
278

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Assessment Models and Qualitative and Symbolic
Analysis Techniques for an Electrical Circuits

eTutor
Adrian Muscat

Dept of Communications and Computer Engineering
University of Malta

Msida, Malta
Email: adrian.muscat@um.edu.mt

Jason Debono
Institute for Electronics

Malta College for Science and Technology
Corradino, Malta

Email: jason.debono@mcast.edu.mt

Abstract—This paper is about assessment models, domain
expert models and user interfaces as components in an Intelligent
Tutoring System that serves junior classes in electrical circuits.
Two student models for the purpose of automated assessment are
developed and tested. One of the models is a Markovian graph
model, while the other is a histogram model. The effectiveness
of these models in tracing the student’s declarative as well
as procedural knowledge is studied and compared to human
assessment. The domain expert models are based on qualitative
analysis and on symbolic quantitative techniques. These models
are used to test declarative statements made by the student and
also to generate a solution to the problem. The circuit analysis
techniques are also studied from an educational point of view
and are compared to numerical models on the basis of how
much they help the student assimilate the knowledge. Two types
of user interfaces are developed, one is text command line based,
and the other comprises a graphical user interface. These three
building blocks are used in the development of two independent
systems, which are field tested with the engagement of polytechnic
teachers and students at the higher national diploma level. The
technical and pedagogical results obtained for the two modules
are good and encouraging.

Keywords-Electrical; Intelligent Tutoring System; Qualitative;
Symbolic; Markov Model; Assessment;

I. INTRODUCTION

Electrical circuit theory is one of the foundational courses
studied in college, polytechnic and university degrees in the
areas of electrical and electronics engineering. Later courses,
such as electronic circuits and electrical machines, build on a
good knowledge-base in circuit theory. It is therefore important
that the student acquires a good handle in this theory. As
with other foundational courses good mentoring from the very
start is important in reaching this goal. As such Computer
Aided Learning (CAL) or Intelligent Tutoring Systems (ITS)
software can play a significant part in the progress of the
student. In [1] the authors develop a prototype circuit simulator
based on qualitative and symbolic reasoning, that emulates the
process or sequence of steps that a person carrying out circuit
analysis manually usually engages in. In this paper the system
is augmented with the addition of an assessment module that
is useful in giving feedback and following the progress of the

student. These two models form the basis or kernel for an ITS
or eTutor.

Personal human tutors are very effective in increasing the
learning rate and studies show that personal tutoring helps
students achieve significantly higher assessment scores [2] and
[3]. A system of personal human tutors is however unsustain-
able and unrealizable due to the financial cost of the project as
well as the lack of availability of human tutors. ITSs promise
to deliver a personal mentor or a tutor to each student in class.
The quest is to model the tutor using artificial intelligence
techniques. Two early and substantially successful systems are
PUMP [4] and SHERLOCK [5]. PUMP is a secondary school
algebra tutor and SHERLOCK is a virtual practicing space
for apprentices in electronics troubleshooting. More recent
systems were designed for physics [6] and medical sciences
[7], and the systems proposed and explored in [8] and [9]
are probably the first ITS for electrical circuits. The system
described in [8] is a production system and rules are defined
to generate problems, solve problems and judge mistakes. The
system generates and solves problems that consist of simple
parallel and series combinations of impedances. Judging mis-
takes is carried out by analysing and coding several real-world
student mistakes as mal-rules.

ITS were initially evaluated from an Artificial Intelligence
point of view rather than from an educational impact focus.
This approach is however changing and ITS is much more of
an interdisciplinary research area today. Indeed today more
emphasis is placed on evaluating the impact of ITS from
an educational point of view. Nevertheless, the independent
development of a number of components that contribute to
the realisation of the ITS is a necessity.

This paper contributes a Markovian Assessment Model
to assess solutions to problems in electrical circuits and a
Nodal Analysis electrical circuits expert model for circuits of
arbitrary topologies. Two systems that target electrical circuit
classes are discussed. The first system accepts input circuits
that are made up of an arbitrary number of resistors and
one voltage source. This system processes serial and parallel
connections of resistors to provide a machine generated full



279

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

answer and allows the student to drive the process him/herself.
In the latter case, the output log-file provides the input to a
student assessment model that assesses the student for both
declarative and procedural knowledge. The second system
accepts input circuits that are made up of an arbitrary number
of resistors, voltage sources and current sources. The software
tool then tutors the user on how to select valid spanning trees
and the corresponding fundamental cutsets for the input circuit.
The symbolic Kirchhoff’s Current Law (KCL) equation for
each fundamental cutset is then generated by the program,
which the user or student can compare to his/her workings.
Both tools analyse the topology of the input circuit to ac-
complish their respective type of analysis. The first system
is targeted to Malta Qualifications Framework (MQF) Level
Four students while the second system is to be used by MQF
Level Five students.

This section introduced and motivated the need for tutoring
systems in electrical engineering. The rest of the paper is
organised as follows: Section II gives background information
and discusses related work in the literature. In particular
Section II-C reviews circuit analysis techniques and section
II-D reviews student models, both of which are important in
this work. The framework and models developed are described
in section III. Sections IV and V describe and discuss the
results. Finally, section VI concludes the paper.

II. BACKGROUND AND LITERATURE REVIEW

This section provides (a) background to the current state-
of-the-art ITS architecture and the current practices in schools
teaching electrical theory, and (b) a literature review of do-
main expert models, which in this case are circuit analysis
techniques, and students assessment models that have been
proposed in various ITS research projects.

A. Intelligent Tutor Architecture

Fig. 1 depicts the general architecture for an ITS, summa-
rized from [10] and [11]. The main components of such a
system are a Domain or Expert model, a Student Model and
a Tutoring or Pedagogical model. The problem Solving Envi-
ronment or Human Computer Interface is another component
that should not be underestimated. To these components we
have added a human Tutor model, which is useful to tune the
ITS system to the peculiarities of specific human tutors. This
involves machine learning from data generated by the human
tutor and may contribute to a more effective ITS.

The problem solving environment defines the way the
human student interacts with the system. It defines for example
whether the interaction is via a text editor, via a graphical
editor and more recently via speech and vision. The interface
selected has a profound effect on the pedagogical nature of
the system. It can for example limit the types of inputs that
a student is allowed to enter. This can be either thought of
as a limitation, in other words less freedom of roaming space
for the student or as a forced scaffolded learning pedagogy. In
general, the ITS research community agrees that the problem
solving environment should emulate as far as possible the real

Fig. 1. Intelligent Tutoring System architecture, summarized from [10] and
[11]

world environment and at the same time facilitate the learning
process [10]. The latter requirement should be considered in
the light that scaffolding should be completely removed at the
tail end of the learning process [12].

