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Abstract—Developing autonomous systems requires adaptable
and context aware techniques. The approach described here
decomposes a complex system into service components – func-
tionally simple building blocks enriched with local knowledge
attributes. The internal components’ knowledge is used to dynam-
ically construct ensembles of service components. Thus, ensembles
capture collective behavior by grouping service components in
many-to-many manner, according to their communication and
operational/functional requirements. To achieve such high level
of dynamic behavior a complete development life cycle for
ensemble based systems has been defined and supported by
rigorous analyses and modeling methods, linguistic constructs
and software tools. We focus here on the analysis, modeling,
programming and deployment phases of the autonomous systems
development life cycle. A strong pragmatic orientation of the
approach is illustrated by two different application scenarios.
The main result of this work is an integrated view on developing
autonomous systems in diverse application domains.
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I. INTRODUCTION

Developing massively distributed systems has always been
a grand challenge in software engineering [1], [2], [3], [4].
Incremental technology advances have continuously been fol-
lowed by more and more requirements as distributed applica-
tions grew mature. Nowadays, one expects a massive number
of nodes with highly autonomic behavior still having harmo-
nized global utilization of the overall system. Our everyday
life is dependent on new technology which poses extra require-
ments to already complex systems: we need reliable systems
whose properties can be guaranteed; we expect systems to
adapt to changing demands over a long operational time and
to optimize their energy consumption [5], [6].

One engineering response to these challenges is to structure
software intensive systems in ensembles featuring autonomous
and self-aware behavior [7], [8]. The major objective of
the approach is to provide formalisms, linguistic constructs
and programming tools featuring autonomous and adaptive
behavior based on awareness. Furthermore, making technical
systems aware of their energy consumption contributes signif-
icantly to ecological requirements, namely to save energy and
increase overall system utilization.

The focus here is to integrate the functional, operational
and energy awareness into the systems providing autonomous
functioning with reduced energy consumption. The rationale,
expressing power and practical value of the approach are

illustrated on the e-mobility and cloud computing applica-
tion domains. The two complex domains appear to be fairly
different. However, taking a closer look at the requirements
of the two scenarios it becomes noticeable that the problem
domains share numerous generic system properties, especially
when seen from the optimized control perspective.

The paper presents integrative work focusing on the de-
velopment lifecycle of complex distributed control systems. It
binds together methods and techniques to model and construct
systems with service components and ensembles. The rationale
and development lifecycle (Sections II) of the approach is
presented through close requirements analysis (Section III),
ensemble modeling (Section IV) and programming/deployment
(Sections V and VI) of two concrete application scenarios. A
strong pragmatic orientation as well as the general nature of
the approach is shown on two different case studies. Finally,
the approach is summarized giving further directions for the
work to come in Section VII.

II. DEVELOPMENT LIFECYCLE

The engineering of autonomous systems includes all of
the challenges of non-autonomous complex systems plus the
added problem of achieving self-* properties allowing for
autonomy. An autonomous system needs to be self-aware and
self-adaptive. That means it has to maintain the knowledge
of its own functional and operational requirements and it
should be capable of performing appropriate changes without
human intervention. To implement such behavior, a number
of feedback loops within the system are needed, to deal with
changes both in the controlled environment and the system per
se.

The method to develop autonomous systems thus needs to
focus more on the runtime side than traditional engineering
approaches, as both outside changes and system adaptive
responses happen in operation (i.e., live). Within this approach,
the iterative development processes that are standard in in-
dustry today have been extended to include two main loops;
one focuses on the design time and one on the runtime of
the system. Both loops are connected to allow feedback. The
resulting Ensemble Development Life Cycle (EDLC) is shown
in Figure 1. The first loop is the design loop which begins with
the analysis of requirements, continues on to the modeling
and programming phase, and finally to the verification and
validation of the system. This loop runs iteratively until the
result is satisfying. A connecting arrow which corresponds to
the deployment of the system leads to the second loop which
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represents the runtime of the system. Usually, an ensemble-
based system stays within this loop once deployed, using
a feedback loop to achieve adaptation. This loop consists
of a monitoring phase (both of the environment and itself),
awareness built on the monitored information, and finally self-
adaptation which leads back to monitoring.

Figure 1. The Ensemble Development Life Cycle

The feedback arrow back to the design phase has two
functions. First, feedback of normal system situations can be
fed back to design to tweak the system or as input for a next
version. Second, if a critical system encounters a non-adaptable
situation, the feedback can be given immediately to human
operators with the ability to reconfigure.

For each of the phases and transitions within the develop-
ment life cycle a number of tools and methodologies have been
developed, allowing for a formal and rigorous development of
complex distributed autonomous systems [9].

