
300

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Autonomous Load Balancing of Data Stream Processing and Mobile
Communications in Scalable Data Distribution Systems

Rafael Oliveira Vasconcelos and Markus Endler
Department of Informatics

Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
Rio de Janeiro, Brazil

rvasconcelos@inf.puc-rio.br, endler@inf.puc-rio.br

Berto de T. P. Gomes and Francisco J. da Silva e Silva
Graduate Program Electric Engineering (PPGEE)

Federal University of Maranhão (UFMA)
São Luı́s, Brazil

bertodetacio@ifma.edu.br, fssilva@deinf.ufma.br

Abstract—A huge number of applications such as network
monitoring, traffic engineering systems, intelligent routing of
cars, sensor networks, mobile telecommunications, logistics
applications and air traffic control require continuous and
timely processing of high volume of data originated from
many distributed sources as well as mobile communication and
monitoring. The deployment and operation of infrastructures
enabling such mobile communication and data stream pro-
cessing have two key requirements: they must be capable of
handling large and variable numbers of wireless connections
to the monitored mobile nodes regardless of their current use
or locations, and must automatically adapt to variations in the
volume of the mobile data streams. This article describes the
design, implementation, and evaluation of an autonomic mech-
anism for load balancing data streams and mobile connections.
The autonomic capability has been incorporated into a scalable
middleware system based on a Data Centric Publish Subscribe
approach - using the OMG Data Distribution Service (DDS)
standard - and aimed at real-time and adaptive handling of
mobile connectivity and data stream processing for large sets
of mobile nodes. Several performance evaluation experiments
of the proposed infrastructure are presented, demonstrating
its viability and the advantages arising from the use of
an autonomic approach to handle the requirements of high
variability and scalability.

Keywords-Load balancing, Data Stream Processing, Auto-
nomic computing, DDS, Mobile Communication Middleware.

I. INTRODUCTION

A large number of applications require continuous and
timely processing of high-volume of data originated from
many distributed sources to obtain real-time notifications
from complex queries over the steady flow of data items [1]
[2] [3] [4]. This has led to a new computing model called
Data Stream Processing [3], focused on sustained and timely
filtering, aggregation, transformation and analysis such data
streams.

The need to process data streams comes from several
application areas, such as network monitoring, traffic engi-
neering systems, intelligent routing of cars in metropolitan
areas, sensor networks, telecommunication systems, finan-
cial applications and meteorology. Crowd-sourcing applica-
tions such as Waze [5], collect data from many distributed
mobile devices to infer the actual condition of the routes

(e.g., streets and roads) and guide their users - the drivers
- towards the best route. This kind of application requires
not only the data fusion from a huge set of mobile devices,
but also the processing of this data to infer more complex
situations (e.g., the local traffic condition and alternative
routes to the driver´s destination).

Such applications share the requirement of real-time pro-
cessing of large flows of sensor data (i.e., context data) pro-
duced by hundreds of thousands of client nodes, which may
be vehicles, aircrafts, mobile devices, computing devices or
smart objects, with embedded sensors. Although some kind
of data processing can be performed locally at the client
nodes, e.g., simple transformations or classification of sensor
data, most other context information about the monitored
system as a whole requires parallel data processing by sets
of dedicated machines (e.g., clusters of processing nodes).
This, in turn calls for load balancing solutions [6] [7] [8]
for these clusters.

In order to handle large volumes of data streams in a
scalable and self-manageable manner, such systems have
to be distributed and autonomous. However, using software
and hardware that manages itself requires self-management
autonomic capabilities to detect and independently react to
run-time problems [9]. Thus, there are several challenges in
the field of self-managed and adaptive Data Stream Process-
ing for large-scale mobile systems, since it involves timely
communication, scalable processing and context-awareness.

A pilar to build self-manageable systems is Autonomic
Computing (AC). The main goal is to build computing
systems and applications able to manage themselves, thus
minimizing human intervention [10] [11] [12] [13]. In order
to accomplish the AC challenges, scientific and technologi-
cal advances in a wide range of fields and system architec-
tures are required, as well as new programming paradigms
[14]. On the other hand, today’s mobile communication and
data stream processing systems lack autonomic features that
are necessary to support the large and variable amounts
of data flows envisioned by the massive and ubiquitous
dissemination of sensors and mobile devices in our modern
society. In particular, the deployment and 24x7 operation



301

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of such mobile data stream processing and communication
infrastructures pose two intrinsic technical challenges: they
must be capable of (i) handling huge and variable numbers of
mobile data connections, and (ii) of automatically adapting
to variations in the volume of the mobile data streams.

In order to address these challenges, we have developed
a scalable middleware system that supports efficient and
adaptive handling of mobile connectivity and data stream
processing for thousands of mobile nodes. In this paper, we
specifically explain the autonomic load distribution mech-
anisms implemented in the middleware, and discuss their
potential benefits. Experiments with large data stream have
demonstrated the low overhead, good performance and the
reliability of the proposed solution.

The remainder of this paper is organized as follows:
Section II presents an overview of the key concepts and
technologies which are used throughout this work: the Data
Distribution Service (DDS) for Real-Time Systems stan-
dard, the MAPE-K reference model for autonomic systems,
and load balancing approaches in middleware. Section III
presents the Scalable Data Distribution Layer (SDDL), used
as the middleware for mobile communications and the
MAPE-SDDL extension, which adds autonomic capabilities
to the SDDL middleware. Section IV delves into the pro-
posed Data Processing Slice Load Balancing approach for
mobile data streams and explains how it was implemented,
while Section V describes the detailed evaluation of the
implemented system using a prototype application. Section
VI reviews related work on load balancing for Publish/Sub-
scribe systems, including DDS, while Section VII discusses
the advantages of using an Autonomic Computing for load
balancing and the benefits of the load balancing solution
proposed by this work. Finally, Section VIII contains some
concluding remarks about the central ideas presented in this
work and mentions some possible lines of future work on
the subject.

II. BACKGROUND

This section presents the main concepts and technologies
that are used in our work.

A. Data Distribution Service (DDS)

One of the most promising communication infrastructures
for the aforementioned data stream processing applications is
the Data Distribution Service (DDS) for Real-Time Systems.
DDS is an OMG [15] (Object Management Group) standard
for Publish-Subscribe communication that aims to provide
an efficient and low-latency data distribution middleware for
distributed applications [16] [17]. DDS promotes a fully
decentralized P2P (Peer-to-Peer) and scalable middleware
architecture based on the Data-Centric Publish-Subscribe
(DCPS) model. It also supports a large array of Quality
of Service (QoS) policies for communication (e.g., best
effort, reliable, ownership, several levels of data persistency,

data flow prioritization and several other message deliv-
ery options) [18] [19]. Unlike traditional Publish-Subscribe
middleware, DDS can explicitly manage network resources
through fine-tuning of its Network Services and use of
QoS policies such as Deadline, Latency Budget, Transport
Priority, etc, that are critical for implementing real-time and
soft real-time systems.

Publishers and Subscribers of a DDS Domain (the col-
lection of nodes pertaining to a single application), which
are named Participants, are containers for Data Writers
and Data Readers, respectively, which exchange typed data
through a common Topic [17]. Pardo-Castellote, Farabaugh
and Warren [20] explain that Data Writers and Data Readers
are the primary point for a Participant to publish data into
a DDS Domain or to access data that has been received by
a Subscriber. The DCPS makes it possible to organize its
Topics in a relational model, providing support for identity
and relations, i.e., for each Topic it is possible to define
one or more primary keys, and any number of foreign keys
representing, respectively, relationships with other Topics.

Figure 1. DDS System Architecture [17]

Figure 1 illustrates a hypothetical system that uses DDS
as its data distribution middleware. This hypothetical ap-
plication has some sources of “Raw Data”, a Data Proces-
sor that performs some processing on the “Raw Data” to
produce “Processed Data”, some End Users that consume
the processed data, and an Administrative User performing
auditing functions, for instance. DDS supports not only
Topic subscriptions, but also content-based subscriptions.
The latter are enabled by DDS Content Filtered Topics,
which holds a Filter Expression formed through SQL92
(Structured Query Language). This Filter Expression defines
a selective information subscription, i.e., only the topic data
that match the Filter Expression are delivered to the Data
Reader. An use example of Content Filtered Topic is shown
in Figure 2, where a Filter Expression (Value > 260) is
applied upon the “Value” field.

The DDS enables applications to filter data based on
the content of the data either at the Publisher side (Data



302

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Content Filtered Topic example [21]

Writer) or Subscriber side (Data Reader). By applying filters
at the Publisher, some applications can conserve significant
network bandwidth by avoiding the network transmission
of irrelevant data [22]. Although this capability, for some
kinds of application – such as those that have a dynamic
and unpredictable number of Publishers and Subscribers –
the filtering at the Subscribers is the best choice. In DDS,
topics are defined using DDL (Data Definition Language).
This language is very similar to the OMG IDL for describing
data types. A compiler is then used to translate the DDL type
definitions into specific programming language code that is
included into an application.