The Domain Expert module provides an interpretation to
the student’s input. This module determines whether the
atomic assertions of the students are correct in the specific
domain area. Additionally the expert module should generate
a full answer to problems given to the student, including an
explanation in a natural humanistic language, symbols and
diagrams included. This implies that the system must apply
a causal human-like reasoning process when generating an
answer. Finally, this module encompasses all the knowledge
that a student is expected to learn and can therefore be termed
as the ideal student model. In other words it is a benchmark
that students strive to reach.

The student model is a record of the knowledge state of a
student. In its most simple form it is a copy of the expert’s
model that is tagged with information of how well the student
has demonstrated knowledge of each component in the expert
model. Knowledge can be classified into classes; declarative
and procedural [10]. Most often declarative knowledge implies
learning rules and relationships. On the other hand procedural
knowledge is not typically well defined and relates to the
problem solving approach itself. For the case of declarative
knowledge statistical models may suffice, while for procedural
knowledge models that consider the sequence and order, in
which declarative knowledge is applied are desired. In the
electrical circuits ITS described in [9] and [8] the student
model is limited to recording declarative knowledge and
Mishra et al point out that the model should also capture
the knowledge flow [13]. Finally, the student model is used
to assess the progress of the student and its output is very
useful for the pedagogical module that observes the student
and controls the actions taken by the ITS.

The Pedagogical Module decides the problems and se-



280

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

quence that are presented to the student and, at which mo-
ment it offers support to the student. This model is usually
considered to be domain independent. Typically there are six
types of support that an ITS can provide to the students [14]
and [10]; (1) Problem solving demonstration, (2) Scaffolding,
(3) Monitored from a distance, (4) Goal seeking, (5) Free
exploration and (6) No support is provided. The optimal choice
of these six types of support services is the topic of a highly
debated question in pedagogical research. In [13], Mishra et al
cast this problem as an intelligent questioning system. Mishra
et al argue that current electrical engineering ITS available are
a ”little more than a computerized version of home problems
found in a typical textbook” and without an appropriate student
model the pedagogical module does not function well or not
at all. Another way to approach this problem of choice is to
consider a domain independent help-seeking model, that aims
at detecting inappropriate help requests and a gaming model
that detects attempts at gaming the system. This approach is
studied in depth by Roll et al in [15].

Notwithstanding the significant progress in the field of ITS,
the products developed are still deemed not as effective as
a human tutor in the situation of when he/she is leading
discussions with students [13].

B. Electrical Theory Classes in Schools

Most college, polytechnic and university electrical circuit
theory courses include theoretical as well as practical sessions.
The practical sessions are important for two reasons; (a)
students learn how to link theoretical models to the real-
life circuits, and (b) students learn how to carry out the
appropriate measurements using the right instrument. These
practical skills are indispensable for professional engineers
during the installation, testing and maintenance, of electrical
and electronics systems. However instrumentation is generally
expensive and its use is restricted to labs. In this respect
numerical circuit simulators, such as SPICE, augmented with
a graphical schematic capture front and back ends are very
useful. With such elearning tools students connect virtual
components together using virtual wires, choose and add
virtual instruments to the circuit, and finally, carry out a
computer analysis. The software outputs the variables chosen
or measurements as displayed on the virtual instruments.
Such measurements include numerical values, like for example
electrical current on a virtual meter, and voltage waveforms on
a virtual oscilloscope. This type of eLearning software, widely
distributed among colleges and polytechnics helps students in
the acquisition of practical skills including the selection of
instrumentation. It also speeds up the process and reduces the
cost since there is no need for building the circuit in real life.
However it does not help the student in understanding how the
circuit works or how to design the circuit. On the contrary, it
encourages the student not to carry out a manual or mental
analysis.

The second author has carried out a study based on a
questionnaire regarding the effectiveness of using SPICE simu-
lators as a pedagogical tool and using handouts, which explain

step by step the symbolic calculations involved in electric
circuit analysis. The questionnaire involved both open ended
questions and Likert scale questions. The questionnaire was
handed out to the students of the two first year classes of the
National Diploma in Electrical and Electronics Engineering
(MQF level 4) at Malta College of Arts, Science and Tech-
nology (MCAST), Malta and a total of thirty one filled in
questionnaires were collected. The full report on this study
is published in [16]. The report outlines two conclusions that
are relevant to this paper; (a) in general although students
find the SPICE simulator as motivating very few agree that
it helps in understanding how circuits work, and (b) The
larger proportion of students acknowledge that it would be
much more useful if the simulator explains how the results
are obtained. These results confirm what other researchers [9]
and [17], who advocate the use of symbolic and qualitative
techniques have stated in their papers, i.e., software that gives
explanations, and not just results, is a better aid to students.

Apart from practical skills, electrical engineering students
learn how to analyse and design electrical circuits. Tradi-
tionally students have been taught how to analyse electrical
circuits using pen and paper through the application of the
relevant theories, including Ohm’s Law, Kirchhoff’s Current
Law and Kirchhoff’s Voltage Law. As explained above SPICE
simulators were not specifically designed to help students
learn how circuits work, consequently SPICE simulators have
some serious limitations when used as a pedagogical tool.
The electrical theories taught to students are an essential part
of the mental models that the students must develop. Using
these theories students can write down symbolic (algebraic)
equations that describe how the circuit being analysed behaves.
In contrast numerical simulators calculate values iteratively,
and this approach limits the understanding and insight that
the simulator can impart to its user about how the circuit
being analysed functions. In the last couple decades, sym-
bolic simulators have been developed that build the symbolic
equations that describe the circuit being analysed and display
these equations explicitly. By examining the transfer function
equations the student can then infer how the output changes
when the parameter values are varied. Examples of recently
developed symbolic simulators are SAPWIN [18] and SNAP
[19]. On the other hand, these simulators do not explain how
the transfer function is obtained.

Additionally, accomplished engineers apply mental models,
during what-if analysis activities, to understand how a change
in a parameter at a point of the circuit affects the other param-
eters of the circuit. A change in a parameter, like for example
the input voltage, is thought of as influencing the parameters of
its neighbouring components and nodes. In turn, these varying
parameters affect their own neighbours and hence the changes
propagate throughout the circuit. Furthermore, engineers only
consider the direction of change, that is, an increase, a decrease
or no change at all in the parameter’s value. In other words,
the quality of the change is considered and not the quantity of
the change. This method of analysing a circuit was formally
studied by Sussman and Stallman [20] and Johan De Kleer



281

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21]. In [9], Ahmed et.al. note that experts apply qualitative
reasoning prior to calculation, whereas novices calculate first.

In summary, human tutors teach informal methods for what-
if qualitative analysis and quasi-formal methods such as node
and loop methods that yield quantitative answers. Likewise as-
sessment is carried out as how well a student demonstrates the
application of both qualitative analysis as well as quantitative
analysis. The most creative teachers make use of real-world
problems to motivate the students and include design questions
to give a new meaning to circuit analyses. In [17], a Practical
Relevance Module (PRM) and a Design Module (DM) are
proposed for inclusion in an electrical circuit ITS.