Within this paper, we focus on two practical applications
which are illustrated on the requirements and modeling phases,
followed by programming and deployment. The other phases
(validation and verification, awareness, monitoring, and self-
adaptation) and the feedback transition are beyond the scope
of this paper.

III. REQUIREMENTS

To explore the system requirements, two complex appli-
cation domains are closely examined: e-mobility control and
cloud computing.

E-mobility is a vision of future transportation by means
of an electric vehicles network allowing people to fulfill their
individual mobility needs in an environmental friendly manner
(decreasing pollution, saving energy, sharing vehicles, etc).

Cloud computing is an approach that delivers computing
resources to users in a service-based manner, over the Internet,
thus reinforcing sharing and reducing energy consumption).

At a first glance electric vehicular transportation and dis-
tributed computing on demand have nothing really in common!

A. Common Characteristics

In a closer examination the two systems, though very
different, have a number of common characteristics.

1) Massive Distribution and Individual Interest: E-mobility
deals with managing a huge number of e-vehicles that transport
people from one place to another taking into account numerous
restrictions that the electrical transportation means imposes.

Each cloud computing user has also his/her individual
application demands and interest to efficiently execute it on
the cloud. The goal of cloud computing is to satisfy all these
competing demands.

Both applications are characterized by a huge number of
single entities with individual goals.

2) Sharing and Collectiveness: In order to cover longer
distances, an e-vehicle driver must interrupt the journey to
either exchange or re-charge the battery. Energy consumption
has been the major obstacle in a wider use of electric vehicles.
An alternative strategy is to share e-vehicles in a way that
optimizes the overall mobility of people and the spending of
energy. In other words: when my battery is empty – you will
take me further if we go in the same direction and vice versa.

The processing statistics show that most of the time com-
puters are idle – waiting for input to do some calculations.
Computers belong amongst the fastest yet most wasteful
devices man has ever made. And they dissipate energy too.
Cloud computing overcomes that problem by sharing computer
resources making them better utilized. In another words, if my
computer is free – it can process your data and vice versa; or
even better, let us have light devices and leave a heavy work
for the cloud.

At a closer look “sharing and collectiveness” are common
characteristics of both application domains!

3) Awareness and Knowledge: E-mobility can support
coordination only if e-vehicles know their own restrictions
(battery state), destinations of users, re-charging possibilities,
parking availabilities, the state of other e-vehicles nearby.
With such knowledge, collective behavior may take place,
respecting individual goals, energy consumption and environ-
mental requirements. Cloud computing deals with the dynamic
scheduling of available computing resources within a wider
distributed system. Maximal utilization can only be achieved
if the cloud is “aware” of the users’ processing needs and
the states of the deployed cloud resources. Only with such
knowledge a cloud can make a good utilization of computers
while serving individual users’ needs.

At a closer look “awareness” of own potentials, restric-
tions and goals as well as those of the others is a common
characteristic. Both domains require self-aware, self-expressive
and self-adaptive behavior based on a knowledge about those
“self*” properties.

4) Dynamic and Distributed Energy Optimization: E-
mobility is based on a distributed network that manages
numerous independent and separate entities such as e-vehicles,
parking slots, re-charge stations, and drivers. Through a col-
lective and awareness-rich control strategy the system may
dynamically re-organize and optimize the use of energy while
satisfying users’ transportation needs.

Cloud computing actually behaves as a classical distributed
operating system with the goal of maximizing operation and
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throughput and minimize energy consumption, performing
tasks of multiple users.

At a closer look “dynamic and distributed optimization” is
an inherent characteristic of the control environment for both
application domains.

B. Common Approach

This set of common features serve as a basis for analysis
and modeling of such systems leading to a generic framework
for developing and deploying complex autonomous systems
(Table I). Respecting these characteristics in constructing such
systems will help meeting the common requirements and pro-
vide major behavioral principles: adaptation, self-awareness,
knowledge, and emergence. These principles are actually very
close and inter-related: namely knowledge is needed for aware-
ness which is further needed for adaptation which further leads
to emergent behavior.

Table I. COMMON CHARACTERISTICS

Common feature Cloud computing E-Mobility

Single entity Computing resource Car, passenger, parking
lot, charging station

Individual goal Efficient execution Individual route plan

Ensemble Application, CPU pool Free vehicles, free
parking lots, etc.

Global goal Resource availability,
optimal throughput

Travel, journey, low
energy

Self-awareness
Available resources,
computational
requirements, etc.