B. MAPE-K Autonomic Architecture

The MAPE-K [23] (Monitoring, Analysis, Planning, Ex-
ecuting and Knowledge) model, illustrated in Figure 3, is
a general architecture for the development of autonomic
software components, which was originally proposed by
IBM [9]. This model defines the tasks and the interactions
among the main architectural components of autonomic
systems. According to MAPE-K, each element in such a
system is divided into an autonomic manager and a managed
resource.

Figure 3. MAPE-K Autonomic Architecture [24]

The managed resource corresponds to the system or
some system component providing the business logic that

is to be dynamically adapted as the computing environment
changes. The managed resource can be, for instance, a
Web server, a database, a software component in a given
application (e.g., the query optimizer in a database), an
operating system, etc. The autonomic manager performs
all the functions comprising the adaptation logic on the
managed resource: monitoring, analysis, planning, and adap-
tation execution. MAPE-K defines two types of access points
with the managed resource: sensors and effectors, which
are the only means of direct interaction with the managed
resource. Sensors are responsible for collecting information
from the managed resource. For example, if the managed
resource is an application server, this could be for instance,
the response times of remote requests from a client. The
information collected by the sensors reaches the monitors,
where they are interpreted, classifieds and transformed into
higher level information, such as the mean response time
distribution for different sorts of requests. This information
is then sent to the next stage of the cycle, the analysis and
planning phases. This stage produces an action plan, which
consists of a set of adaptation actions to be performed by the
executor. The effectors are the access points that allow the
autonomic managers to perform adjustments or adaptations
at the managed resources, such as allocating more/less buffer
space or setting some flow control parameter. The decision
of which adaptation actions must be applied in a given
situation requires a knowledge representation of the comput-
ing system, its states and its environment. This knowledge
can be represented and processed in different ways (e.g.,
Ontologies, basic ECA-Rules, machine learning, etc.) and
must be shared among the monitoring, analysis, planning
and executing components of the autonomic manager.

C. Load Balancing in Middleware

With the widespread and rapid development of Cloud
Computing and mobile devices, computational resources
have become ubiquitous. Despite the recent technology
developments, mobile devices still have more restrictive
processing and memory capacity and stringent energy limita-
tions than stationary machines. On the other hand, for several
applications one has the option to move some processing
tasks from the mobile client side to the server/cluster/cloud
side. This shift has several advantages for the application, but
also increases the demand for load balancing mechanisms
[6] [7] [8] [25], especially at the middleware layer used for
communication among the servers and/or cluster nodes.

Load balancing strategies have been classified under a
loosely unified set of terms and according to [25], the
first classifications came from [26] [27]. Figure 4 depicts
the classification proposed by [27]. Following the proposed
taxonomy, a load balancing algorithms can be either local or
global. Local solutions deal with a single processing node,
while global algorithms deal with more than one processing
node [25]. A global solution may be divided into static,



303

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when the load balancing algorithm is executed only when
there is a new task, and dynamic, which runs the algo-
rithm continuously or periodically. At an operational level,
an algorithm may be classified as physically distributed
(distributed) or physically non-distributed (centralized). Un-
like the centralized approach, in physically distributed load
balancing algorithms, the decisions are taken by several
nodes. And this decision can be made cooperatively, or
non-cooperatively. In the former, the algorithm requires a
common agreement among the nodes, while in the latter
each node makes a selfish decision. Moreover, according to
[28] in the global solution, decisions are made by a single
node such as the physically non-distributed defined by [25].

Delving into more details of the load balancing process, a
dynamic load balancing algorithm have four main elements
that are: (i) Initiation, (ii) Load Balancer Location, (iii)
Information Exchange and (iv) Load Selection, shown in
Figure 5 [29].

The Initiation policy defines how the current load infor-
mation is exchanged among the nodes. While in a periodic
strategy, information is exchanged at predefined time inter-
vals, an event-driven initiation strategy is based on the local
load observation. According to [29], the later strategy better
handles load imbalance and has a lower overhead than the
periodic strategy when the system load is already balanced.

A designer of load balancing algorithm should choose one
of two strategies for the location of the load balancer, i.e.,
the node in charge of analyzing the system load and deciding
whether a load redistribution among the nodes is required.
Load Balancer location strategies can be centralized or
distributed. Unlike the centralized strategy where a single
node evaluates the load of the entire system, a distributed
approach has some, or possibility all, nodes responsible for
made load balancing decisions.

Because the remaining sub-strategies of the taxonomy
shown in Figure 4 and Figure 5 are not of much relevance
for this work, we refer to [29] for an in-depth discussion
about the characteristics of the other policies. Moreover, the
objective of this work is not to propose specific load dis-
tribution algorithms, but rather provide general mechanisms
that support the implementation of several distributed load
balancing algorithms.

III. THE SDDL MIDDLEWARE

A. Overview of the SDDL

The Scalable Data Distribution Layer (SDDL) [19] [30]
[31] [32] [33] is a communication middleware that connects
stationary nodes running in a DDS Domain and deployed
in a cloud to mobile nodes that have an IP-based wireless
data connection, as illustrated in Figure 6. Some of the
stationary nodes are data stream processing nodes, while
others are gateways for the communication with the mobile
nodes (MNs). Gateways use the Mobile Reliable UDP (MR-
UDP) [19] [32] protocol to maintain a virtual connection

with each MN. The MR-UDP protocol was developed to
be robust to short-lived wireless disconnections, IP address
changes of the MNs and capable of Firewall/NAT traversal.
One of the nodes in the DDS Domain, the Controller, is
also a Web Server that can be accessed by a Web browser,
for displaying all the MN’s current position (or any other
node specific information) and for send unicast, broadcast,
or groupcast message to the mobile nodes. Figure 6 shows
other nodes in SDDL that are Load Balancer, PoA-Manager
and Processing Nodes. All nodes showed in Figure 6 will
be explained throughout this work.

Taking advantage of DDS’ distributed P2P architecture
and its highly optimized Real-Time Publish Subscribe wired
protocol, SDDL is naturally scalable, i.e., new processing
nodes or Gateways can be dynamically added to SDDL’s
core whenever more MNs have to be served, or new data
flow processing is required. In regard to the connections
with the MNs, whenever some Gateway is overloaded the
data flow to and from a large set of MNs, SDDL is capable
of seamlessly migrating a fraction of this set of MNs to
a underloaded Gateway. This is possible through a SDDL-
internal management node, called the PoA-Manager, which
continuously monitors the load of each Gateway - in terms
of the number of served MNs - and a Client communi-
cation library (CNClib) at the MNs, which accepts both
updates of alternative Gateway addresses and/or commands
to reconnect to a new Gateway address, from the PoA-
Manager. In spite of the unavoidable mobile disconnection,
these handovers between Gateways are very fast and com-
pletely transparent to the client applications running on the
mobile nodes. On the one side, the messages from the MN
are buffered in the CNClib until the new connection is
established, and on the other side, messages addressed to
the MN are also temporarily intercepted by a SDDL node
and then re-routed to the new Gateway, as soon as it signals
the connection establishment.

B. MAPE-SDDL

In order to address general dynamic adaptivity require-
ments for the SDDL middleware, we decided to extend
it with autonomic capabilities. This extension, inspired by
the MAPE-K loop, is called MAPE-SDDL. The goal is to
support resource monitoring, as well as analysis, planning
and execution of dynamic reconfigurations on components
of the SDDL middleware. The MAPE-SDDL architecture
(at a high level of abstraction) is illustrated in Figure 7.
It comprises four services: Monitoring Service (MS), Local
Event Service (LES), Analysis and Planning Service (APS),
and Control and Executing Service (CES).

1) Monitoring Service (MS): The MS collects data from
any SDDL managed resources, such as Gateways and Pro-
cessing Nodes. The monitoring is applied to properties from
these resources, such as: CPU load, amount of memory
available, network bandwidth and latency, number of served



304

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Load balancing hierarchy [27]

Figure 5. Taxonomy of dynamic load balancing algorithms [29]

MNs (by each Gateway) or number of DPSs assigned to
each Processing Node (see DPS concept in Section IV-A).
Each Monitor is responsible for a single property. Each
property is associated with a set of operation ranges, which
are defined by the framework user. For example, one could
use the following operation ranges for monitoring the CPU
load usage: [0%,30%], [30%,70%] and [70%,100%]. The
MS then notifies the LES (Local Event Service) whenever
the monitored property switches its operation range, which
might indicate a significant change on resource usage. MS
and LES are components that run in separate processes,
but they are located on the same node. Therefore, unlike
other cases in which communication occurs through DDS
topics, communication between MS and LES occurs through
standart JavaRMI [34].