C. Circuit Analysis Techniques

In this section, three circuit analysis paradigms, (the quasi-
formal nodal and loop analysis, symbolic analysis and quali-
tative analysis), pertinent to ITS are discussed.

1) Ohm’s Law, Nodal and Loop Analysis: The simplest way
to analyse circuits is to identify parallel and series connections
such that the original circuit is reduced in complexity to
another equivalent circuit that is easier to analyse. However
this method fails when one section of a circuit is mutually
coupled to another section, in which case a global simultane-
ous solution is required. The electrical circuit domain model
described in [8] and [9] is based on non-coupled serial and
parallel combination of impedances and is there limited to such
circuits. On the other hand a complex circuit can be described
by using either the mesh or the nodal formulation. The mesh
equations are based on Kirchhoff’s Voltage Law (KVL), which
states that the sum of voltage drops along any closed loop is
zero, while the nodal equations are based on KCL, which states
that the algebraic sum of currents leaving any node is zero.
A more general definition of KCL is that in any fundamental
cutset that separates the network into two parts, the sum of
the currents in the cutset edges is zero. If the number of
branches in the network is denoted by the letter b and number
of ungrounded nodes is denoted by the letter n, then to solve a
circuit; (a) the number of mesh equations required is equal to
b - n, and (b) the number of nodal equations required is equal
to n. In general nodal analysis yields less equations than mesh
(loop) analysis and hence nodal analysis is usually easier to
carry out [22].

The nodal and loop methods are widely manually applied
in circuit analysis. Automation of these methods however
requires formalising it in graph theory, for example as Signal
Flow Graphs. The model implemented in this paper focuses
on the use of graph theory to analyze the topology of elec-
trical circuits, which is the study of inter-connected objects
represented by ’edges’ in a graph [22]. The points where
the end-points of edges touch together are formally called
’vertices’ or ’nodes’. A graph is extracted from the schematic
diagram of a circuit by replacing the components with edges.
For example the graph shown in fig. 2(b) is extracted from
the circuit shown in fig. 2(a). A graph of an electrical circuit
contains more than one spanning tree, and from each spanning
tree a set of fundamental loops and fundamental cutsets can be

Fig. 2. (a) Example Electrical Circuit, and (b) Graph for Example Circuit.

extracted. A spanning tree of a graph is defined as any set of
connecting branches that connects every node to every other
node without forming any closed paths or loops [22]. Fig. 3(a)

Fig. 3. (a) Spanning Tree I, and (b) Spanning Tree II.

and fig. 3(b) show two different spanning trees for the graph
shown in fig. 2(b). Once a spanning tree has been defined,
the edges making part of the spanning tree are referred to as
branches. The remaining branches are referred to as links or
chords. A fundamental loop is a loop that contains one (and
only one) link in its set of edges [22]. Fig. 4(a) shows the

Fig. 4. (a) Fundamental Loop for R1, (b) Fundamental Cutset for V1.

fundamental loop for link R1 when considering the Spanning
Tree shown in fig. 4(b). To construct a loop that includes only
the link R1 (shown as a thick black line) and no other links,
the tree branches shown in red must be used. Therefore the
fundamental loop of R1 is made up of the edges: R1, R3, and
V1. A cut set is a minimal set of edges that when cut, divides
the graph into two groups of nodes. A fundamental cutset is
a cutset that contains one (and only one) tree branch in its set
of edges [22]. Fig. 4(b) shows the fundamental cutset for tree
branch V1 when considering the Spanning Tree shown in fig.
3(b). By cutting V1 node 1, shown in green becomes isolated



282

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from the group of remaining nodes, that is nodes 2, 3 and 4,
which are shown in red. Together with branch V1, the link
R1 has to be cut to keep the two groups of nodes separated,
hence the complete fundamental cutset is: V1, and R1.

2) Symbolic Simulators: Symbolic simulators are based on
formal circuit theory and are able to generate the transfer
function of circuits input to them. The transfer function is
a commonly used symbolic expression that describes how
a circuit behaves. Using the transfer function the output
signal that the circuit generates for a given input signal can
be calculated. The advantage of using a symbolic transfer
function is that the circuit is analysed symbolically only once
to obtain the transfer function and then as many numerical
answers as needed can be obtained from the transfer function
by substituting the symbols with the numerical values being
considered. Considerable research has been carried out on the
symbolic analysis of electrical circuits in the late 1960’s and
a number of software Symbolic Simulators were developed in
the 1980s [23]. For example De Kleer developed a symbolic
simulator called SYN together with Sussman in 1979 [24].
De Kleer states that SYN has several limitations that are were
overcome in EQUAL, the Qualitative Analysis Simulator that
he developed [21]. These limitations include the lack of the
ability to use approximations that drastically simplify the alge-
bra without sacrificing accuracy. Some of these problems have
been addressed in modern symbolic simulators [25]. Good
examples of modern symbolic simulators that are equipped
with a Graphical User Interface (GUI), including a schematic
capture front end, are SAPWIN [18] and SNAP [19].

3) Qualitative Electrical Circuits Analysis: De Kleer [21]
divides qualitative analysis of electrical circuits into two
independent types of analysis, which are; (a) causal analysis,
and (b) teleological analysis. The way that the components
are connected together in a circuit gives a specific structure to
the circuit. The schematic diagram of a circuit describes this
structure. Each component in the circuit causes some effects
on the other components that are connected to it, and these
in turn affect the components that are connected to them, and
so on. The aim of causal analysis is to combine the behaviour
of the individual components to explain the behaviour of the
overall composite system. That said, a composite system is
built so that it serves a purpose. The purpose of a circuit is
also referred to as the function of the circuit. Teleological
analysis describes how by knowing the behaviour of a circuit
one can deduce its function. Causal analysis relates structure
to behaviour and teleological analysis relates behaviour to
function. These two types of analysis were also investigated
by Marc Fossprez in 1988 [6]. Marc Fossprez states that it
is relatively easy to deduce how a circuit behaves once its
function is known, but it is much harder to deduce how a
circuit behaves if only the circuit’s structure (its schematic
diagram) is given. His work focuses on this latter task and he
gives definitions about the different structures that circuits can
possibly have and mathematical proofs that employ topology
and graph theory.

The ”Propagation of Constraints” technique, developed by

Sussman and Stallman [20], is the first attempt at formalizing
qualitative analysis. This method is inspired by the what-if
qualitative and informal procedure applied by experts in elec-
trical engineering and described in section II-B. The algorithm
developed by Sussman and Stallman calculated the numerical
values of voltages and currents and therefore goes beyond
qualitative analysis. In 1984 Johan De Kleer implemented
the Qualitative Analysis of electrical circuits in a program he
called EQUAL [21]. This program is able to explain how a
circuit works using qualitative arguments and even categorize
the circuit as being a power-supply, logic-gate, amplifier or
multivibrator. Furthermore, the propagation of Constraints has
proved to be a powerful algorithm in circuit analysis. Fossprez
recommends its use when searching for a pair of compatible
current and voltage (i, v) orientations, while analysing circuits
qualitatively [26]. In 2006, Rehman et al developed a type
of software authoring tool for an ’Intelligent Book’ [27], in
which this algorithm is used to find the currents, voltages
and component values inside different circuits. The values
generated by the Propagation of Constraint algorithm are used
to verify the values input by the students that make use of the
’Intelligent Book’.