Awareness of own state
and restrictions

Autonomous and
collective behavior

Decentralized decision
making, global
optimization

Reaching all
destinations in time,
minimizing costs

Optimization
Availability,
computation task,
execution

Reaching destination in
time,
vehicle/infrastructure
usage

Adaptation According to available
resources

According to traffic,
individual goals,
infrastructure, resource
availability

Robustness Failing resources
Range limitation,
charging battery, traffic
resources

In this approach the adaptation is modeled as progress in a
multi-dimensional space where each axis represents one aspect
of system awareness (knowledge about its own functional,
operational, or other states). Adaptation actually happens when
the system state moves from one to another position within the
space according to the pre- and post-condition on each of its
awareness dimensions. This adaptation model is called SOTA
(State Of The Affairs) [10].

The trajectory of an entity in the SOTA space is illustrated
in Figure 2. Defining certain states in the SOTA space as
desired goal states helps to understand and model goal-directed
behavior of entities. We determine three kinds of (sets of)
states: pre-conditions Gpre, utilities U, and post-conditions
Gpost. Starting from the desired state, Gpost is the goal state
that the entity should reach. This goal is only activated when
the entity moves to the state Gpre so that it now has to try to
move to Gpost. On the way through the state space, the entity
may have to adhere to specific constraints which are called
utilities U .

The SOTA adaptation model is used to extract major appli-
cation requirements and offers appropriate adaptation patterns

Figure 2. SOTA Adaptation Model

that effectively compose the system into numerous adaptation
loops and guarantees the required behavior at run-time (more
details on SOTA approach are described elsewhere, see [8]
and [10]).

IV. ENSEMBLE MODELING

Control systems for both the cloud computing and e-
mobility domains share the idea of groups of entities col-
laborating towards specific goals. Those groups are formed
dynamically while each group exhibits a collective and goal-
directed behavior on the basis of complex interactions between
members of the group. Well-known techniques in component-
based engineering [11] are not enough to capture the partic-
ular characteristics of those highly dynamic and collaborative
systems. Component-based modeling merely determines the
architectural and dynamic properties of the underlying system
while ensemble modeling focuses more on the cooperative
features on top of the component-based models.

The HELENA approach [12] provides the formal founda-
tions for rigorous ensemble modeling. Each group of entities
collaborating towards a goal is abstractly modeled as an en-
semble. The specific functionalities and interaction abilities in
the ensemble are captured in roles played by the components,
and connectors between those roles. The first distinguishing
feature of the HELENA approach is the ability of components
to dynamically adopt and give up roles. This feature supports
adapting to changing conditions since appropriate components
can contribute to the ensembles on demand. It also increases
robustness since defective members can easily be replaced by
new components taking over responsibility for an abandoned
role. Lastly, it also helps to efficiently use resources since roles
can be given up as soon as they are no longer needed. The
second distinguishing feature is that components can adopt
multiple roles in parallel so that they may play different roles
concurrently in the same or different ensembles. Thus, the
components of a single component-based system may take part
in multiple collaborations playing task-specific roles in each
group – or the other way round, that is multiple ensembles
perform their tasks building on top of the same resources of
the underlying system.

Figure 3 shows a snapshot of a component-based system
on which two ensembles are imposed as described in the
HELENA approach. The bottom level shows the pool of all
components available in the system. They provide the core
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capabilities which are commonly available for all tasks. The
components can be of different types, for example in the e-
mobility scenario the basic components are persons, cars, and
parking lots. However, they can also be of the same type
as in the cloud computing scenario. The two upper levels of
Figure 3 show different ensembles. Each requires specific roles
to collaborate (here, we just model two roles R and R’). Each
role provides additional capabilities which are required while
performing the role-specific task. When a component adopts a
certain role – depicted by an arrow in Figure 3 – it also adopts
the role-specific capabilities. For example, a person may adopt
the role of the driver of a car and thus gain the ability to decide
on the velocity of the car, while in the role of a passenger she
can only hop on and off.

Figure 3. Ensembles in the HELENA Approach

At the same time, one component may participate in several
ensembles playing the same or different roles. In each role,
the component is equipped with particular properties and
capabilities in addition to its core capabilities. Thus, these
properties are the key features in the HELENA approach to
enable task-oriented awareness. For example, adopting the role
of the driver provides a person with the permission to retrieve
the battery status of the vehicle. With this knowledge about
the battery she can adapt her route accordingly.

Ensemble modeling on top of a component-based model
is especially useful as a basis for subsequent development
phases. Modeling with roles allows concentrating on the ca-
pabilities needed for a specific task. This increases coherence
which leads to cleaner ensemble architectures. Furthermore,
it decreases complexity of the models, thus providing a well-
defined foundation for verification and validation as well as for
detailed component-based designs implementing the required
ensemble architecture.

