx-
porter are very generic and can be reused over and over for
different applications. They are indeed reused in the other
use cases presented in Section V-C.

Application – The tic-tac-toe application code can be found
in projects/TicTacToe and is written in Java. The
code simply implements the tic-tac-toe game logic and
starts an OMiSCID service. In addition to the variables
“provides” and “requires” (presented in previous section),
the service has one input connector to receive commands
such as “player 1 plays in bin 0”, encoded as two digits
“10”. The service also broadcasts on two output connectors.
The connector “model” is used to send the complete game
model (expressed in XML) each time a change is made to it.
For convenience for the clients, a connector “output” is also
used to broadcast events of model changes, i.e., the fact that

254

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. The “ComputerExporter” user interface is shown on the right. It is used to start environment services. On the left is shown an exported display
that is currently displaying a tic-tac-toe game. See Section V-B for details.

a given player played at some position, or the fact that one
player won. Overall the tic-tac-toe application is minimal,
containing only the necessary elements: the game model, the
game logic and some interfaces for control and view using
an OMiSCID service.

Adaptation – By convention, any OMiSCID service named
“AdapterFactory” is considered as a factory of adapters, pro-
vided it has the necessary variables introduced in Section IV.
Such a factory service has a “create” input connector and
when it receives a message on it, it parses the parameters
provided inside and starts the corresponding adapter.

Even, if we could write each adapter factory from
scratch, we simplified the writing of these. The code,
which is generic and shared by all factories, is en-
capsulated in a java program that can be found in
projects/AdapterTools. All the information spe-
cific to a given adapter factory is included in an XML
service description file using conventions that we will
illustrate below. For convenience, a script located at
tools/xml-service.sh, can be called with multiple
XML descriptions as parameter and it invokes appropriately
the Java program to start all the adapter factories described
by the XML files.

Figure 7 illustrates how adapters are written, it provides

a complete example of the cursor renderer. The goal might
be to create a visual feedback in the same way it is done
on classical desktop interfaces to show the mouse pointer
position (but here many modalities can be used, e.g., a
pointer controlled by hand gestures). As detailed hereafter,
this adapters uses the Java2D API through JavaScript and
also uses XSLT (Extensible Stylesheet Language Trans-
formations): this adapter can be seen as one of the most
complex adapters involved.

The XML service description provided in Figure 7 has
a root “service” element and the “name” attribute is used
to provide the service name, here “AdapterFactor” on line
1. Then the description contains a succession of OMiSCID
variable descriptions: in the example, all these service prop-
erties are defined as “constant”, meaning they don’t change
during the lifetime of the service.

Lines 2 to 7 (Figure 7) define the functionality adaptation
that this factory can perform. The factory can transform any
“Mouse3” functionality, as expressed in the “from” variable.
The “to” variable on line 6 is a little more evolved: the
factory can create any “Display” source with properties “for”
and “z” set according to some parameters. The two variable
references “${id}” and “${z}” are references to instantiation
parameters, declared in the “parameters” variable detailed

255

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Sequence diagram showing the interactions between different parts of the system. First, the application and some base services are deployed,
then the adaptation layer is populated and finally the player plays a turn. Only one input is provided, no display/output for the game is shown in this
diagram. See Section V-B for details.

below.

Lines 10 to 14 (Figure 7) define what we call the in-
stantiation parameters. When a client (the main client being
the GUI plugin) asks a factory to instantiate an adapter, it
sends a message containing the OMiSCID service identifier
of the service to adapt (here, the identifier of the Mouse3 to
adapt) plus a set of custom instantiation parameters. In the
example, there are 5 instantiation parameters. The four last
ones are just arbitrary customization parameters, each having
a name, a type and a default value. The first parameter in
the example, named “id” uses a special construct in place
of the default value.

To understand the “#(someRequirement DisplaySource
for)” from line 10, we have to remember that the display ser-
vices from the environment, are actually using a whiteboard
pattern. Each Display has a unique identifier. It explicitly
“requires” and automatically connects to any service with a
“DisplaySource” functionality having a “for” property equal
to this unique identifier. The “someRequirement” construct
just expresses that the value of the instantiation parameter
should correspond to the value of the “for” property of a
currently required “DisplaySource” functionality.