D. Student Models For Assessment

Alongside the domain expert model, the student model is
indispensable in an ITS since this stores information about the
student’s knowledge state, progress and learning behaviour.
The two main characteristics of an ITS system is adaptivity
to the student and assessment. In the case of being adaptive it
is necessary to build a model for each student that is updated
as the student progresses through the learning process. In the
case of assessment it may not be necessary to store a model for
each student. Instead models that the define certain levels of
attainment, such as distinction, merit and pass, to which the
student’s profile is compared will suffice. In an assessment
system the goal is to determine what the student knows or
the knowledge state. Knowledge is often described as being
either declarative, procedural, or a mixture of both. Ideally
the assessment system models all three types. Additionally
other variables that relate to the student’s human attributes
and aptitudes, such as cognitive, conative, meta-cognitive,
motivational and affective can be added to the student model
to deliver systems that consider hidden skills and states of
mind [28] and [29]. Finally, the terms knowledge tracing and
model tracing are often used to distinguish between assessment
and adaptivity. Knowledge tracing refers to what the student
knows, whereas model tracing refers to the steps taken by
a student when solving a problem. Model tracing implies
the sequence of selecting the right or wrong items versus
time, that lead to a solution or an impasse. It is our view
that model tracing can be split into two types, those that are
directly related to the domain and therefore can be linked to
the knowledge model and those that related to generic items
or skills, such as self-regulation. In summary, student models
are compared and contrasted on the basis of how well they
can model knowledge that is either declarative, procedural, or



283

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a mixture of both.

The pre-cursor of ITSs are Computer Adaptive Testing
(CAT) systems that attempt to adjust test questions to suite
the ability of the examinee. The principle behind CAT is to
build and update a student model that reflects the knowledge
state versus time. The choice of the next item or problem to
solve is therefore based on the model output. Item Response
Theory (IRT) was developed for this purpose [30],[31] and was
the prevalent method of choice until the Bayesian modeling
approach was extensively studied and adapted to modeling
the student’s knowledge state [32], [33], [34] and [35]. More
recently Hidden Markov Models (HMMs) have been proposed
to study the metacognitive behaviour of students during the
learning process [36] and [37].

Bayesian Networks and Markovian Models are graph mod-
els that consist of nodes and directed edges. Bayesian networks
are acyclic, while Markovian models allow cycles. Markovian
models therefore have the property of representing knowl-
edge in a more compact form at the expense of granularity
and inference. Bayesian networks can be more complex and
computationally intensive, however they have been shown to
perform well in knowledge tracing and model tracing [28]
whereas Hidden Markov Models have been limited to model
tracing [36]. The graphical networks are characterized by two
types of variables or nodes; target variables and evidence
variables. Target variables are for example the knowledge
state (both procedural and declarative) and cognitive skills.
Evidence variables are attributes that can be measured such
as answers to questions, selection of items, assertions and
sequence of events including timing information. Granularity
has an effect on computational time required and may have
an effect on the accuracy of the judgment made on a student.
Therefore, models have to be compared on this attribute.
Depending on the target variables the ITS designer has to
decide on what to model with a network. For example in
[6], separate Bayesian networks are built for each student and
for each problem presented to a student. The total number of
networks that a system handles can therefore be high. Finally,
in most ITS Bayesian network implementations, such as in
[6] and [33] the networks are knowledge engineered and very
few are constructed from empirical data. One such case is
described in [35].

The work reported in [36] is motivated by an emphasis
on preparation for future learning. Therefore, the goal is not
to assess the knowledge state but to study strategies and
behaviours that students engage in during the learning process.
The proposed solution then consisted of deriving a HMM from
the measured and tagged students’ activity sequences. The
model identifies sequence patterns to a student behaviour type
or hidden state. In other words one model is required for each
behavioural trait.

In this paper a Markovian Model or finite-state machine and
a Histogram-based model are developed and studied in terms
of how well they perform in knowledge and model tracing.

III. IMPLEMENTATION OF MODELS AND FRAMEWORK

Two separate systems were developed. The first tool is text
based and input is provided via a command-line interface. The
user interface for the second tool provides a Graphical User
Interface for part of the input and output, which makes it more
adequate to be used as an eTutor. For both tools circuits are
input via a text file. The student assessment model is integrated
with the first tool only and does not provide feedback during
the problem solving process. The second tool uses the expert
model directly to provide feedback after each event.

A. Qualitative Analysis based Expert Model

This module is intended for entry level students and deals
directly with the analysis of simple circuits made up a voltage
source and a set of resistors. The software tool requires the
user to input the circuit to be analysed as a text file. As
such the circuit has to be specified in a matrix, in which
the rows represent nodes and columns represent components.
The first row of this matrix is reserved for the components’
values, that is the voltage of the battery and the resistance of
each resistor. In the cells of the other rows a ’1’ means that
terminal one of the corresponding component is connected
to the node corresponding to the cell’s row, ’2’ means that
terminal two of the corresponding component is connected to
the node corresponding to the cell’s row and ’0’ means that
the corresponding component is not connected to the particular
node considered.

The first software tool accepts input circuits that are made
up of an arbitrary number of resistors and only one battery.
This program then analyses the connections of all the resistors
and identifies resistors that are connected in parallel. Each
group of resistors connected in parallel is replaced by one
equivalent resistor. The program then identifies serially con-
nected resistors and replaces each group by one equivalent
resistor. This process is depicted in fig. 5. At each step the
program outputs a matrix in text format, which specifies the
connections in the resultant simplified circuit. If the resultant
circuit contains other groups of resistors that are connected in
parallel or in series further reductions are done. This process is
repeated until no further reductions are possible. The process
is traced backwards and the required voltages and currents
across and through the various resistors are calculated. The
program is used in this mode when a demonstration or a full
solution to the problem is required. In this mode, the student
can then manually compare the eTutor’s solution to his/her
own and discover where s/he erred.