Ongoing research in HELENA currently focuses on the
derivation of component-based designs from ensemble archi-
tectures, description of ensemble behavior based on interact-
ing roles, and checking goal satisfaction. For implementing
ensemble architectures we investigate a systematic transition
from HELENA models to abstract programming languages like
SCEL [9] (cf. Section V-A).

The HELENA approach helps us to develop application
scenarios based on top of a common basic component model.
In both of the discussed application domains (e-mobility and

cloud computing), basic components provide the core capabil-
ities such that we can build appropriate ensemble architectures
for each scenario exploiting and enhancing the underlying
model.

A. Modeling E-Mobility with Ensembles

In the e-mobility domain, persons, cars, and parking lots
team up in ensembles to manage a fleet of cars serving
travelers’ needs. Scenarios range from journey planning and
execution to management of the car park. For example, in
the “journey scenario”, we envisage an ensemble structure
enabling a group of people to travel to (maybe different)
destinations (cf. Figure 4).

Figure 4. Ensemble Structure for the “Journey Scenario”

To implement the scenario, five roles of different multiplic-
ities need to collaborate. The most important participants are
the vehicle and the driver of the vehicle. They communicate
with each other via the connector RouteConn to exchange, for
example, destination requests and route points. It is crucial
to recognize that the ensemble structure only mentions the
particular roles that are needed for the collaboration and not
the underlying components. The roles capture the role-specific
capabilities; for example the need for a driver’s license (driver)
or passenger seats (vehicle). Particular components assume
those roles, e.g., a person adopts the role of the driver, but
in the case of self-driving cars a computer could also steer the
vehicle.

Additionally, up to four passengers may join the collabo-
ration who want to travel to some destinations and therefore
communicate with the driver (via the connector POIConn) to
announce their target locations. Usually, one of the passengers
will also be the driver of the vehicle. This is where we benefit
from the clear separation of roles and components. In the
HELENA approach, one person is able to take different roles at
the same time: on the one hand, she is a mere passenger just
announcing her destination; on the other hand, she takes on
responsibility for steering the vehicle. This dualism increases
complexity when we try to model both responsibilities simul-
taneously in one component. Separating them into two roles
as proposed in the HELENA approach facilitates the ensemble
model by far. The collaboration is completed by an arbitrary
number of destinations the passengers want to reach and an
arbitrary number of charging stations needed to load the battery
of the vehicle. Both roles can be taken by parking lots and are
filled by appropriate parking lots on demand.
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Note that other ensembles may be considered in parallel
to the “journey ensemble”. For example, another ensemble
may take care of relocating a car back to its home base
after a one-way journey. This calls for an ensemble structure
composed of different collaborating roles in comparison to the
“journey ensemble”. However, even several instances of the
same ensemble structure can run concurrently if we think of
multiple journey groups each traveling to different destinations.

B. Modeling Cloud Computing with Ensembles

In a similar manner, computing entities may team up
to provide a seamless platform of resources to users. We
envision a cloud computing platform that allows executing
applications in the cloud on a PaaS level. Managing the cloud
system necessitates various collaborative tasks for distributed
deployment and fail-safe execution which we want the system
to perform in self-organizing teams. In Figure 5, the basic
structure of an ensemble for the deployment of an application
is given.

Figure 5. Ensemble Structure for the “Deployment Scenario”

In this scenario, a user wants to deploy an application in
the cloud. As the user is outside the network, she needs to
address her request to a deployer node inside the network
which, from now on, serves as the origin of the request
for the collaboration. The application comes with a set of
requirements for the executing node such that the cloud has to
search for an appropriate node. This search is managed by the
initiator. The initiator has three responsibilities: it announces
the application with its requirements for execution in the
network, calls for bids from possible execution nodes, waits
for bids and finally selects one node to serve as executor for
the current application. The possible execution nodes – and
therefore the bidders for execution – are a highly dynamic and
application-specific set of nodes which cannot be determined
from the available resources beforehand. This is where the
notion of a role facilitates the description of collaboration.
The role of a bidder abstractly defines that any node adopting
this role has to meet the requirements of the application to be
executed. By adopting the role, the node assumes the behavior
of the bidder role such that it is only equipped with the
appropriate bidding capabilities on demand. This applies to the
role of the executor as well. The ensemble structure simply
defines that an executor is needed for this task; the role of
the executor is then filled dynamically at runtime, the chosen
node adopting the appropriate behavior for execution of the
application.

The above example of ensembles which take care of
executing an application, shows that multiple ensembles of

the same structure can be run in parallel, sharing resources
through different collaborations. For each application to be
run in the cloud, a new collaboration needs to be established.
However, nodes can join different ensembles at the same time.
For example, a node can be initiator for one application while
being the executor for another application. It can also adopt
the same role twice in different ensembles, e.g., executing two
different applications in two different ensembles. The same
node can even take responsibility for two roles in the same
ensemble like being initiator and executor at the same time.