Lines 17 to 48 define two other variables that have a
special purpose: instead of being solely OMiSCID vari-
ables, they also describe the behavior of the adapters. Their
respective names “start” and “code” are conventions and
these are treated specially by the program that interprets
the XML description. The “start” variable describes some
(additional) code that will be executed each time an adapter
is instantiated by the factory. Starting with “js:”, it tells
the interpreter that the behavior is expressed in JavaScript.
The two lines 19 and 20 respectively add a “display”
output connector to the adapter (that it will use to send
messages) and create a local input connector that it plugs
to the “events” connector of the source service (the Mouse3
to be adapted) on which a listener is registered. With
the “listenTo(...)” command, all messages received on the
corresponding OMiSCID connector will be processed by the
code described in the “code” variable, starting at line 23.

Lines 24 to 44 (Figure 7) define the message handler that
each adapter will use to process messages. The code is pro-
tected inside an XML CDATA section to avoid escaping all
brackets. The code starts with “xslt:” and thus is expressed
using the XSLT language which is a standard explicitly

256

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 <service name="AdapterFactory" ...>
2 <variable name="from"> <access>constant</access>
3 <value>Mouse3</value>
4 </variable>
5 <variable name="to"> <access>constant</access>
6 <value>DisplaySource for=${id} z=${z}</value>
7 </variable>
8 <variable name="parameters"> <access>constant</access>
9 <value>

10 id : string ... = #(someRequirement DisplaySource for)
11 size : float ... = 32
12 z : float ... = 90
13 color1 : Color ... = 0x00FFFF
14 color2 : Color ... = 0x000000
15 </value>
16 </variable>
17 <variable name="start"> <access>constant</access>
18 <value>js:
19 addOutput("display");
20 listenTo("events");
21 </value>
22 </variable>
23 <variable name="code"> <access>constant</access>
24 <value><![CDATA[xslt:
25 <xsl:template match="events/move">
26 <message on="display" type="text">
27 var x = <xsl:value-of select="@x"/>;
28 var y = <xsl:value-of select="@y"/>;
29 var s = <xsl:value-of select="$size"/> / 50.0;
30 var C = java.awt.Color;
31 var c1 = C.decode("<xsl:value-of select="$color1"/>");
32 var c2 = C.decode("<xsl:value-of select="$color2"/>");
33 g.translate(x, y);
34 var p = java.awt.geom.GeneralPath();
35 p.moveTo(0,0);
36 p.lineTo(s*31.12, s*(50-10.83));
37 p.lineTo(s*12.13, s*(50-15.28));
38 p.lineTo(0, s*50);
39 p.closePath();
40 var grad = new java.awt.GradientPaint(s*5, s*5, c1, s*30, s*40, c2);
41 g.setPaint(grad);
42 g.fill(p);
43 g.setColor(C.WHITE);
44 g.draw(p);
45 </message>
46 </xsl:template>
47]]></value>
48 </variable>
49 </service>

Figure 7. XML description of a adapter factory transforming a “Mouse3” functionality into a “DisplaySource” functionality, the goal being to render a
cursor on the display at the position of the Mouse3 cursor. See Section V-B for details. For reproduction in this paper, file is reformatted and irrelevant
parts are replaced with “...”. In this case the “...” are placeholders for namespace declarations and some type information that is unused in this context.

257

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

designed to transform XML documents. The adapters expect
to receive XML messages and line 25 defines how the
“<move>” messages received on the “events” connector
should be processed. Line 26 expresses that (for each move
message that is received) the adapter should broadcast a
new text message on the “display” OMiSCID connector. Re-
member that these output messages are eventually reaching
a Display service, which will expect some drawing code
written in JavaScript. That is exactly what lines 27 to 44
produce: some JavaScript code using an implicit graphic
context “g”. The JavaScript code is generated by resolving
some XSLT variable (using “<xsl:value-of...”). The “@x”
and “@y” make use of the XSLT notation to access at-
tributes, here the attributes of the “<move>” element. The
“$size”, “$color1” and “$color2” use the XSLT notation
for accessing variables. These variables actually correspond
to the instantiation parameters for the considered adapter
and they are brought into the XSLT context by the adapter
factory program. In the example, we see that the position
from the move message is used to translate the rendered
cursor (lines 27, 28, 33), while the parameters (that can be
tuned by the client of the factory or by the GUI plugin)
control the size and the colors of the cursor.

Figure 9 provides another adapter factory description,
transforming a Mouse3 into a Mouse1 by just filtering click
events and forwarding move ones. All the concepts involved
in this adapter factory description have been covered in pre-
vious paragraphs. The main novelty in this adapter lies in the
“code” variable at lines 12 to 18. Again the input messages
are expected to be XML messages but this time two different
possible root elements are handled: the “<click>” and the
“<move>” elements on lines 13 and 16. Another difference
is that the output messages sent at lines 14 and 17 are not
textual messages but rather XML messages (when omitted,
the “type” attribute defaults to “xml”). In the case of XML
output, the XSLT language is again very well suited as it
has been designed for XML transformation.