The program can be used in an interactive mode, where
the student solves the problem on the eTutor console, or at
least records his/her steps and calculations on the eTutor. The
learner enters statements via a command-line interface, for
example Parallel(1,R1,R2,5), which means that in circuit 1,
R1 is in parallel with R2 and the equivalent resistance is 5
ohms. The Domain Model checks that the statement is correct
or incorrect. The assertion is recorded in a log-file and tagged
as correct or not correct, following output from the expert
model. Changes in the circuit are entered via a labeled text



284

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. Example of the parallel and series resistors reduction processes carried
out by the first program.

file, whose format was described above, and the circuit is
linked to the previous assertion that motivated the change in
the circuit. If the same assertion is repeated, i.e. the learner
back-tracks and repeats statements, the previous copies are
deleted. Although deleting repeated assertions results in a loss
of behavioural traces, it relaxes the task of the assessment
module, which is required to output a summative value for
the assessment. It also reduces the possibility of a student
gaming the system. Furthermore the number of commands and
inputs possible are grouped into six events. The granularity
is thus reduced with some possible loss of precision. The
latter step is a pre-processing step to relax the requirements
from the data mining technique. It also has a positive effect
of minimizing overfitting. The six events are; (a) The correct
assertion of a series or parallel combination and the calculation
of the equivalent resistance, (b) the incorrect assertion of the
latter, (c) The correct modification of a circuit, (d) the incorrect
modification of a circuit, (e) the correct assertion of a voltage
or a current, and (f) the incorrect assertion of the latter. These
six events labelled as (SP , ¬SP , C, ¬C, V I , ¬V I) are used
by the models described in the next section, III-B. In summary,
for the purpose of developing the assessment models described
in section III-B, the sequence of events are saved to a log-file.
The relationship in between events is not however preserved,
although these are implicity coded in the sequence. On the
other hand all the activity, including the commands and circuit
scripts are saved for the purpose of manually assessing and
marking the solutions. The test group for this software tool
included 27 students and 3 members of the academic staff. In
general the students and the academic staff think that the tool is
very useful and should be expanded to include further expert
knowledge. The text based user interface is a bit daunting,
especially when modifying the circuit. The teachers think that

the restrictions imposed by the program during the circuit
analysis process can give some false expectations to students.
The assessment module is described in the next section.

B. The Assessment Models

The assessment module is required to assess the perfor-
mance of a student after attempting a solution to a given
problem. Two different types of models are considered. One
model is a Markovian Model that outputs a probability distri-
bution over four levels of knowledge attainment and the other
model is a histogram-based model that outputs a measure of
difference between the ideal student model and the given case
input. The six variables used in these models are the events
described in the previous section, III-A and the sequence of
events pertinent to a given student is obtained from the log-
file described in the previous section, III-A. The following
sections describe the implementation of these models.

1) The Markovian Model: Fig. 6 depicts the architecture
for the model. The model consists of eight states or nodes,

Fig. 6. The Markovian Model. Not all possible transitions are shown.

the six events described in section III-A and two new states
(START and END). The value of the directed edges represent
the probability of the student moving to a new state. A fully
connected graph will have 64 edges in total, although the
START and END states are typically only visited once. Four
such models are required to assess a student in a discrete
probability distribution over four levels of mastery. In this
paper these four levels are labelled as 1, 2, 3, and 4, 1 being
mastery of electrical circuit theory and 4 being a failure in
learning electrical circuit theory. 3 and 4 are intermediate
levels. The four models are all based on the same architecture
in fig. 6 but the transition probabilities are different. Each
case therefore models typical sequences that a student from
a particular attainment level typically follows. In other words
the model classifies patterns of sequential events. On the other
hand atomic knowledge is assessed by the domain expert
knowledge. Therefore intuitively the expert model and the
Markovian Model will together achieve both knowledge and
model tracing.



285

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Histogram Model: The histogram-based model com-
putes the difference between the ideal student model histogram
and the case to be assessed. In the test case available there was
only one ideal student model. This was due to both the nature
of the problem and the fact that the human-interface module
inherently restricted the freedom of the student. Two different
histograms are considered. One histogram is a frequency count
of the six events (SP , ¬SP , C, ¬C, V I , ¬V I) that a student
engages in. This will be called the state vector histogram. The
difference between a given case and the ideal student model
is computed as, ∑

i

√
(Smodel

i − Stest
i )2 (1)

where Smodel is the state vector histogram for the ideal student
model and Stest is the state vector histogram for the given test
case.

The second histogram is a frequency count of the 64
state transitions possible. This is termed the transition matrix
histogram. The difference between a test case and the ideal
student model is computed as,∑

i,j

√
(Tmodel

ij − T test
ij )2 (2)

where Tmodel is the transition matrix histogram for the ideal
student model and Ttest is the transition matrix histogram for
the given test case.

Since the data set includes cases that have been marked by
the highest and lowest marks possible and the output for the
ideal answer is zero then the results are scaled to reflect the
zero to ten marks range and it will then be possible to compare
the results from the histogram model to the human generated
assessment. In doing this we are assuming a linear mapping.

C. Nodal Analysis Based Expert and Tutor model

The aim of this system is to eTutor students that are learning
how to identify a fundamental tree and the corresponding
fundamental cutsets in a given circuit and how to generate
the KCL current equations for each fundamental cutset. This
topic is covered in a unit called ’Further Electrical Principles’
that higher national diploma (MQF level 5) students follow in
the second year of their course at the MCAST.

The format of the input text file for the second program
is more compact and easier to write since in it a text line
is dedicated to each component and the numbers of the two
nodes, to which the component is connected are stated in the
corresponding line. This does away with the ’0s’ that were
used for the first program. The other information included in
each line of this text file is the X and Y coordinates of where
the component is to be drawn in the GUI, the name of the
component and its value.

Once a circuit is specified correctly in the input text file
it can be loaded in the program. Fig 7. shows an example
of a loaded circuit. The user is asked to chose a spanning
tree, by clicking on the components in the circuit. Once the
user selects a group of components that s/he think makes up a

valid spanning tree, s/he must press the ’Check Spanning Tree’
button so that the program verifies if the selected group of
components makes up a valid spanning tree. If it does not the
program informs the user and gives relevant feedback to the
user of why the selection does not make up a valid spanning
tree. The program informs the user whether s/he selected the
right amount of components and whether s/he captured all the
nodes in the circuit with the group of components selected.
The program also informs the user if there are loops present
in the selection made.

Fig. 7. Example of a loaded circuit in the program’s GUI.

On the other hand, if the selection makes up a valid tree
the program informs the user and allows the user to select
this spanning tree to continue with the circuit analysis. To
do this the user has to press the ’Use this Spanning Tree
for Circuit Analysis’ button. Once this button is pressed the
program goes into Step 2, in which the user has to select the
correct fundamental cutset for each of the tree branches inside
the selected spanning tree. The tree branch, for which the user
has to select the links that make up the fundamental cutset, is
highlighted in red, as shown in fig. 8.