V. E-MOBILITY DEPLOYMENT

Finding a way from high-level modeling to development
and deployment of software intensive systems is a complex
endeavor. Reasoning and validation often require high-level
abstractions, while implementation calls for detailed program-
ming and low-level deployments. To bridge this gap a number
of intermediate tools are being developed that assist in the
engineering process [8].

A. SCEL Language Programming Abstractions

The challenge for developers of complex distributed sys-
tems is to find proper linguistic abstractions to cope with indi-
vidual vs. collective requirements of system elements and their
need to respond to dynamic changes in an autonomous manner.
A set of semantic constructs has been proposed [9], [13] that
represent behaviors, knowledge and composition supporting
programming of awareness-rich systems. It provides linguistic
abstractions for describing the behavior of a single component
as well as the formation of ensembles.

The basic ingredient of SCEL – Software Component En-
semble Language – is the notion of an autonomic component
I[K,Π, P ] that consists of:

• An interface I providing structural and behavioral
information about the autonomic component in the
form of attributes visible to other components.

• A knowledge repository K managing information
about the component interface, requirements, major
state attributes etc. Managing such knowledge allows
for self-aware behavior and dynamic interlinking with
other system components.

• A set of policies Π which controls internal and exter-
nal interaction.

• A set of processes P defining component functionality
specific to the application and internal management of
knowledge, policies, and communication.

The structure and organization of the SCEL notation is
illustrated in Figure 6.

The code in Table II shows a fraction of the SCEL syntax
(with notation for S - systems, C - components, P - processes,
a - actions and c - targets); a fully detailed presentation of
SCEL syntax and semantics can be found in [9], [13], [14].

SCEL aggregates both semantics and syntax power to
express autonomic behavior. At one side, being abstract and
rigorous SCEL allows for formal reasoning about system
behavior; at another, it needs further programming tools to
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Figure 6. SCEL Elements

Table II. SCEL SYNTAX

SYSTEMS: S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

COMPONENTS: C ::= I[K,Π, P ]

PROCESSES: P ::= nil
∣∣ a.P ∣∣ P1 + P2

∣∣ P1[P2 ]
∣∣

X
∣∣ A(p̄)

ACTIONS: a ::= get(T )@c
∣∣ qry(T )@c

∣∣ put(t)@c
∣∣

fresh(n)
∣∣ new(I,K,Π, P )

TARGETS: c ::= n
∣∣ x ∣∣ self

∣∣ P
∣∣ p

support system development and deployment. Formal rea-
soning, modeling and validation are covered in referenced
articles about SCEL. Here, the focus is more on the pragmatic
orientation on the given application scenario.

B. Java Framework for SCEL Programming and Model
Checking

To execute SCEL programs, the jRESP framework has been
developed. jRESP is a Java runtime environment providing
means to develop autonomic and adaptive systems without any
centralized control programmed in SCEL [15]. By relying on
the jRESP API, a programmer can embed the SCEL paradigm
in Java applications.

A prototypic statistical model-checker running on top of
jRESP simulation environment has been implemented. Fol-
lowing this approach, a randomized algorithm is used to
verify whether the implementation of a system satisfies a
specific property with a certain degree of confidence. The
statistical model-checker is parameterized with respect to a
given tolerance t and error probability p. The used algorithm
guarantees that the difference between the computed values
and the exact ones is greater than t with a probability lower
than p.

The model-checker included in jRESP can be used to
verify reachability properties. These properties allow one to
evaluate the probability to reach, within a given deadline, a
configuration where a given predicate on collected data is
satisfied [15].

C. Programming E-Mobility

Programming in jRESP is self-explaining and elegant.
Considering the e-mobility application, we can easily program
a vehicle supporting a user in her daily travel obligations. The
vehicle is controlled by four modules:

1 VEHICLE =
2 ContactParkingLots[Planner[Book[MonitorPlanExecution]]]

Each of the modules has its own responsibility. The module
ContactParkingLots retrieves all appointments of the pas-
senger and searches for parking lots close to the points of
interest. Afterwards, the module Planner plans a route how to
reach all appointments in time using the available parking lots.
Booking of the appropriate parking lots is done by the module
Book. At last, the module MonitorPlanExecution monitors the
current progress on the route and displays information about
the reservation of the next parking lot on the route. The jRESP
code (enriched with comments explaining the processes) is
given in the following boxes.

1 ContactParkingLots =
2 //read the size of the calendar
3 //(i.e., the list of appointments)
4 qry("calendarSize", ?n)@self .
5 //scan the calendar
6 for(i := 0 ; i < n ; i ++){
7 //read an appointment of the calendar
8 qry(calendar, i, ?poi, ?poiPos, ?when, ?howLong)
9 @self .