Figure 10 shows the use of a dedicated language in the
“code” variable. This example is actually the one of an
adapter from Android key events to some slide controller
commands. The language has been designed to make it easy
to express a mapping between arbitrary string messages to
string messages. XSLT could be used for this purpose but
would be unnecessarily verbose. The “code” variable from
Figure 10, lines 12 to 15, starts with “map:” indicating the
use of the custom mapping language. This language is a
domain specific language designed for mapping string to
strings. The mappings are given, one by line, each string on
the left of the arrow “->” is mapped to the string on the
right. In this case, for example, when a message containing
“KEY25UP” is received from the “events” connector of
the source service, the adapter will broadcast a message
containing “next” on its “events” connector. What is not
illustrated in this example is the fact that the left part of

the arrow is actually a regular expression and the right part
a replacement expression. With the “map:” language, most
people can create new mappings by copying and updating an
existing adapter, without any knowledge of XSLT, JavaScript
or even XML.

All adapters are present in a adapters/ folder in
the git repository. The adapters are written using exactly
the principles explained previously in this section. Some
knowledge of XSLT is required to understand advanced
constructs, e.g., as in Figure 7 and Figure 9.

C. Other Test Cases

Apart from the tic-tac-toe game, we also implemented
other environment services, applications and adapters.

Games With Analogous Controls – For example we cre-
ated a MagicSnake game that consists in guiding a
snake in a 2D maze to reach a target as fast as pos-
sible while avoiding walls. The game can be found in
projects/MagicSnake and, in the same way as the tic-
tac-toe game, it requires a specific controller and exposes its
model (but no event-based output). The game is rendered
thanks to a dedicated adapter (output illustrated in Figure 8)
and reuses the exact same Display service as the tic-tac-
toe. As an experiment, we also modified a game called
“Nuncabola” where the player controls a ball rolling in a
3D environment. Both games use a two dimensional analog
input: we implemented this input with different combina-
tions of environment services and adapters. Eventually, we
control these games using:

• obvious device such as a mouse or a keyboard,
• more exotic devices such a accelerometer-based devices

(e.g., smart phone, WiiMote) or WiiFit-like devices,
• computer vision and human tracking (e.g., the player

moves in the room to control the ball acceleration, or
the player moves his hands, arms, etc.)

Various Use of Simple Events – The main use of the “map:”
dedicated language that we proposed (see Section V-B) is
to easily write adapters for services that exchange only very
simple events. We considered various input modalities for
such events and various applications and logic-less applica-
tions where an adapter links directly an input service from
the environment to an actuator service of the environment.

Using simple generation of keyboard events, we imple-
mented a slide presentation controller. We used various
methods to skip to the next/previous slide including for
example computer vision, e.g., gestures; sound recognition
(clapping hands); and voice recognition, e.g., saying “next
slide”.

We provide an example of computer vision
based push button: the code is available in
projects/AdditionalModules and is actually
implemented using a multi-language component framework
(see [2]), the assembly of components being defined in

258

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Showing a rendered view from the MagicSnake game together with a debugging window explaining computer vision based environment services.
See Section V-C for details. Detecting and tracking the finger tip, its 2D position can be used as an analogue input for the MagicSnake game. We also
show a computer-vision based button: we want the button to be triggered if the white box in the center is covered by the user’s hand. We also want to
avoid unwanted clicks, for example, when the user’s hand is fully covering the patterns (including the red boxes) we don’t want a click to be triggered.

the file pipelines/clicklet-omiscid.xml. The
push button is exposed as an OMiSCID service and sends
simple “ON” or “OFF” events when it changes state. The
overall principle of the vision-based button is to extract the
foreground image of the scene, e.g., containing the user or
his hand.

Imagining we want a small rectangle (e.g., a post-it) to
act as a button, then, we define a region of the size of this
rectangle and we detect when it is covered by the foreground
pixels. An example of such region is the white box shown
in Figure 8. However, in the example of Figure 8, we want
a click to be generated if the user covers the white box
with his finger. However, if the full hand covers it, then it
probably means that the intention of the user is different
(reaching another button or just passing between the camera
and the post-it). To be able to filter out these wrong clicks,
we reason about whether the red boxes from Figure 8 are
covered or not (how many of them and which ones). To
avoid unwanted repetitive clicks, some delay is added: a
button click is validated only if the click detection stays
stable for a few frames.