The fundamental cutset must separate one of the group of
nodes from the remaining group of nodes. To help the user
the program highlights all the nodes in one of these groups in
orange and the nodes in the other group in green. After that
the user selects the components that s/he thinks make up the
fundamental cutset, s/he must press the ’Check Fundamental
Cutset’ button. Once this button is pressed the program checks
if the selected components make up a valid fundamental cutset.
If this is not the case the program gives relevant feedback to
the user. The program states whether one or more components
that should be included in the selection are not selected and
it also states if one or more components that should not be
included in the selection are in fact selected. In the case
when the selected components make up a valid fundamental
cutset, then the user is informed accordingly and is allowed
to press the button labelled ”Create Current Equation for the
Cutset”. When this button is pressed the KCL equation for the



286

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 8. Example of a fundamental cutset KCL equation generated when the
correct fundamental cutset is selected and the appropriate button is pressed.

fundamental cutset is generated by the program and displayed
at the bottom of the screen as shown in fig. 8. The user can then
press the ’Go to next Cutset’ button to find the fundamental
Cutset of the next branch in the spanning tree. This process has
to be repeated until the fundamental cutsets of all the branches
in the spanning tree are found. At this point it is desirable that
the program tutors the user on how to find the fundamental
loop for each link present in the graph, but this feature has not
been implemented yet. The author plans to have this feature
functional in the future so that it can be used by the higher
national diploma students.

In the system developed, the nodes are implemented in a list
data structure. The branches or components at a given node are
defined in another list. The algorithms then operate on these
lists. From graph theory it is known that a valid spanning tree
must be made up of n-1 edges, where n is the number of
nodes. Hence the first check made to verify the input tentative
spanning tree is to count the number of selected components
and check if it equal to n-1. If this is not the case it means
that the selected components do not make up a valid spanning
tree.

The next step to carry out is to check that the selected
components capture all the nodes inside the circuit (graph).
The algorithm just has to go through all the selected com-
ponents and mark the two nodes, to which each component
is connected as captured. After that the algorithm has to
go through the nodes and check that none of them is non-
captured. If one or more nodes are non-captured then the
selected components do not make up a valid spanning tree.
There exist cases, in which the two checks explained above
are satisfied but the selected components still do not make up a
valid spanning tree. In this case the selected branches will not
be continuously connected and at least one loop will be present
in the selection. To check for such cases the spanning tree

algorithm starts off with one of the selected tree branches. It
checks, to which nodes this branch is connected and proceeds
to discover the other branches that one of these nodes is
connected to. If there are more than one branch connected
to this node the algorithm starts considering the first branch
and it takes note, of which branch this is so that once it
finishes checking it and returns to the last node considered,
it continues looking for the correct branch. This process is
repeated for each node. When at least one branch is found
connected to a node the algorithm jumps to the other node, to
which this branch is connected and hence travels further away
from the first node that it considered at the start. Naturally
the larger the selected tentative spanning tree is, the more
searching the algorithm has to do. But in the case of invalid
spanning tree selections there are two possible ways, in which
the algorithm completes. One way is that the algorithm steps
forward (not backwards) into a node that it already checked,
and hence a loop is discovered. The other way, in which the
algorithm can complete in the case of an invalid spanning tree
selection, is that it finds out that it exhausted all the branches
and nodes that are connected to the first branch considered,
but it did not find all the nodes present inside the graph. In
this case it means that the algorithm has found one continuous
length of connected branches, which is not connected to the
remaining branches of the selected tentative spanning trees.
Since spanning trees should not contain any discontinuities
in their branches’ connection, this means that the selected
components do not make up a valid spanning tree.

Another algorithm used in the graphical analysis program
is the one that highlights in different colours the two groups
of nodes that are to be separated by a fundamental cutset.
The searching that this algorithm does is very similar to that
done by the algorithm that verifies spanning trees. However
in this case, the fundamental cutsets algorithm does not check
for loops because it is used after that a valid spanning
tree is already selected, so it is already guaranteed that no
loops are present. The important feature that this algorithm
possesses, similarly to the previous algorithm, is that it always
remembers, which branch it checked last when jumping from
one node to another, so that when it returns back to the node
from where it jumped, it continues checking from the correct
branch.

IV. RESULTS

This section describes results pertaining to (a) the Marko-
vian Assessment Model, (b) the Histogram Assessment Model,
and (c) the Problem Solving Environment.

A. The Markovian Assessment Model

In this paper, the Markovian models are tuned using empir-
ical data. For this purpose twenty-seven students are given a
problem to solve and their solution is recorded as described in
section III-A. A human tutor then assesses the twenty-seven
solutions and marks them over a 21 point scale from 0 to
10. The data set is clustered on these marks as; marks equal
or above 7.5 corresponding to level 1, marks in between 5.0



287

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and 7.4 as level 2, 2.5 to 4.9 as level 3 and marks less than
2.5 as level 4. The twenty-seven cases where approximately
uniformly distributed across the four levels. Finally these
groups are used to find the transition probabilities for each of
the four models. Assessment consists of first computing the log
likelihood probability distribution for a given new student and
the case is classified by choosing the maximum log likelihood.
The Markovian Model was first tested using samples from the
data set. Fig. 9 shows the classification results for all twenty-
seven cases, out of which two were incorrectly classified.
Fig. 10 depicts the probability distributions for four correct
cases and the two incorrectly classified cases. To further test
the model, the twenty-seven test data set was split into two
data sets, one being the tuning set and the other being the
test set. The ratio of the tuning set size to the test set size
was varied. When the training set size is 27 the correct
classification rate is 93%, for a training set size of 23 the
correct classification rate is 89%, for a training set size of 19
the correct classification rate is 85%, for a training set size of
15 the correct classification rate of 85% and for a training set
size of 8 the correct classification rate is 70%.

Fig. 9. Classification of results from the Markovian model by maximum
likelihood.

B. The Histogram Assessment Model

Fig. 11 shows how the two histogram models compare
with the human generated assessment. A non-monotonically
decreasing graph indicates deviations from the human assessor.
The state vector model is characterized by a closer match
than the transition matrix histogram model. This is expected
since the former tests for the correct event selection and
its frequency of selection, whereas the latter tests for the
transitions. These results omit the states that describe an
incorrectly executed event. This makes a fair comparison since
we know that the human assessor did not negatively mark the
solutions. When these events are included in the histogram
model the deviations and oscillations increase and the model

Fig. 10. Probability distributions obtained from Markovian model. The first
four groups are correctly classified cases for each assessment score level. The
last two groups are the two out of twenty-seven incorrectly classified cases.

is accurate only for cases close to the ideal student model, fig.
12.

Fig. 11. Absolute assessment scores obtained from the state vector histogram
and transition matrix histogram.

The real number outputs from the histogram models are
used to classify the students into one of the four levels
of attainment. Fig. 13 shows that the classification results
are not very good. The state vector model classified eight
instances in the wrong class, while the transition matrix model
classified twelve instances in the wrong class. Fig. 14 shows
the classification results for the model that included negative
states. In the case of the state vector model ten instances are
not correctly, whereas for the transition matrix model eleven
instances are in error. In summary, the histogram models can
only be used to classify students in two states, mastery or non-
mastery. On the other hand, the Markovian Model grades the



288

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 12. Absolute assessment scores obtained from the state vector histogram
and transition matrix histogram. These results include the negative states.

Fig. 13. Linear classification of test data using the state vector histogram
and transition matrix histogram.

student on a scale of four points.