2) Local Event Service (LES): The LES receives these
range change events from the MS and publishes event noti-
fications to subscribed components. Events are occurrences
that indicate that a resource availability condition extended
itself throughout a specified amount of time, i.e., its duration
time. Event evaluation is based on regular expressions writ-
ten by application developers or operators, as part of each
event definition. For an event notification to be triggered,
the corresponding expression must remain valid during the
specified duration time. This avoids the generation of events
when short-lived situations occur (e.g., a CPU load peak on
a Processing Node during a few seconds). The publication
topic of event notifications is the Event Notification
Topic, illustrated in Listing 1. This topic is defined by
two data structures: the data structure Property (line
1) contains the monitored property name (line 3), the



305

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. SDDL Architecture

Figure 7. MAPE-SDDL Architecture

property value (line 4), and the timestamp at which the
measurement occurred (line 5); the data structure Event
Notification (line 8) corresponds to the event itself.
The Event Notification contains the event identifier
(line 10), the node identifier that triggered the event (line
11), and the set of monitored properties (with their values)
that composes the notified event (line 12).

Listing 1. Event Notification Topic (DDL syntax)
1 struct Property
2 {
3 string name;
4 double value;
5 string timeStamp;
6 };
7
8 struct EventNotification
9 {

10 string eventID;
11 string sourceID;
12 sequence<Property> propertiesSeq;
13 };

3) Analysis and Planning Service (APS): The APS sub-
scribes to the Event Notification topic and analyzes
the received notifications identifying eventual problems that
requires reconfiguration actions. Mobile connection overload
on the Gateways, and unbalanced load between Processing
Nodes are examples of problems that are already being
diagnosed by the MAPE-SDDL APS. After diagnosis, the
APS will compose the dynamic reconfiguration actions to
resolve the identified problem, and then build an appropriate
action plan. The decision-making algorithm for building the
plan is based on user defined rules and uses a rule processing
engine. The action plan is a sequence of reconfiguration
actions to be executed on SDDL components. The action
plan for mobile connectivity management, for instance, takes
the form of a mandatory handover request to several mobile
nodes (with a new Gateway address list) that is generated
by the PoA-Manager, an instance of the APS. Action plans
are sent to the CES component through the Action Plan
Topic. This topic is defined by two data structures. The
data structure Action (line 1) contains the action identifier
(line 3), the node identifier that will perform the action (used
by CoreDX to filter the DDS message delivery designed for
each Processing Node - line 4), and a set of arguments re-
quired to perform the action (line 5). In Java, the arguments
corresponds to a byte array in order to allow the sending
of any serializable objec. The data structure ActionPlan
(line 8) corresponds to the plan itself, containing the plan
identifier (line 10), and the set of actions that comprises this
plan (line 11).

Listing 2. Action Plan Topic (DDL syntax)
1 struct Action
2 {
3 string actionID;
4 string executorID;
5 sequence<octet> args;
6 };
7
8 struct ActionPlan
9 {

10 string planID;
11 sequence<Action> actionsSeq;
12 };



306

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Control and Executing Service (CES): Finally, the
CES implements the adaptation engine that applies the corre-
sponding reconfiguration actions to SDDL components in re-
sponse to their availability/load changes. CES is divided into
two components: Controller and Executor. The Controller is
responsible for managing the execution of the action plan,
including the execution order of the reconfiguration actions
that must be applied as defined by the APS component.
The Executor is responsible for actually executing a given
reconfiguration action. Among the dynamic reconfiguration
actions currently supported, is the ability of moving DPSs
from a Processing Node to another (cf. Section IV-A). The
ability of migrating sets of MNs from one Gateway to an-
other (cf. Section III-A) is also implemented by CES, which
in this case resides in the mobile Client Lib, that performs
the disconnection from one Gateway and the reconnection
to the new Gateway.

IV. LOAD BALANCING OF MOBILE DATA STREAMS

A. Proposed Autonomous Approach

This work proposes a load balancing solution for DDS-
based systems named Data Processing Slice Load Balancing
(DPSLB), illustrated in Figure 8. The key concept of the
proposed solution is the Data Processing Slice (DPS), which
is the basic unit of load for balancing among server nodes.
These nodes will be called Processing Nodes (PNs) through-
out the text. The general idea is that each PN has some
DPS assigned to it, and that load balancing is equivalent to
a redistribution of the total number of DPS among the PNs
according to their current load (which is indicated by several
metrics, such as CPU and memory utilization).

Figure 8. Implementation architecture

The types of DDS nodes that compose the DPSLB ap-
proach, showed in Figure 8, are: PNs, which execute the
MS, LES and the CES Executor; and the Load Balancer,
which executes the APS and the CES Controller of the
MAPE-SDDL architecture. The Load Balancer is respon-
sible for monitoring the load of PNs, generating the actions
to redistribute the system’s workload when an unbalance
is detected and controlling the actions executed by PNs to
move DPSs between them. The Load Balancer has a module,
Load Balancing Algorithm, which may execute any global

algorithm that analyzes the load of the PNs, decides if the
system is unbalanced and performs the corrective actions.

The DPSLB solution was designed to Pub/Sub systems
that supports content-based subscriptions and are broker-
less, i.e., Pub/Sub systems that do not have brokers and
employ a fully decentralized P2P architecture such as the
DDS standard. The data items produced by the Publisher
Client Nodes are delivered directly to the Processing Nodes
without the need of centralized elements such as brokers.
Thus, the Processing Nodes (PNs) are the Subscribers in
charge of processing the data items instead of brokers that
route the data items to other elements. It is expected that
the proposed solution will be deployed in systems with
thousands of Processing Nodes and hundreds of thousands of
Client Nodes and a data production rate estimated of dozens
of gigabits per second.

In its current conception, the DPS Load Balancing sup-
ports applications where each data item is processed inde-
pendently of any other item. This limitation comes from
the way that processing load is distributed among PNs:
through the application of disjoint subscription filters. Since
a Processing Node does not receive all data items published
on the DDS Domain, PN may be unable to process a data
item “A” that depends on data item “B” delivered to and
processed by another Processing Node. Hence, the proposed
load balancing solution is tailored for data-parallel applica-
tions, i.e., where each data item is processed independently
of other items, and data items can be processed out of order
by any Processing Node.

As mentioned, the proposed solution relies on the concept
of DPS, or simply, Slice, which represents a percentage of
the total system workload being processed by the PNs. Every
data item of the data stream (e.g., produced by a mobile
node) must be assigned to a single DPS, in order to be
processed by some PN. If a data item has no associated
Slice, it will not be delivered to a PN for processing. Each
Slice is logical identified by a unique numeric ID (identifier),
commonly in a range between zero and the total number of
defined Slices, minus one. Thus, the DDS Topic carrying
application data produced by the publishing nodes has a
specific numeric field holding the Slice-ID assigned to each
data item.

Unlike Virtual Servers [35] [36] [37], Slices do not behave
as new PNs – as this would increase the system overhead
since each Virtual Server is a node monitored and managed
by the Load Balancer, which increases the CPU, memory
and network overheads because more software components
are instantiated – but only as a logical partition of the
global data volume. The arbitrary assignment of data items
to slice IDs enables the choice of load distribution with
different granularities (i.e., coarse-grained or fine–grained
load distribution). Because the global data item space is
partitioned into the set of Slices, a higher amount of Slices
allows to split the workload in smaller portions (fine-



307

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

grained), and a small amount of Slices means coarse-grained
workload distribution. This problem, “balls into bins”, is
better explained by Martin Raab and Angelika Steger [38].
The number of DPS is also a upper bound for the maximum
quantity of PNs, since each PN needs at least one Slice to
get involved into the DPSLB.

The Attribution Function is responsible for choosing a
valid DPS for each produced data item. The DPSLB solution
requires the Attribution Function to be a very low cost
function, since it has to compute/choose a DPS for each
produced data item, and this data will probably be produced
at a very high rate. This function may be a hash function
applied to a field of the data item, to the data producer’s
ID, or a random value. A good candidate function for
this is modulo operator (remainder of division). Attribution
Function does not have to ensure that the data items are
uniformly distributed over the total set of Slices since the
workload can be balanced by re-arranging the number of
Slices assigned to each PN.

Figure 9 illustrates an Attribution Function that consists
of a hash function that applies the modulo operator to the
Sensor ID field, in a configuration with ten Slices. Hence,
each data item computed by the Attribution Function is
assigned to one Slice. As shown, Sensor IDs 21, 1, 52 and
19 are mapped to Slice IDs 1, 1, 2 and 9, respectively. The
Attribution Function must be called before the data item is
published in the DDS Domain.