We also implemented a minimal application for An-
droid devices: it exposes an OMiSCID service that sends
events each time a physical key is pressed (e.g., volume
keys, camera button, etc). The source code is available in
projects/AndroidDeviceExporter. We could also
export a “Display” for the Android device but the Android
platform does not implement Java2D and thus it would

require to express the rendering in a different way (compared
to what we currently used). The Scalable Vector Graphics
(SVG) format is a good candidate for an evolution of the
display, to have some cross-platform rendering primitives.

Events produced from the Android application can be
transformed, for example to a controller for a slide presen-
tation. The corresponding adapter uses the “map:” language
and is provided in Figure 10. Similarly, using the computer
vision based push button to change slide can be done with
a simple mapping like “ON -> next”, considering only the
press of the button and ignoring when it gets released.

The computer exporter presented in previous sections
(source to be found in projects/ComputerExporter)
can export various services that expect simple string events.
The slide presenter accepts four commands: “next” and
“previous” for stepping within slides (actually sending left
and right arrow key events to the system) and “next+” and
“previous+” for skipping directly to the following slide,
skipping animations (actually sending up and down arrow
key events to the system). There is also a volume controller
that accepts “volumeup”, “volumedown” and “mute”, which
impact the system volume in the expected way.

Two services from the computer exporter actually accept
any simple string message: the chat service and the text to
speech (TTS) service. When it receives a message, the chat
service displays the message in a frame on the computer
where it is running (the frame is opened if it was closed
before). This can be used for popup notifications, application
reporting or the textual rendering of models such as the tic-

259

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tac-toe model. Similarly the TTS service will use “espeak”
to voice any text message it receives. The TTS can be used
for mostly the same purposes as the chat service, the main
differences being the throughput (speaking is slower than
writing) and the fact that the TTS works even if the user is
not facing a screen.

VI. CONCLUSION AND FUTURE WORK

This article presented the Environment, Application,
Adaptation (EAA) architectural approach. It reuses service
oriented principles (SOA) and takes inspiration from the
Data, Context, Interaction (DCI) approach. Within our EAA,
the environment and the applications are fully independent
of each other. This both encourages the design of more
generic environment services and eases the deployment of an
unmodified application in a new environment: this deploy-
ment is possible even if, eventually, the application ends up
using only originally unknown services. The glue between
what a particular environment offers and what a particular
application requires is done by a dedicated adaptation layer.
This layer makes the overall system easier to adapt and open
to user control and innovation.

An implementation of this approach was showcased: this
implementation is fully operational and allows dynamic
run-time extension with new services, applications and
adapters. To incorporate informal feedback received on [1],
we provided very detailed explanations of the mechanisms
involved in the implementation. We also cleaned up and
made available the source code for all presented use cases
on a dedicated page [2].

The foreseen future directions involve the improvement
of the user interface (icons for service types, quick filtering,
etc), and the exploration of a dedicated interface to create
simple adapters based on the mapping language we used.
More structured variations of the proposed approach, with
different implementation choices, should also be explored:
indeed, the approach matches recommendations made by
the European IST Advisory Group (ISTAG) in a recent
report [17] mentioning that “we might expect to see new
programming or modeling languages which include adapta-
tion mechanisms as first-class citizens”.

REFERENCES

[1] R. Emonet, “Environment - Application - Adaptation: a
Community Architecture for Ambient Intelligence,” in 2011
1st International Conference on Ambient Computing, Appli-
cations, Services and Technologies (AMBIENT), Oct. 2011.

[2] “Webpage for the source code for the EAA demonstration
(this article).” accessed 12-July-2012. [Online]. Available:
http://eaa.heeere.com/

[3] C. Escoffier and R. Hall, “Dynamically adaptable applications
with iPOJO service components,” in Software Composition,
2007, pp. 113–128.

[4] ESSI WSMO working group: research and development ef-
forts in the areas of Semantic Web Services, 2007, website
and working draft: http://www.wsmo.org/ and http://www.
wsmo.org/TR/.

[5] R. Lara, D. Roman, A. Polleres, and D. Fensel, “A conceptual
comparison of wsmo and owl-s,” in ECOWS 2004, ser. LNCS,
vol. 3250. Springer, 2004, pp. 254–269. [Online]. Available:
http://www.springerlink.com/content/p8358uyre5kw3h7h

[6] J. Preciado, M. Linaje, R. Morales-Chaparro, F. Sanchez-
Figueroa, G. Zhang, C. Kroiß, and N. Koch, “Designing
rich internet applications combining uwe and rux-method,”
in Web Engineering, 2008. ICWE’08. Eighth International
Conference on. IEEE, 2008, pp. 148–154.