C. Problem Solving Environment

The Nodal Analysis Based Tutor System is aimed at second
year higher national diploma (MQF level 5) students. Its aim
is to tutor these students on how to find correct spanning
trees and fundamental cutsets in graphs of electrical circuits.
This program was tested and verified to function correctly. It
interacts with its users through a GUI. It lets the user input
the circuit of interest and select a valid spanning tree. When
a valid spanning tree is selected the program lets the user
work out all the valid fundamental cutsets corresponding to
this spanning tree and then generates the corresponding KCL
equations. Whenever the user does an incorrect choice during
the selection process, the tool explains why the choice is
incorrect, and hence acts like a Tutor. The tool was first tested

Fig. 14. Linear classification of test data using the state vector histogram
and transition matrix histogram. These results include the negative states.

by fifteen students that undertook courses that included the
topic under consideration in the previous academic year and
all these students stated that this tool would have been of great
help to them. The program was then tested with a class of 18
novel HND students. These students were able to choose their
own personal set of branches that make up valid spanning trees
and fundamental cutsets in class. This reduced the amount of
time that the students needed to learn and understand these
two concepts, as well as the success rate among students.

V. DISCUSSION OF RESULTS

The field studies demonstrated that students are keen to
experience software tools that help them learn how to analyze
electrical circuits in the same way a human tutor would do.
Two systems that give explanations of the analysis carried out
on circuits were developed. The expert models in both systems
are based on symbolic and qualitative analysis, and feedback
is provided on declarative and procedural knowledge. These
systems therefore simulate the full-time availability of a tutor
and immediate assessment results given to students increased
their motivation to discover and learn. These characteristics
can have a significant impact on attainment levels for a large
number of students. Besides being used by one of the authors,
this program was demonstrated to two lecturers that teach
circuit theory and both are of the opinion that this program
will help them deliver the concerned topic more efficiently,
leading to higher success rates among students.

The text-base system, whose expert model is based on
Ohm’s Law, is targeted towards first year national diploma
(MQF level 4) students. The expert model identifies resistors
that are connected in parallel and in series and replaces them
by equivalent resistors. Alternatively the process of analysis
is carried out by the student and the system responds with
immediate feedback on every assertion. Students reported,
that the expert explanation provided by the system is very
useful. However, the text-based interactive environment is not



289

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

straightforward and the students had to adapt to it. The main
problem with this environment relates to interpretation errors
specifically when the student needs to translate text into a
circuit diagram, either mentally or on a side paper note-pad.
Augmenting the system with a graphical view of the circuit
in question would therefore mitigate this problem. Other than
the latter shortcoming, both the students and teachers liked the
tool and think that it is a useful tutor.

The user interface for the Nodal Analysis based expert
model is based on a graphical layout. So it is not surprising
that students and teachers found it easier to use. The students
and teachers noted that sometimes the system either gives too
much feedback or the feedback is too wide and not selective.
This is understandable since no personalized student model
was integrated in this system. It also shows, how important
it is for an ITS to keep the student motivated and interested.
Nonetheless field tests showed a reduction in the amount of
time that the students needed to learn and understand the
concepts in electrical circuit theory classes, as well as an
increase in the success rate among students, when subjectively
compared to previous groups that did not use the system.

An important aspect of the contribution in this paper is
the Markovian assessment model that traced both declarative
and procedural knowledge components in the student solution.
The main drawback of the Markovian model is the fact
that a training set is required for every problem set by the
human tutor. It may be possible to generate the ideal student
model from the solution generated by the domain model.
Perturbations from the ideal model can then generate inferior
answers to the problem and the models are tuned or fitted with
simulated data. It may also be possible to use past answers
and sample human generated assessments to generate synthetic
answers and assessments. This solves the problem of requiring
the human tutor to correct a sample class to tune the model
with.

The student assessment models reported in this paper were
deployed to provide feedback any time the student engages in
a learning activity. This means that these systems can be used
to assess students more often, providing valuable data to help
teachers allocate resources more effectively and also helps in
tackling challenges in mixed-ability classes. Additionally the
Markovian Model is trained using human assessment data and
this means that the model can simulate specific characteristics
of teachers. This leads to a personalised teacher machine
assistant, which learns how to assess from the human teacher.

From this experience, we see three areas that are worth im-
proving. It would be ideal to have machine tunable Markovian
assessment models. The two domain expert models should be
merged into one, yielding a model that can cover most of
the electrical circuit theory dealing with linear components.
A student model for each and every student, possibly a
probabilistic one, should be included in order for the system
to provide personalized and more appropriate feedback.

VI. CONCLUSIONS

A Markovian Assessment Model and a Nodal Analysis elec-
trical circuits expert model for circuits of arbitrary topologies
have been developed and tested using lab and field tests.
These two contributions are a significant improvement over
the respective models described in [8] and [9].

The Markovian Model traces declarative and procedural
knowledge in solutions to problems in electrical circuits. A
simpler histogram model that traces only declarative knowl-
edge is developed and compared to the Markovian Model.
The Histogram Model is useful to test whether the student
has mastered the topic in question and is similar to models
installed in current electrical circuits ITSs [13]. The Markovian
model can be possibly improved, in terms of providing finer
granularity in assessment, by feeding a regressor with the four
element vector that is ouput from the Markov Model.

The circuit expert model based on the formal theory of
nodal analysis and on qualitative assertions is suitable for
analyzing a circuit of arbitrary topology and for providing a
detailed account of the analysis process. The nodal analysis
based model is an improvement over the simpler symbolic and
qualitative circuit model based on Ohm’s law implemented in
[8] and [9]. From an electrical circuit theory ITS system point
of view it would be ideal to combine the features of both
models into one. Other ITS or CAL systems, described in
[27] and [17], make use of ”the propagation of constraints”
algorithm to calculate circuit parameter values. However this
method does not yield an explanation as one would expect
from a human tutor. So, alternatively further research may
develop the ”propagation of constraints” model to be better
suitable for an ITS.

Finally, field tests confirmed two important points. During
learning, domain models based on qualitative and symbolic
analysis are more effective than simulators based on numerical
analysis, which may be better suited for expert use in industry.
Students prefer a problem solving environment that comprises
both text and graphics-based input/output systems.

REFERENCES

[1] J. Debono and A. Muscat, “An electrical circuits e-tutor based on
symbolic and qualitative analysis,” in The Fifth International Conference
on Advanced Engineering Computing and Applications in Sciences,
ADVCOMP2011, November 2011.

[2] B. S. Bloom, “The 2 sigma problem: The search for methods of
group instruction as effective as one-to- one tutoring.,” Educational
Researcher, vol. 13, pp. 4–16, 1984.

[3] P. A. Cohen, J. A. Kulik, and C. C. Kulik, “Educational outcomes of
tutoring: A metaanalysis of findings.,” American Educational Research
Journal, vol. 19, pp. 237–248, 1982.

[4] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier, “Cog-
nitive tutors: Lessons learned,” The Journal of the Learning Sciences,
vol. 4, pp. 167–207, 1995.