Figure 9. An example of Assignment Function applied upon data item

In our context, Load Balancing is the process of moving
Slices from a PN to another. The process is started when
the Load Balancer detects a load unbalance of the system
and decides that some DPS should be moved to a different
PN to reach a better performance. During this process both
PNs involved, i.e., the Slice-giving and the Slice-taking PN,
must work in a coordinated manner so to guarantee that all
data items are processed, and only by one of the PNs.

The Load Balancer plays the role of coordinator of the
reconfiguration actions to be executed in the Load Balanc-
ing Process, which are effectively executed by the CES

Executor component running in the overloaded and the
underloaded PNs. The algorithm within the Load Balancer
has to inform which are the Slice-giving and the Slice-
taking PNs and how many Slices should be moved among
these PNs, thus starting the Load Balancing Process. The
Load Balancing Algorithm is a generic module that can be
implemented using many algorithms. This module is notified
about new PNs that are able to join the DPSLB solution and
called when the Load Balancer needs to analyze the system
workload. After being called, the algorithm has to classify
the PNs and inform how many Slices should be moved from
overloaded nodes (Slice-giving) to underloaded nodes (Slice-
taking). With this information, the Load Balancer is able to
generate and send the corresponding commands to PNs.

Figure 10. Interactions between clients, PNs and Load Balancer

Figure 10 illustrates the interactions between the nodes
that compose the DPSLB Solution. Data items produced by
Publisher Client Nodes are processed by PNs and Subscriber
Client Nodes receive the processed data from PNs. The
Load Balancer interacts only with PNs: both to gather their
current workload and to send the load distribution actions
to the corresponding PNs (depicted as red arrows in Figure
10). Figure 11 shows the redirection of the data stream
when DPS-5 is moved from PN A to PN B. During the
Load Balancing Process both PNs receive the data items
of DPS-5, but initially none of them will process the data
from this DPS. Instead, they store these received data in
their local caches. Then, PN A sends its cached items to
B. After receiving A’s cached items, PN B has to identify
the data items that appear in both caches and then generate
a Merged Cache, which contains all data items of DPS-
5 without duplicates. Finally, DPSLB layer on B is able
to notify application about the data items in the Merged
Cache. The actions executed during the Load Balancing
Process ensure that there is neither data item loss nor data
item processed more than once.

If there are more than two PNs involved in the Load Bal-
ancing Process, the Load Balancer starts one Load Balancing
Session for each pair of Slice-giving and Slice-taking PNs.



308

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Data flow during Load Balancing Process

For instance, if there are one Slice-giving PN (PN A) and
two Slice-taking PNs (PNs B and C), the Load Balancer
starts one Load Balancing Session for PNs A and B and after
this Load Balancing Session finishes, it starts the second one
with PNs A and C. Each Load Balancing Session involves
only two PNs. The Load Balancing processes permits not
only use new PNs to increase the system´s resources but
also to reduce it when some PNs are idle, which enables
the system have an elasticity of resources. To do so, all
Slices assigned to an idle PN should be moved to another
PN before the idle PN can leave the system.

B. Implementation

1) Load Balancer: Roughly speaking, the Load Bal-
ancer receives event notifications through MAPE-SDDL,
analyzes them, possibly generates an action plan and sends
the corresponding commands through MAPE-SDDL to the
Processing Nodes involved in the defined reconfiguration
actions. An action plan is generated and sent in response
of a detection of unbalance load.

The Load Balancing Algorithm executes the logic
for analyzing the system load, deciding which will be
the Slice-giving and Slice-taking PNs and how many
Slice should be moved from the first to the latter. The
Load Balancing Algorithm must implement the LoadBal-
ancingAlgorithm interface that consists of two methods:
onNewProcessingNode() and analyzeLoad(). The
method onNewProcessingNode() is called when the
Load Balancer detects that a new PN arrived in the system
and analyzeLoad() is called every time that a new event
notification is received from a PN. This last method returns
a collection of Slice-Movement objects, which contains the
Slice-giving and Slice-taking PN and how many Slices
should be moved to the Slice-taker.

2) Processing Node: The PN is the managed resource
from the perspective of the MAPE-K model used in the
developed DPSLB prototype. In addition to the data pro-
cessing, which is intrinsically determined by the application
build upon DPSLB, each PN periodically verifies its moni-
tored properties and, depending of their operation ranges,
notifies the LES that evaluates these values against the
specified expression. Hence, LES eventually sends a event
notification, which holds all monitored data, to the Load
Balancer through APS. The current version of this prototype
periodically checks the PN´s monitored properties every two
seconds and then sends a event notification to the Load
Balancer.

When a PN receives a data item (or a sample in DDS
jargon), it checks whether the data item is assigned to a Slice
that it is responsible for. If this is the case, the PN notifies
the application through the onNewData() method.

3) CES and Load Balancing Process: CES is the adap-
tation engine that enables PNs to receive actions for
moving Slices as a consequence of a load redistribu-
tion action plan. The actions supported by the PN are:
addSlice, removeSlice, updateSliceState and
sendCacheToNode. RemoveSlice is used to set a
Slice to the Not In Use state, which means that data
items assigned to it can be discarded by the PN because
another PN is processing these data items. On the other
hand, addSlice changes a Slice to the Available
state, meaning that the PN is responsible for processing
the data assigned to the Slice. Therefore, the addSlice
and removeSlice actions do not actually add or re-
move a Slice, but only change the Slice state. The action
updateSliceState changes the Slice state to In Load
Balancing Session, which will be hereafter explained.

During a Load Balancing Process, both Slice-giving and
Slice-taking PNs should update the state of the involved
Slices to In Load Balancing Session. After the
Slice-giving PN updates and removes the Slices, the Slice-
taking PN can proceed with the update action. The specific
sequence of actions sent by the Load Balancer to move a
DPS between two PNs are: (i) Update the DPS’s state at
A to In Load Balancing Session in order to cache
the new data items received, (ii) Add the DPS at B with
In Load Balancing Session state in order to start
caching the data items, (iii) Remove DPS at A to inform
that A can discard the new data items received, (iv) Update
DPS’s state at B to Available to inform that B can process
the new data items and (v) Send cache from A to B. After
this, B will generate and process the Merged Cache, and
A will continue to process the data of its other Slices. The
add and remove actions determine if the corresponding
data items are delivered or not, respectively, to a node in a
DDS Domain. This is possible by a dynamic adjustment of
the subscriber filters.

The data items of a Slice cache are sent through a DDS



309

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Topic named CacheTopic. The CacheTopic carries
fields to inform the Slice ID, Slice-giving PN ID, Slice-
taking PN ID and the data items, which are serialized into
a byte array. The Slice-taking PN, after receiving a
CacheTopic sample, deserializes the data items and gets
its Slice local cache. With both local and remote caches,
the Slice-taking PN uses a Java Set in order to generate
the Merged Cache, which is a set that has no duplicated
data items. After generating the Merged Cache, the Slice-
taking PN removes it from the local cache and delivers
the data items to the application through the data items’
application data reader listeners.

V. EVALUATION

Initial dynamic adaptation tests performed with the
MAPE-SDDL middleware have already shown encouraging
performance results. Regarding MAPE-SDDL’s connectivity
load balancing, we did the following test: We initially con-
nected 600 simulated mobile nodes (MNs) to one Gateway,
and then activated a new ’empty’ Gateway. After a while, the
PoA-Manager identified a load unbalance, and requested half
of the MNs to migrate simultaneously to the new Gateway.
At this bulk handover, all 300 MNs were able to reconnect
at the new Gateway in less than 750 ms and none of the
data items produced regularly (every 10 seconds) by each
of the MNs was lost.

In order to evaluate the DPSLB solution and its implemen-
tation, we also developed a prototype application that utilizes
the DPSLB prototype for balancing of its data processing
load. This prototype application consists of clients that
publish color images into the DDS domain, and PNs that
receive the images, convert them to grayscale and, thereafter
inform the corresponding client about completion of the
image processing. Both communication paths happen trough
two DDS Topics.

Figure 12. Deployment of the evaluation application

Figure 12 illustrates the deployment of the prototype
application used for evaluation. Clients publish images
through the ClientTopic and PN servers reply with
completion notifications published into the ServerTopic,

which are shown in Figure 13. The ClientTopic has the
fields: sliceId (required by DPSLB to produce the
merged cache); id of the data item; senderId to iden-
tify the client; timestamp to inform the data item cre-
ation time and message, that carries the serialized im-
age. The ServerTopic holds fields: the data item id,
timestamp, senderId and message, which carries the
reply message, a serialized Java String, such as “Processed”.
Although this message could as well carry the result image
(grayscale), this application prototype sends only a “OK”
message, since the content and size of the reply message
is irrelevant for evaluating the DPSLB solution. The Load
Balancer analyzes the load of PNs and, transparently to
the application, balances their image processing workload.
It is important to stress that there is no communication,
neither directly nor indirectly, between clients and the Load
Balancer. Hence, the load generated by clients does not
affect the Load Balancer, only the PNs.