[7] J. Coutaz, “Meta-user interfaces for ambient spaces,” Task
Models and Diagrams for Users Interface Design, 2007.

[8] M. Vallée, F. Ramparany, and L. Vercouter, “Dynamic service
composition in ambient intelligence environments: a multi-
agent approach,” in Proceeding of the First European Young
Researcher Workshop on Service-Oriented Computing, Le-
icester, UK, April 2005.

[9] M. Assad, D. Carmichael, J. Kay, and B. Kummerfeld,
“PersonisAD: distributed, active, scrutable model framework
for context-aware services,” Pervasive Computing, 2007.

[10] J. Chin, V. Callaghan, and G. Clarke, “Soft-appliances: A vi-
sion for user created networked appliances in digital homes,”
Journal of Ambient Intelligence and Smart Environments, pp.
69–75, 2009.

[11] J. O. Coplien and G. Bjørnvig, Lean Architecture: for Agile
Software Development. Wiley, 2010.

[12] R. Razavi, K. Mechitov, G. Agha, and J. Perrot, “Ambiance:
a mobile agent platform for end-user programmable ambient
systems,” in Proceeding of the 2007 conference on Advances
in Ambient Intelligence. IOS Press, 2007, pp. 81–106.

[13] R. Emonet and D. Vaufreydaz, “Usable developer-oriented
functionality composition language (ufcl): a proposal for
semantic description and dynamic composition of services
and service factories,” in Intelligent Environments, 2008 IET
4th International Conference on. IET, 2008, pp. 1–8.

[14] O. Alliance, “Listener Pattern Considered Harmful: The
Whiteboard Pattern, 2nd rev.” http://www.osgi.org/wiki/
uploads/Links/whiteboard.pdf, 2004, [Online; accessed 15-
December-2012].

[15] F. Moatasim, “Practice of community architecture: A case
study of zone of opportunity housing co-operative,” Ph.D.
dissertation, McGill University, 2005.

[16] R. Emonet, D. Vaufreydaz, P. Reignier, and J. Letessier,
“O3miscid: an object oriented opensource middleware for ser-
vice connection, introspection and discovery,” in International
Workshop on Services Integration in Pervasive Environments,
2006.

[17] ISTAG, “Software Technologies: The Missing Key
Enabling Technology,” http://cordis.europa.eu/fp7/ict/docs/
istag-soft-tech-wgreport2012.pdf, 2012, [Online; accessed
15-December-2012].

260

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 <service xmlns="..." name="AdapterFactory">
2 <variable name="from">...Mouse3...
3 <variable name="to"> ... Mouse1...
4
5 <variable name="parameters"> <access>constant</access>
6 <value>button1 : int = 3</value>
7 </variable>
8
9 <variable name="start">... js: addOutput("events"); listenTo("events"); ...

10
11 <variable name="code"> <access>constant</access>
12 <value><![CDATA[xslt:
13 <xsl:template match="events/click[@button = $button1]">
14 <message on="events" type="xml"><click button="1" x="{@x}" y="{@y}"/></message>
15 </xsl:template>
16 <xsl:template match="events/move">
17 <message on="events"><move x="{@x}" y="{@y}"/></message>
18 </xsl:template>
19]]></value>
20 </variable>
21 </service>

Figure 9. XML description of an adapter factory transforming a Mouse3 functionality into a Mouse1 functionality by simply filtering click messages
and forwarding move messages. The “code” of the service uses an “xslt:” transformation, see Section V for details. For reproduction in this paper, file is
reformatted and irrelevant parts are replaced with “...”.

1 <service xmlns="..." name="AdapterFactory">
2 <variable name="from"> ... AndroidKeys ...
3 <variable name="to"> ... RemoteControl for=${id} ...
4
5 <variable name="parameters"> <access>constant</access>
6 <value>id: float ... = #(someRequirement RemoteControl for)</value>
7 </variable>
8
9 <variable name="start"> ... js: addOutput("events"); listenTo("events"); ...

10
11 <variable name="code"> <access>constant</access>
12 <value>map:
13 KEY24UP -> next
14 KEY25UP -> previous
15 KEY80UP -> next
16 </value>
17 </variable>
18 </service>

Figure 10. XML description of an adapter factory transforming an AndroidKeys functionality into a RemoteControl functionality. The “code” of the
service uses a custom “map:” type, see Section V for details. For reproduction in this paper, file is reformatted and irrelevant parts are replaced with “...”.