10 //contact the parking lots near to the POI
11 //(this illustrates attribute-based communication
12 //typical in SCEL)
13 put("searchPLot", self, poi)
14 @{ I.type="PLot" & walkingDistance(poiPos,I.pos)} .
15 //ensemble predicate
16 }
17 //signal completion of the phase of data request
18 // from the parking lots
19 put("dataRequestSent")@self

1 Book =
2 //wait for the completion of the planning phase
3 get("planningCompleted")@self .
4 //read the size of plan list
5 //(i.e., the PLots to be booked)
6 get("planListSize", ?n)@self .
7 //scan the plan
8 for(i := 0 ; i < n ; i ++){
9 //read an entry of the plan list

10 get("plan", i, ?pLot, ?when, ?howLong)@self .
11 //send the booking request to the PLot
12 put("book", self, when, howLong)@pLot .
13 //wait for the reply of pLot
14 // (we assume that booking requests always succeed)
15 get("bookingOutcome", true)@self .
16 //store the reservation in the list of reservations
17 put("reservation", i, pLot, when, howLong)@self .
18 }
19 //close the list of reservations
20 put("reservationListSize", n)@self .
21 //signal completion of the booking phase
22 put("bookingCompleted")@self
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1 Planner =
2 //wait for the completion of the phase of
3 //requirement of data to the parking lots
4 get("dataRequestSent")@self .
5 //we intentionally leave this process unspecified
6 //input: collection of tuples of the form
7 // (poi,pLotId,pLotInfo) received from the PLots
8 //output: list of chosen planned PLots,
9 // i.e., (planListSize,n)

10 // (plan,0,pLotId0,when0,howLong0)...(plan,n-1,...)
11 //signal completion of the planning phase
12 put("planningCompleted")@self

1 MonitorPlanExecution =
2 //wait for the completion of the booking phase
3 get("bookingCompleted")@self .
4 //read the size of the reservation list
5 // (i.e., the PLots to be visited)
6 get("reservationListSize", ?n)@self .
7 //scan the reservation list
8 for(i := 0 ; i < n ; i ++){
9 //read a reservation

10 get("reservation", i, ?pLot, ?when, ?howLong)@self .
11 //display the info about the next reservation
12 //to the user
13 put("reservation", ?pLot, ?when, ?howLong)@screen .
14 //wait for the arrival at the parking lot
15 // (signaled by the user)
16 get("arrivedAt", pLot)@self .
17 }
18 //signal completion of the plan execution phase
19 put ("planExecuted")@self

The jRESP processes illustrate the expressive power of the
language to cope with huge systems with complex interactions.
A distinguishing feature of SCEL which is directly imple-
mented in jRESP is implicit ensemble building by attributed-
based communication. For example, while searching for park-
ing lots close to a particular point of interest in the module
ContactParkingLots, an ensemble of appropriate parking lots
is implicitly formed by using the following predicate:

1 I.type="PLot" & walkingDistance(poiPos,I.pos)

This directly addresses the search request to the appropriate
parking lots.

VI. SCIENCE CLOUD DEPLOYMENT

Cloud computing refers to provisioning resources such
as full machines, storage space, processing power, or even
applications to consumers “on the net”: Consumers can use
these resources without having to install hard- or software
themselves and can dynamically add and remove new re-
sources. Common use cases include renting virtual machines,
external disk space, or ready-made applications for traditional
office tasks. Cloud solutions are software products which
offer this ability. They may be installed by dedicated cloud
companies which only offer the cloud end results to users;
however, a company working in a non-IT branch (for example,
manufacturing) can also install a cloud solution in-house, thus
creating a private cloud for its own employees. The same
applies to universities and research institutions.

A. A Voluntary, Peer-to-Peer Platform as a Service

In the science cloud case study [16], [17], the focus is
on implementing a cloud in a fully distributed, peer-to-peer,
voluntary computing fashion. The cloud is intended for use
by the scientific community; each scientist – or university –
can contribute to the cloud with computing power and storage
space, but can also retract their resources if they are required
elsewhere which corresponds to the voluntary aspect of the
cloud. Furthermore, there is no centralized control in the cloud;
rather, individual nodes communicate in a peer-to-peer fashion
to organize themselves.

The cloud itself offers services on a PaaS level, that
is, it provides a platform for executing applications. Each
application may have its own requirements (or service level
agreement) which the cloud must do its best to satisfy while
in general keeping all applications running and conserving
energy. These aspects make such a distributed cloud-based
systems complex and hard to design, build, test, and verify.