Figure 13. Evaluation application topics

Since the image processing done by this evaluation has no
restrictions with the delivered order and dependency between
each image that is processed (i.e., there is no relationship
between the images published by the same client), this
application may not be classified as data stream processing.
However, the processing done by the application layer is
totally independent of the Processing Node layer since it
just delivers the data items to the application layer. More-
over, this processing task demands high CPU utilization
and serves to validate that the DPSLB solution is able to
effectively distribute the load among the PNs without result
in data item loss/duplication.

DPSLB prototype was tested with data/image publication
rates starting from 160 (1.4 MB/s) up to 1,365 (10 MB/s)
data items per second. The Attribution Function of choice
was the modulo operator applied on the id field, and the
number of available slices was chosen to be 10. The setup
used for the experiment, as ilustrated in Figure 14, was the
following: 5 PNs, one Load Balancer and a Client simulator
deployed on three physical machines (PMs) executing in a



310

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

LAN with bandwidth of 100 Mbps. Each PN executed on a
dedicated virtual machine (VM) running the Ubuntu 12.04
32-bit Operating System, configured to use one CPU core
and 512 MB. The three physical machines had following
configurations: Intel i5 4 x 2.66 GHz, 8 GB DDR3 1333
MHz running Windows 7 64-bit; Intel i5 4 x 3.1 GHz, 8
GB DDR3 1333 MHz running Fedora 15 64-bit; and Intel
Dual-Core 4 x 2.66, 8 GB DDR2 667 MHz running Mac OS
X 10.7.5. The chosen virtualization product was Oracle VM
VirtualBox since it is free and has cross-platform support.

Figure 14. Deployment of the Virtual Machines

The Load Balancer and PN on VM-A1 were initiated
before the evaluation starts. At initial time 0s (second zero)
the Client Node was started with a data production rate of
1.4 MBs. After 18 seconds the second PN on VM-A2 was
added to the system; at 25s the third PN on VM-B1 was
detected by the Load Balancer; at 35s the fourth PN on
VM-B2 arrived and at 45s a fifth PN on VM-B3 joined the
system. Finally, at 59s the data produced by the Client Node
was increased from 1.4 MBs to 10 MBs. The evaluation was
finalized at time 85s.

A. Throughput

The throughput metric – expressed in data items per
second (DI/s) – was used to demonstrate that an increase of
the set of PNs leads to an increase of the system´s processing
capacity, as expected. This metric was collected at the client
side and the throughput in an instant of time represents the
amount of reply messages received at the specified instant
of time from all PNs.

Figure 15 shows that the system throughout increases by
a nearly equal amount whenever a new PNs arrives at the
system. The vertical red lines indicate the point of time when
a new PN joined the system, and the green arrow indicates
the time when the data production rate was increased to 10
MB/s. The throughput started from 40 DI/s and reached up
to 323 DI/s at 72s. With five PNs and a data production
rate of 1.4 MBs, the system was able to process up to 245
DI/s and the mean was 240 DI/s. Finally, when the client
node augmented its production rate to 10 MB/s, at 59s,
the throughput experienced a fall to 163 DI/s and after 6s
reached 283 DI/s. From 66s until the end of the evaluation,
the throughput had an average of 317 DI/s. Immediately after

Figure 15. Throughput over the time of the experiment (DI/s X seconds)

a new PN joins the system, the throughput suffers a small
retraction and after 1 second the system achieves a higher
throughput level.

The decrease of the throughput at 59s may be explained
by to the fact that the network and the DDS middleware
had to deal with a sudden burst of the data production rate.
In order to achieve better throughput and reduce the CPU
and network overheads, DDS can aggregate many samples
(a.k.a. data items) into a single packet and send this single
packet, instead of sending many small data samples, which
helps to increase the latency to send the data items and
consequently decrease the throughput. Another noteworthy
issue is that in this test the data production rate almost
reached the theoretical network bandwidth of 100 MBs.

It is important notice that the throughput grows almost
proportionally to added processing capabilities of the PNs.
Specifically in this evaluation, the major capability is CPU
speed, as image processing requires most resources in CPU
throughput.

B. CPU Usage

The CPU usage shows that, using the modulo operator
as Attribution Function, the DPSLB solution effectively
achieves an even distribution of the data items over the PNs
and that this data flow drives to an equal increase of the
CPU usage (expressed in percentage (%)). The CPU usage
was collected at each PN.

Analyzing Figure 16, it is possible to notice that as soon
as the PN becomes active, its CPU usage goes up to a
value higher than 90% and all PNs have a small CPU usage
difference from each other. As expected, the system’s load
(mean load) is increased whenever a new PN arrives in
the system and starts processing data items. When the data
production rate was increased, at instant 59s, the system
load fell from 92% to 85%, together with the throughput,
but after 6s went again up to 97%.

This momentary decrease on the CPU usage probably
shares the same explanation given for the throughput dip:
a sudden burst of data traffic. The fall on the CPU usage



311

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. CPU usage over the time of the experiment (% X seconds))

suggests that it was caused by a bottleneck at the network
and DDS communication layer.

C. Round-trip Delay

The round-trip delay (RTD), or Round-trip Time, is mea-
sured in seconds (s), and encompasses the time interval from
the instant a client sends a data item until it receives an ac-
knowledgment informing that the data item was successfully
processed by a PN. The RTD was collected at the client side
and the RTD in an instant of time that represents the mean
RTD of all data items processed by all PNs at the specified
instant of time. An increase of the RTD may indicate that
the system is receiving more data items than it is able to
process.

Figure 17. Round-trip Delay over the time of the experiment (RTD in
seconds X time in seconds)

The RTD during the experiment is shown in Figure
17, where the vertical red lines indicate when a new PN
joined the system, as those in Figure 15, and the green
arrow indicates the time when the data production rate
was increased to 10 MB/s. This chart reveals that the data
production rate is higher than the processing capacity of the
system since the RTD increases. It also shows sudden drops
of the RTD whenever new PNs arrived on the system. This
phenomenon can be explained by the fact that a new PN
has no data items on its queue, so that the first data items

it processes have a low RTD, which in turn helps to reduce
the mean RTD. But after a while the data items are queued
also at the new PN because it is not able to process them
at the rate that they are delivered, and thus, the RTD keeps
increasing.

In spite of the steady increase of the mean RTD, it is
possible to observe from Figure 17 that, after instant 40s,
the RTD begins to have a smoother increase: i.e., from
0s to 5s, where there was one PN, the RTD increased by
approximately five seconds, while between 40s and 60s,
when all 5 PNs had joined the system, the RTD increased by
less than five seconds. But starting at 59s, as a result of the
increase of the rate of published data items, the RTD started
again rising faster than in the interval between 40s and 60s,
which again is due to the insufficient processing capacity of
the system against the high rate of data item production.

D. Overhead

To assess the Load Balancing overhead, we compared
the throughput and the mean round-trip delay of the same
image processing application in two configurations: using
the DPSLB solution and without Load Balancing support.
The overhead of the DPSLB solution was expressed by
percentages (%) of the throughput loss, and the mean RTD
increase, respectively. To evaluate the DPSLB overhead,
10,000 data items were produced with a data production
rate of 1,150 data items per second (DI/s).

Figure 18. Mean throughput (DI/s) comparison among DPSLB solution
and another without Load Balancing)

The application using DPSLB was able to process 81.044
DI/s and the application without any load balancing support,
was able to process 82.194 DI/s, as shown in Figure 18.
These numbers show an overhead of 1.4% introduced by
the DPSLB implementation. Regarding to the RTD, shown
in Figure 19, the application using DPSLB had a mean
RTD of 60.45 seconds, while the application without DPSLB
delivered a mean RTD of 59.51 s. This difference represents
an increase of 1.58% on the RTD.

The mean time required to complete a Load Balancing
Process with a data production rate of 10 MB/s and ten slices
was 454 ms. While in Load Balancing Process, the DPSLB



312

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I
IMPACT OF THE LOAD BALANCING PROCESS ON RTD AND

THROUGHPUT

2 PNs 3 PNs 4 PNs 5 PNs
RTD before 10.610 s 11.159 s 12.335 s 12.856 s

RTD during 11.115 s 11.944 s 12.145 s 12.652 s

RTD after 6.940 s 8.856 s 9.838 s 10.227 s

Throughput before 48 DI/s 83 DI/s 142 DI/s 189 DI/s

Throughput during 40 DI/s 72 DI/s 143 DI/s 180 DI/s

Throughput after 68 DI/s 100 DI/s 195 DI/s 231 DI/s

prototype resulted in a mean CPU overhead of 1.4% when
analyzing the CPU usage on the PN that gives some slices
to another. We believe that the overhead introduced by the
DPSLB solution has a low cost when compared with the
benefits that it introduces. Both throughput loss and RTD
increase are lower than 1.6%, which seems a reasonable
overhead in return of Load Balancing support.