[5] A. Lesgold, G. Eggan, S. Katz, and G. Rao, “Possibilities for assess-
ment using computer-based apprenticeship environments,” in Cognitive
Approaches to Automated Instruction (J. Regian and V. Shute, eds.),
(Hilisdale, NJ), Lawrence Eribaum Associates, 1992.

[6] C. Conati, A. S. Gertner, and K. VanLehn, “Using bayesian networks
to manage uncertainty in student modeling,” User Modeling and User-
Adapted Interaction, vol. 12, no. 4, pp. 371–417, 2002.



290

International Journal on Advances in Intelligent Systems, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/intelligent_systems/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] S. Suebnukarn and P. Haddawy, “Modeling individual and collaborative
problem-solving in medical problem-based learning,” User Modeling
and User-Adapted Interaction, vol. 16, no. 3-4, pp. 211–248, 2002.

[8] A. Yoshikawa, M. Shintani, and Y. Ohba, “Intelligent tutoring system for
electric circuit exercising,” Education, IEEE Transactions on, vol. 35,
no. 3, pp. 222–225, 1992.

[9] M. Ahmed and M. Bayoumi, “An artificial intelligent instructor for
electrical circuits,” in Circuits and Systems, 1994., Proceedings of the
37th Midwest Symposium on, vol. 2, pp. 1362 –1365 vol.2, aug 1994.

[10] A. T. Corbett, K. R. Koedinger, and J. R. Anderson, “Intelligent
tutoring systems,” in Handbook of Human-Computer Interaction (M. G.
Helander, T. K. Landauer, and P. Prabhu, eds.), vol. 37 of 2, (Amsterdam,
The Netherlands), Elsevier Science, 1997.

[11] H. S. Hwana, “Intelligent tutoring systems: An overiew,” Artificial
Intelligence Review, vol. 4, pp. 251–277, 1990.

[12] R. R. V. D. Stuyf, “Scaffolding as a teaching strategy,” Adolescent
Learning and Development, November 17 2002.

[13] M. Mishra, V. Mishra, and H. Sharma, “Intellectual ability planning for
intelligent tutoring system in computer science engineering education,”
in Emerging Trends and Applications in Computer Science (NCETACS),
2012 3rd National Conference on, pp. 26–30, IEEE, 2012.

[14] D. M. Towne and A. Munro, “Supporting di verse instructional strategies
in a simulationoriented training environment,” in Cognitive Approaches
to Automated Instruction (J. Regian and V. Shute, eds.), (Hilisdale, NJ),
Lawrence Eribaum Associates, 1992.

[15] I. Roll, R. Baker, V. Aleven, B. McLaren, and K. Koedinger, “Modeling
students’ metacognitive errors in two intelligent tutoring systems,” user
modeling 2005, pp. 151–151, 2005.

[16] J. Debono, “Effectiveness of using circuit analysis software in vocational
electronics engineering courses,” tech. rep., Malta College of Arts,
Science and Technology (MCAST), Corradino, Malta, September 2010.

[17] R. Amarin, K. Sundaram, A. Weeks, and I. Batarseh, “Importance of
practical relevance and design modules in electrical circuits education,”
in Global Engineering Education Conference (EDUCON), 2011 IEEE,
pp. 792–796, IEEE, 2011.

[18] A. Luchetta, S. Manetti, and A. Reatti, “Sapwin - a symbolic simulator
as a support in electrical engineering education,” IEEE Transactions on
Education, vol. 44, p. 9, May 2001.

[19] D. Biolek, “Snap - program with symbolic core for educational pur-
poses,” Proceedings of 4th World Multi-Conference on: Circuits, Sys-
tems, Communications and Computers, pp. 1711–1714, July 2000.

[20] G. Sussman and R. Stallman, “Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis,”
Artificial Intelligence, vol. 9, pp. 135–196, October 1977.

[21] J. de Kleer, “How circuits work,” Artificial Intelligence - Special volume

on qualitative reasoning about physical systems, vol. 24, pp. 205–280,
December 1984.

[22] J. W. Nilsson and S. A. Riedel, Electric Circuits. Addison Wesley,
5th ed., 1996.

[23] G. Gielen, P. Wambacq, and W. Sansen, “Symbolic analysis methods
and applications for analog circuits: A tutorial overview,” Proceedings
of the IEEE, vol. 82, pp. 287–304, 1994.

[24] J. de Kleer and G. Sussman, “Propagation of constraints applied to cir-
cuit synthesis,” International Journal of Circuit Theory and Applications,
vol. 8, pp. 127–144, 1980.

[25] H. Floberg, Symbolic Analysis in Analog Integrated Circuit Design.
Kluwer Academic Publishers, 1997.

[26] M. Fossprez, Qualitative Analysis of Non-linear, Non-reciprocal Cir-
cuits. John Wiley and Sons, 1992.

[27] K. Rehman, W. Billingsley, and P. Robinson, “Writing questions for
an intelligent book using external ai,” Proceedings of the Sixth IEEE
International Conference on Advanced Learning Technologies, pp. 1089
– 1091, 2006.

[28] E. Milln, T. Loboda, and J. L. P. de-la Cruz, “Bayesian networks for
student model engineering,” Computers and Education, vol. 55, no. 4,
pp. 1663 – 1683, 2010.

[29] R. S. Baker, “Mining data for student models,” in Advances in Intelligent
Tutoring Systems (R. Nkmabou, R. Mizoguchi, and J. Bourdeau, eds.),
(Secaucus, NJ), pp. 323–338, Springer, 2010.

[30] A. Birnbaum, “Some latent trait models and their use in infering an
examinee’s ability,” in Statistical theories of mental test scores (F. Lord
and M.Novick, eds.), pp. 397–472, Addison-Wesley, 1968.

[31] W. J. van der Linden, Hanbook of modernitem response theory. Springer-
Verlag, 1997.

[32] M. C. Desmarais, A. Maluf, and J. Liu, “User-expertise modeling with
empirically derived probabilistic implication networks,” User Modelling
and user-Adapted Interaction, vol. 5, no. 3-4, pp. 283–315, 1995.

[33] J. Martin and K. Vanlehn, “Student assessment using bayesian nets,” Int.
J. Human-Computer Studies, vol. 42, pp. 575–591, 1995.

[34] E. Millan, M. Trella, J.-L. P. de-la Cruz, and R.Conejo, “Using bayesian
networks in computerized adaptive tests,” in Computers and Education
in the 21st Century (M. Ortega and J. Bravo, eds.), pp. 217–228, Kluwer,
2000.

[35] J. Vomlel, “Bayesian networks in educational testing,” International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 12, no. Supplement-1, pp. 83–100, 2004.

[36] H. Jeong and G. Biswas, “Mining student behavior models in learning-
by-teaching environments,” Educational Data Mining, 2008.

[37] H. Jeong, G. Biswas, J. Johnson, and L. Howard, “Analysis of productive
learning behaviors in a structured inquiry cycle using hidden markov
models,” Educational Data Mining, 2010.