To take part in the science cloud, each partner must
run an instance of the Science Cloud Platform (SCP). Such
an instance, running on a physical or virtual machine, is
considered to be a service component in the previous described
sense.

Figure 7. Science Cloud Platform Architecture

Figure 7 shows the logical components which make up
a Science Cloud Platform instance (SCPi). We explore three
of them in more detail here: Connectivity, Knowledge, and
Adaptivity.

a) Connectivity: Each SCPi has a connectivity compo-
nent which enables it to talk to other SCPs over the network,
and deals with the overlay structure the cloud imposes on the
lower-level network layers. The protocol followed by these
communications must enable SCPis to find one another and
establish links, for example by manually entering a network
address or by a discovery mechanism. Furthermore, SCPis
must be able to query others for knowledge and at the same
time distribute their own knowledge. Finally, the protocol must
support exchange of data and applications.

There are different options for implementing such an over-
lay which in this case is built on top of the TCP/IP (Internet)
network. As pointed out above, the science cloud takes a peer-
to-peer approach to communication, and thus re-uses classical
algorithms for peer routing (for example, DHT-based protocols
like Pastry [18] are useful in this context).

b) Knowledge: Each SCPi has knowledge consisting of
(1) its own properties (set by developers), (2) its infrastructure
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(CPU load, available memory), and (3) other SCPis (acquired
through the network). Since there is no global coordinator,
each SCPi must build its own view and act upon the avail-
able knowledge. The SCPi may acquire knowledge about its
infrastructure using an infrastructure sensing plug-in which
provides information about static values, such as processor
speed, available memory, available disk space, number of cores
etc. and dynamic values, such as currently used memory, disk
space, or CPU load.

SCPi properties are important when specifying conditions
as Service Level Agreements (SLAs) [8], [16] for the ap-
plications. For example, when looking for a new SCPi to
execute an application, low latency between the SCPis might
be interesting. Other requirements may be harder: For example,
an application may simply not fit on a SCPi because of the
lack of space whereas another may require a certain amount
of memory.

c) Adaptivity: As already outlined in the Ensemble
Development Life Cycle (EDLC) in the second section of
this paper, monitoring, awareness, and self-adaptation are
key to managing autonomous systems. For this reason, each
SCPi contains its own adaptivity component which uses the
information available in the knowledge base.

Adaptation in the science cloud means several things.
Applications will be deployed on the cloud and, depending on
their SLA, must be executed on nodes which are able to fulfill
these. If nodes become overloaded, or leave the system (which
they may do at any time), applications need to be moved to
different machines and restarted. This requires planning ahead
for such situations, i.e., keeping redundant copies of both
the applications’ executable code and its data. The science
cloud may, as indicated in Figure 7, work with an additional
IaaS solution below it which allows the cloud to start new
virtual machines and migrate to these machines if necessary.
In the other direction, using such an IaaS allows shutting down
machines if idle, thus conserving energy.

The adaptivity logic is exchangeable, application-
independent, and has a direct relation to the SLAs of
applications. The adaptivity logic itself can be written in a
standard programming language or custom domain-specific
languages or rules. It may take into consideration elements
such as the reputation of nodes (previously established
through their uptimes or capabilities), past performance,
peak times experienced, and so on. Besides the connectivity,
knowledge, and adaptivity components, each SCPi contains
components for sensing the environment (for example, load,
attached storage devices, etc.) and for acting on it (in the case
an IaaS solution is available). Furthermore, an application
engine executes applications locally; both the application
interfaces and the SCPi meta-interface are available through
a user interface component.

The science cloud is formed by connecting multiple SCPis
together over a network. Within this cloud, we consider a
subset of SCPis with certain properties as an ensemble which
we call a Science Cloud Platform Ensemble (SCPe). The set of
properties may be based on attributes of the SCPis and/or the
SLAs of applications. In other words, an ensemble consists of
SCPis which work together to run one application in a fail-safe
manner and under consideration of the SLA of that application,

which may require a certain number of SCPis, certain latency
between the parts, or have restrictions on processing power or
on memory. An example of a science cloud with five SCPis
grouped in two (overlapping) ensembles is shown in Figure 8.

Figure 8. SCP Ensemble

At runtime, an ensemble may gain new SCPis or lose
them depending on the behavior of the SCPis themselves; the
load generated by applications, and the physical state of the
underlying node (which may join and leave the network).

B. Programming the Science Cloud

Currently, a prototype of a science cloud platform is being
developed and tested in a physical network connecting two
universities [8]. The experimental platform features ad-hoc
and voluntary behavior supporting dynamic re-configuration of
physical layers and application migration on an upper level.