Figure 19. Mean Round-trip Delay comparison among DPSLB solution
and another without Load Balancing)

The Load Balancing Process Overhead tries to capture
the impact of the Load Balancing Process on the system´s
throughput and mean RTD. The RTD and throughput before,
during and after the Load Balancing Process are shown in
Table I. The columns 2, 3, 4 and 5 PNs show the number
of PNs participating in the Load Balancing Process.

When the second, third, fourth and fifth PNs arrived, the
RTD was increased by 4.76% and 7.035% and decreased
by 1.54% and 1.58%, respectively. The mean of the RTD
overhead for all these four load balancing situations was
therefore 2.167%. When a Slice-Taking PN receives Slices
from two Slice-Giving PNs, the Slice-Taking PN has a Load
Balancing Session for each Slice-Giving PN, which are
sequentially executed. Thus, as soon as a Load Balancing
Session is over, the Slice-Giving PN keeps running normally
and the Slice-Taking PN is able to process data items that
are assigned to the Slices received from the Slice-Giving
PN. This behavior allows the PNs to start processing data
items as soon as Load Balancing Session is completed and,
hence, do not contribute to an increase the RTD.

Table II
LOAD BALANCING PROCESS OVERHEAD FOR DIFFERENT THE NUMBERS

OF SLICES AND DATA ITEM PRODUCTION RATES

10 Slices 100 Slices 1,000 Slices
1.4 MB/s 401 ms 422 ms 432 ms

4 MB/s 406 ms 433 ms 450 ms

10 MB/s 454 ms 479 ms 491 ms

Analyzing the throughput versus the arrival of new PNs,
the throughput was decreased by 16.667%, 13.253% and
4.762% when the second, third and fifth PNs joined the
system, and increased by 0.704% when the fourth PN joined,
which represents a mean overhead of 8.494%. However,
there is a trend towards lower overheads as more PNs join
the system since the overhead starts by 16.667% till 4.762%
when the second and fifth PNs joined the system, respec-
tively. The higher throughput when the fourth PN arrived
may have occurred because the Load Balancing Process
involved only a single PN that was already active, which
could help to maintain the throughput almost stabilized.

In order to measure the influence of the number of Slice
and the data production rate on the Load Balancing Process
performance, the number of Slices available was increased
from 10 to 100 and 1,000 and the data production rate from
1.4 MB/s to 4 MB/s and 10 MB/s. From Table II it is
possible notice that the data production rate has a higher
impact on the overhead than the number of Slices. When the
data production rate was increased by a factor of 10, the time
required to complete the Load Balancing Process increased
by in 13.217%. On the other hand, by increasing 10 and 100
times the number of Slices, this only augmented the Load
Balancing Process time by 5.237% and 7.73%, respectively.
This behavior suggests that the network saturation has a
greater impact on the Load Balancing Process overhead than
the increase of the number of Slices.

VI. RELATED WORK

There is much research and development of autonomic
load balancing in middleware for distributed systems, but
to the best of our knowledge, there is no other work that
leverages the benefits of the MAPE-K model for dynamic
adaptiveness in DDS-based systems, and more specifically,
proposes a load balancing approach for mobile data stream
processing that is reliable, efficient and flexible.

A common load balancing solution applied on Web
Servers, cloud computing and clusters is based on central-
ized dispatcher [39] [40] [41] [42] [43] [44] [45] where all
data stream or requests go through the dispatcher, which
chooses one server node to process a set of the data stream
or to accept the client request. It is important stress that this
approach has a centralized load balancer that is a bottleneck
and is not reasonable on Pub/Sub systems.



313

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While in Pub/Sub systems nodes with the same subscrip-
tion receive the same data, in the proposed load balancing
solution PNs – which are homogeneous and have the same
subscription – do not receive the same data, instead each
data is delivered to a single PN in order to produce a data
stream flow. To do so, the proposed solution manages how
data are routed by DDS to PNs, which is simpler than
routing problem in Pub/Sub systems. However, the novel
proposal, [46] [47] [6] propose load balancing mechanisms
for distributed systems, either for the routing layer or the
data processing layer.

The work by Cheung et al. [46] has developed a load bal-
ancing mechanism to balance the subscription load among
brokers on the Padres Pub/Sub system [48], where publishers
or subscribers may freely migrate among brokers. While [46]
focuses on the routing layer for a broker-centered Pub/Sub
system and clients (publishers or subscribers) are impelled
to change their brokers for data flow load balancing, DPSLB
solution is based on DDS’ P2P architecture for balancing the
load among PNs.

REVENGE [47] is a DDS-compliant infrastructure for
news dispatching among mobile nodes and that is capable
of transparently balancing the data distribution load within
the DDS network. In the same way, [47] only load balances
the routing substrate, while MAPE-SDDL is able to load
balance the mobile connections via PoA-Manager and PNs
via Load Balancer in the DPSLB.

In [6], a non-coordinated load balancing approach that
relies on magnetic fields is proposed: the idea is that
underloaded nodes attract data from overloaded nodes. In
an completely opposite way, the Load Balancer in DPSLB
performs the MAPE-K tasks of Analysis, Planning and
Execution, and carefully synchronizes the re-allocation of
Data Processing Slices from one PN to another. This has
the advantage of a more efficient and reliable load balancing,
but the drawback of the dependability of the Load Balancer.

One of the most remarkable differences between [46]
and this work is that Cheung and Jacobsen work with
heterogeneous client nodes that have to receive all data that
match their subscriptions. In a appositive way, the DPSLB
works with homogeneous server nodes that have the same
subscription but should not receive the same data. While [46]
focuses on balancing the Brokers´s load by migrating clients
(publishers or subscribers) to other Brokers, the proposed
solution by this work relies on DDS’ P2P architecture for
balancing the data flow processing load among PNs rather
than balancing the subscription and dissemination loads,
which is transparently done by DDS and SDDL.

Similarly to Cheung and Jacobsen’s work, in REVENGE
[47] load balancing is focused only in the routing of sub-
scriptions and notifications, rather than load balancing the
data processing load. Unlike REVENGE, this work proposes
a solution to balance the load on PNs so as to enable the
deployment of new services that require a great amount of

computational resources. To achieve fault tolerance and a
better load balancing on the routing layer, REVENGE works
with the concept of multi-domain communication and “hot
copies” of the routing substrate. Our work neither works
with multi-domains nor have capabilities to support fault
tolerance on its load balancing.

Magnetic Field [6] approach is a decentralized and not co-
ordinated load balancing where there is not a Load Balancer.
Thus, the nodes communicate with each other to build the
magnetization network. Our work, on the other hand, is a
coordinated and global load balancing where Load Balancer
is in charge of gathering load information about nodes
and making and managing the load redistribution actions
among nodes. Differently from the message attractions in
magnetic fields, our approach selects a single PN that must
process each data (message). To do so, the proposed solution
manages the data routing done by DDS.

While Calsavara and Lima Jr’s approach [6] relies on the
attraction of messages through the magnetization relation-
ship, this works proposes an approach that relies on slices,
which is expected to provide an efficient load balancing
system that is able to directly delivery messages (data) to
the appropriate nodes on DDS-based systems.

The main advantage of employ coordinated and global
load balancing is that better analyzes and decisions can be
done since the Load Balancer is able to gather information
about all PNs after take any decision. Since the Load
Balancer act also as a coordinator for the PNs during a Load
Balancing Process, there is no need for complex autonomic
algorithms and leader election at the PNs to decide which
actions should be executed by each PN to realize the load
balancing without conflicts. The clear disadvantage of this
approach is that the Load Balancer may be a point of failure
and bottleneck for the system´s scalability when there are
hundreds of thousands of PNs since the Load Balancer has
to analyze the load of all PNs.

Although there are many other load balancing approaches
that are found both in academia and industry, none of
them explores the capability of the node to receive all data
published in a DDS Domain without the need of Brokers or a
central dispatcher. In order to effectively realize a processing
load balancing in a DDS Domain, a possible approach is
simply managing the subscription filters so to control the
data stream processing. Therefore, all data routing and its
optimization is responsibility of DDS.

VII. DISCUSSION

This paper proposed a novel approach to load balancing
mobile connections and data streams based on the MAPE-K
model, which entails several advantages that go far beyond
a simple boost of performance. Most current load balancing
methods are quite inflexible, since they always make same
sorts of decision, without considering that the system may
require different load distribution approaches depending



314

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on the current state of data stream processing (high/low
load) or the state of the infra-structure (e.g., node failures,
communication failures, re-organization, etc.). Moreover,
by being disassociated from any Autonomic architecture,
traditional load balancing mechanisms fail to incorporate
self-monitoring, self-analysis and self-adaptation behavior as
response to changes in the execution environment.

Since our load balancing mechanism is structured accord-
ing to the MAPE-K model it is able to deliver sustained
load balancing performance under various conditions. For
example, based on the information collected by MS, CES is
capable of adjusting parameters of the load balancing algo-
rithm directly (i.e., parametric adaptation). For other changes
of conditions, CES may even substitute the load balancing
algorithm by a more effective one. Adaptation can also be
used to circumvent failures of PNs and Gateways. For these
cases, the APS can choose the best parameters, algorithms
or techniques for handling outage of failed elements, and
recovery actions. Finally, it is also possible to implement a
machine learning technique in the APS, which would allow
the load balancing mechanism to anticipate future change
demands, and thus react in a more effective and efficient
way. This knowledge about past behavior and adaptation
performance of the system would have to be represented and
analyzed by the adaptation logic, which is a feature made
possible by the MAPE-K model.

Furthermore, our load balancing approach for Data Stream
Processing is targeted at DDS-based systems, which support
fully decentralized system architectures. It is a generic
solution, transparent to the SDDL applications, able to route
data streams to PNs with low overhead and is inherently
scalable, i.e., it supports large numbers of nodes and large-
volume data streams. Also, since PNs can dynamically
join or leave the system during operation, DPSLB supports
seamless variations of computational resources.

The DPSLB Solution works with any type of application
object/message and is totally transparent to the application
developers, who must only inform which DDS Topics are
subject to load balancing by DPSLB. They can still cus-
tomize their applications with the DDS QoS policies of
their choice. For example, fault tolerance can be achieved by
deploying replicas of a PN responsible for some data slices,
and using the Ownership DDS QoS policy to dynamically
switch between the redundant output flows produced by the
PN replicas.

Finally, the DPSLB also supports customization since
several load balancing algorithms (i.e., implemented in APS
of MAPE-SDDL) can be applied in the Load Balancer.
For example, one could deploy an algorithm which seeks
the uniform load distribution, or otherwise, use another
algorithm which tries to minimize the system’s global energy
consumption.

VIII. CONCLUSION AND FUTURE WORK

The need for remote monitoring and high performance
processing of large mobile data streams in a timely manner
is becoming common to many systems such as Intelligent
Transportation Systems, Fleet Management and Logistics,
and integrated Industrial Process Automation.

The main contribution of this work is the development
of a novel approach to load balancing that has two main
novelties: its autonomic behavior based on MAPE-K model
and the use of DDS as its communication infra-structure.
The underlying middleware, MAPE-SDDL, supports not
only load balancing of mobile connections among different
Gateways but also node balancing of data stream process-
ing across multiple PNs. To the best of our knowledge
MAPE-SDDL is the first middleware that has developed
an autonomous load balancing approach tailored to DDS-
based systems. Preliminary performance evaluations have
shown encouraging results what motivate us to continue the
development of SDDL and its autonomic extensions.

By being disassociated from any autonomic reference
model, traditional load balancing mechanisms fail to in-
corporate self-* properties, which are the pillars for the
development of more adaptive and scalable systems. More-
over, most of the traditional load balancing approaches are
not well suited for high-throughput mobile communication
and data stream processing systems, as they are not based
on a communication layer with real-time communication
capabilities. On the other hand, our load balancing approach
was specially designed for decentralized systems based on
the DDS standard, and hence is capable of fulfilling appli-
cation requirements such as real-time and high throughput
data communication and processing, scalability and fault
tolerance.

The evaluation has yielded encouraging performance re-
sult, which motivate us to proceed with the development
of SDDL’s adaptivity and load balancing capabilities. In
particular, we could check that during the Load Balancing
Process there was neither any data item loss nor duplication.
It could also be noticed that the addition of new PNs
effectively enhances the system´s processing capacity and
does not drive to an rise of the overhead. For example, the
overall throughput could be augmented from 40 DI/s for
one PN, to 323 DI/s, when five PNs are used. While new
PNs help to increase the throughput, more PNs reduce the
RTD – or at least to reduce the growth – because the load is
divided across the available PNs since the system is able to
promptly process more data items in the same unit of time.
Most importantly, the proposed DPSLB solution allows a
stream processing system to scale in the number of PNs
with acceptable overhead. The overhead introduced by the
DPSLB prototype represents only 1,4% and 1,58% of the
throughput and RTD, respectively, which is a low cost com-
pared to the benefit of having a load balancing mechanism.



315

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With a data stream rate of 10 MB/s and 1.000 Slices, the
DPSLB prototype was able to move 500 Slices from a single
PN to a second PN in less than 500 ms (milliseconds), which
is fast enough for many stream processing applications. And
regarding load balancing of mobile node (MN) connections,
MAPE-SDDL is able to migrate 300/600 MNs from one
Gateway to another in less than 750 ms.

As future work, we are planning the design, implementa-
tion and evaluation of other Attribution Functions and load
balancing algorithms, both for data stream processing and
connectivity load distribution, as well as developing support
for general state transfers among the managed resources
(PNs or Gateways) during Load Balancing Process. New
Attribution Functions would be valuable to study how the
DPSLB solution behaves in face of uneven Attribution Func-
tion and heterogeneous PN resource capacities. In particular,
we believe that collecting statistical data about the data
items received in each Slice, and the corresponding workload
associated to each Slice will certainly enable much better
Load Balancing Algorithms. Thereby, they would be able
to take into account the different data stream rates assigned
to each Slice, and to decide which specific Slices, not only
how many, should be moved among the PNs.

We also plan to design and implement a new component
in MAPE-SDDL, called Distributed Event Service (DES),
which will allow the detection of composite events made of
basic events from different event sources (e.g., distributed
PNs). DES is required for cases where the decision to
reconfigure the system must consider the combination of
events detected by several LES at distributed resources. For
example, it could be used to detect the overload in a group
of PNs, instead of the overload detection at individual PNs.
The DES will thus enable the load balancing mechanism to
be driven by a global perspective on a distributed group of
Nodes.

ACKNOWLEDGMENT

“This work is partly supported by project Mobile
InfoPAE, CNPq scholarships nº. 310253/2011-0 and
140966/2013-7, and FAPEMA.”

REFERENCES

[1] R. O. Vasconcelos, M. Endler, B. d. T. P. Gomes, and
F. J. d. S. e. Silva, “Towards Autonomous Load Balanc-
ing for Mobile Data Stream Processing and Communication
Middleware Based on Data Distribution Service,” in ICAS
2013: The Ninth International Conference on Autonomic and
Autonomous Systems, Lisbon, 2013, pp. 7–13.

[2] R. O. Vasconcelos and M. Endler, “A Dynamic Load Bal-
ancing Mechanism for Data Stream Processing on DDS
Systems,” M.Sc Thesis, Departamento de Informatica, PUC-
Rio - Pontifı́cia Universidade Católica do Rio de Janeiro, Rio
de Janeiro, 2013.

[3] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 re-
quirements of real-time stream processing,” ACM SIGMOD
Record, vol. 34, no. 4, pp. 42–47, Dec. 2005.

[4] A. Margara and G. Cugola, “Processing flows of information,”
in Proceedings of the 5th ACM international conference on
Distributed event-based system - DEBS ’11. New York, New
York, USA: ACM Press, 2011, p. 359.

[5] Waze, “Free GPS Navigation with Turn by Turn - Waze,”
2013. [Online]. Available: http://www.waze.com/. [Accessed
Dec. 18, 2013].

[6] A. Calsavara and L. A. P. Lima Jr., “Scalability of Distributed
Dynamic Load Balancing Mechanisms,” in ICN 2011 The
Tenth International Conference on Networks, no. C, 2011,
pp. 347–352.

[7] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A Comparative
Study into Distributed Load Balancing Algorithms for Cloud
Computing,” in 2010 IEEE 24th International Conference on
Advanced Information Networking and Applications Work-
shops. IEEE, 2010, pp. 551–556.

[8] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.

[9] IBM, “An architectural blueprint for autonomic computing,”
IBM White Paper, 2006.

[10] M. C. Huebscher and J. a. McCann, “A survey of autonomic
computing—degrees, models, and applications,” ACM Com-
puting Surveys, vol. 40, no. 3, pp. 1–28, Aug. 2008.