High-level SCEL modeling and model checking provide
formal means for property proofs while a prototype imple-
mentation offers pragmatic means to test deployment and
effectiveness of autonomous and self-aware behavior. The
prototype we are currently investigating is based as much as
possible on existing projects and scientific results. In particular,
we are re-using the Pastry peer-to-peer substrate [18] and
accompanying protocols for implementing the peer-to-peer and
voluntary computing part, and in addition an interpretation
of the ContractNET [19] protocol for the upper layer of
application execution.

Our prototype is split into three layers which correspond
roughly to handling the network addressing logic, data man-
agement, and application execution.

The first, i.e., the network layer, is based on the Pastry
protocol. This protocol uses a hash-based addressing scheme
similar to that of a Distributed Hash Table (DHT): Each node is
assigned a random hash within a certain (wrapped) range; thus
a network position agnostic overlay ring is formed. Routing
works by sending messages to a certain hash target; the node
whose hash is closest to the target hash receives the message.
While routing is possible along the ring, Pastry also introduces
shortcuts for reaching the target in O(logn) routing steps. It is
important to note here that for each conceivable hash, exactly
one node is the closest node which is an interesting property
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exploited in upper layers. Pastry includes mechanisms for self-
healing in case nodes drop out of the overlay network, and
automatically integrates newly arriving nodes. Since Pastry
only supports unicast routing, the SCRIBE protocol [20] is
added on top which provides multicasting support using a form
of publish/subscribe mechanism. In the science cloud platform,
each node is implemented as a Pastry node.

The second layer, i.e., the data layer, is implemented by the
PAST protocol [21] which implements the remaining features
for realizing an actual DHT. Thus, it is possible to store data
packages given their hash; again, the data is stored at the
nearest node. However, PAST also supports redundancy since
it allows storing not only one but k copies of a data package
clustered around the nearest node. Thus, if the nearest node
fails, another automatically takes its place.

The data layer is used in the science cloud platform for
storing the applications to be executed (as byte code) as well
as the data they keep during runtime. Both must be stored in
a redundant fashion.

The application layer deals with the actual execution of
applications. Here, we employ an implementation of the Con-
tractNET protocol which is based on a bidding-like process.
After deployment of an application by a user, an initiator node
is chosen (based on hash nearness of the application code data
package) which is from now on responsible for the execution
of the application. Note that if this node drops out of the
network, another node takes its place automatically according
to changing hash nearness. The initiator will now request bids
from other nodes through a SCRIBE-based communication
channel, sending the application name and requirements to
enable other nodes to evaluate whether they are capable of
executing the app. This process is shown in Figure 9.

Having received all bids, the initiator decides on an ex-
ecutor node and sends further instructions to this node. The
initiator then switches to a monitoring mode: If the executor
fails, the initiator starts a new bidding process. The SCP
implementation is open-source and can be downloaded from
the ASCENS web site [8].

VII. CONCLUSION

This paper presents a unified approach to model, validate
and deploy complex distributed systems with massive number
of nodes that respect both individual and global goals. The
non-centralized character of the approach allows for autonomic
and self-aware behavior which is achieved by introduction
of knowledge elements and enrichment of compositional and
communication primitives with awareness of both system
requirements and individual state of the computing entities.

The essence of the approach is to de-compose a complex
system into a number of generic components, and then again
compose the system into ensembles of service components.
The inherent complexity of such ensembles is a huge challenge
for developers. Thus, the whole system is decomposed into
well-understood building blocks, reducing the innumerable
interactions between low-level components to a manageable
number of interactions between these building blocks. The
result is a so-called hierarchical ensemble, built from ser-
vice components, simpler ensembles and knowledge units
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Figure 9. FIPA Contract NET Protocol (from [19])

connected via a highly dynamic infrastructure. Ensembles
exhibit four main characteristics: adaptation, self-awareness,
knowledge and emergence, yielding a sound technology for
engineering autonomous systems [6], [8]. A number of lin-
guistic constructs and validation and programming tools are
under development and are being tested in different application
scenarios.

This paper presents an integrated view (from high level
modeling to application deployment) of a complex approach
which has been described by a number of referenced papers,
each focusing on different aspects of the work: Modeling
ensembles using Helena [12] and SCEL [9], [13], system val-
idation [15], adaptation aspects [10], knowledge management
and deployments [10], [16] and engineering aspects [6], [8].
Further contribution of this paper is in optimized and energy-
aware control based on autonomous behavior. Optimized dis-
tributed control with improved throughput and utilization of
the cloud and e-mobility frameworks contribute significantly
to the overall strategy to reduce energy consumption. Using the
sharing principle instead of exclusive use of the transportation
and computing means represents a significant challenge (re-
quiring significant changes in our perception of vehicles and
computers) in the application domains under consideration.
This principle will undoubtedly play an important role in
extending the application area.
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