[11] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang,
M. Parashar, and H. Liu, “The Autonomic Computing
Paradigm,” Cluster Computing, vol. 9, no. 1, pp. 5–17, Jan.
2006.

[12] R. Sterritt, “Autonomic computing,” Innovations in Systems
and Software Engineering, vol. 1, no. 1, pp. 79–88, Mar.
2005.

[13] J. Kephart and D. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[14] M. Parashar and S. Hariri, “Autonomic computing: An
overview,” in In Proceedings of the 2004 international confer-
ence on Unconventional Programming Paradigms (UPP’04),
J.-P. Banâtre, P. Fradet, J.-L. Giavitto, and O. Michel, Eds.
Le Mont Saint Michel: Springer-Verlag, Berlin, Heidelberg,
2005, pp. 247–259.

[15] OMG, “Object Management Group,” 2013. [Online]. Avail-
able: http://www.omg.org/. [Accessed Dec. 18, 2013].

[16] G. Pardo-Castellote, “OMG data-distribution service: Archi-
tectural overview,” ICDCSW ’03 Proceedings of the 23rd
International Conference on Distributed Computing Systems,
2003.

[17] C. Tucker, “What can DDS do for You? Learn how dynamic
publish-subscribe messaging can improve the flexibility and
scalability of your applications.” OMG Whitepapers: Data
Distribution Service Portal, 2013.



316

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and D. C.
Shmidt, “Evaluating the Performance of Publish/Subscribe
Platforms for Information Management in Distributed Real-
time and Embedded Systems,” OMG Whitepapers: Data
Distribution Service Portal, 2010.

[19] L. David, R. Vasconcelos, L. Alves, R. André, and M. Endler,
“A DDS-based middleware for scalable tracking, communi-
cation and collaboration of mobile nodes,” Journal of Internet
Services and Applications (JISA), vol. 4, no. 1, p. 16, 2013.

[20] G. Pardo-Castellote, B. Farabaugh, and R. Warren, “An
introduction to DDS and data-centric communications,” 2005.
[Online] Avaliable: http://www.omg.org/news/whitepapers
/Intro To DDS.pdf. [Accessed Dec. 18, 2013].

[21] G. Pardo-Castellote, “DDS Tutorial – Part II - Hands
On,” 2009. [Online]. Available: http://www.omg.org/news/
meetings/GOV-WS/pr/rte-pres/DDS Tutorial RTEW09.pdf.
[Accessed Dec. 18, 2013].

[22] T. O. Computing, “Learn About How it Works:
Take the CoreDX DDS Tour Twin Oaks
Computing, Inc,” 2012. [Online]. Avaliable:
http://www.twinoakscomputing.com/coredx/dds tour.
[Accessed Dec. 08, 2013].

[23] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer., vol. 36, pp. 41–50, January 2003.

[24] I. Naick, “Make autonomic computing a reality with IBM
Tivoli. Using IBM Tivoli Provisioning Manager and IBM
Tivoli Intelligent Orchestrator to create an on demand en-
vironment,” IBM White Paper, 2004.

[25] A. K. Y. Cheung, “Dynamic Load Balancing in Distributed
Content-based Publish/Subscribe,” Ph.D. dissertation, M.Sc
Thesis, Graduate Department of Electrical and Computer
Engineering, University of Toronto, 2006.

[26] N. Shivaratri, P. Krueger, and M. Singhal, “Load distributing
for locally distributed systems,” Computer, vol. 25, no. 12,
pp. 33–44, Dec. 1992.

[27] T. Casavant and J. Kuhl, “A taxonomy of scheduling in
general-purpose distributed computing systems,” IEEE Trans-
actions on Software Engineering, vol. 14, no. 2, pp. 141–154,
1988.

[28] D. Grosu and A. Chronopoulos, “Algorithmic Mechanism
Design for Load Balancing in Distributed Systems,” IEEE
Transactions on Systems, Man and Cybernetics, Part B (Cy-
bernetics), vol. 34, no. 1, pp. 77–84, Feb. 2004.

[29] A. Osman and H. Ammar, “Dynamic load balancing strate-
gies for parallel computers,” in International Symposium on
Parallel and Distributed Computing (ISPDC), 2002.

[30] R. O. Vasconcelos, L. Silva, L. Alves, and M. Endler, “Scal-
able Data Distribution Layer - Overview, Use Instructions
and Download,” 2012. [Online]. Avaliable: http://www.lac-
rio.com/sddl/. [Accessed Dec. 18, 2013].

[31] R. O. Vasconcelos, L. David, L. Alves, R. André, and
M. Endler, “Real-time Group Management and Commu-
nication for Large-scale Pervasive Applications,” Rio de
Janeiro, 2012, Monografias em Ciência da Computação -
MCC 05/2012, Dep. de Informática, PUC-Rio, ISSN 0103-
9741.

[32] L. David, R. Vasconcelos, L. Alves, R. André, G. Baptista,
and M. Endler, “A Large-scale Communication Middleware
for Fleet Tracking and Management,” in Salão de Ferra-
mentas, Brazilian Symposium on Computer Networks and
Distributed Systems (SBRC 2012), Ouro Preto, 2012.

[33] M. Endler, R. O. Vasconcelos, L. David, R. André, and
L. Alves, “A DDS-based middleware for scalable tracking
and communication of wireless-connected mobile nodes in
a WAN,” Rio de Janeiro, 2012, Monografias em Ciência da
Computação - MCC 06/2012, Dep. de Informática, PUC-Rio,
ISSN 0103-9741.

[34] Oracle, “Getting Started Using Java RMI,” 2013. [Online].
Available: http://docs.oracle.com/javase/6/docs/technotes/
guides/rmi/hello/hello-world.html. [Accessed Dec. 18, 2013].

[35] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-area cooperative storage with CFS,” in Proceedings
of the eighteenth ACM symposium on Operating systems
principles - SOSP ’01. New York, New York, USA: ACM
Press, 2001, p. 202.

[36] A. Rao, K. Lakshminarayanan, and S. Surana, “Load bal-
ancing in structured P2P systems,” in Proceedings of IPTPS,
2003, pp. 68–79.

[37] L. Xia, H. Duan, X. Zhou, Z. Zhao, and X.-W. Nie, “Hetero-
geneity and load balance in structured P2P system,” in 2010
International Conference on Communications, Circuits and
Systems (ICCCAS). IEEE, Jul. 2010, pp. 245–248.

[38] M. Raab and A. Steger, ““Balls into Bins”—A Simple and
Tight Analysis,” In Proceedings of the Second International
Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM ’98), pp. 159–170, 1998.

[39] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Green-
berg, “Join-Idle-Queue: A novel load balancing algorithm for
dynamically scalable web services,” Performance Evaluation,
vol. 68, no. 11, pp. 1056–1071, Nov. 2011.

[40] C.-C. Yang, C. Chen, and J.-Y. Chen, “Random Early Detec-
tion Web Servers for Dynamic Load Balancing,” in 2009 10th
International Symposium on Pervasive Systems, Algorithms,
and Networks. IEEE, 2009, pp. 364–368.

[41] V. Suresh, D. Karthikeswaran, V. Sudha, and D. Chan-
draseker, “Web server load balancing using SSL back-end
forwarding method,” Advances in Engineering, Science and
Management (ICAESM), 2012 International Conference on,
pp. 822–827, 2012.

[42] Z. Zhang and W. Fan, “Web server load balancing: A queue-
ing analysis,” European Journal of Operational Research, vol.
186, no. 2, pp. 681–693, Apr. 2008.



317

International Journal on Advances in Intelligent Systems, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/intelligent_systems/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[43] D. C. Shadrach, K. S. Balagani, and V. V. Phoha, “A
Weighted Metric Based Adaptive Algorithm for Web Server
Load Balancing,” in 2009 Third International Symposium on
Intelligent Information Technology Application. IEEE, 2009,
pp. 449–452.

[44] T. C. Chieu, A. Mohindra, A. a. Karve, and A. Segal,
“Dynamic Scaling of Web Applications in a Virtualized
Cloud Computing Environment,” in 2009 IEEE International
Conference on e-Business Engineering. IEEE, 2009, pp.
281–286.

[45] A. Corsaro, “DDS in SCADA, Utilities,
Smart Grid and Smart Cities,” 2012. [On-
line]. Available: http://www.slideshare.net/Angelo.Corsaro/
dds-in-scada-utilities-smart-grid-and-smart-cities

[46] A. K. Y. Cheung and H.-A. Jacobsen, “Load Balancing
Content-Based Publish/Subscribe Systems,” ACM Transac-
tions on Computer Systems, vol. 28, no. 4, pp. 1–55, De-
cember 2010.

[47] A. Corradi, L. Foschini, and L. Nardelli, “A DDS-compliant
infrastructure for fault-tolerant and scalable data dissemina-
tion,” in The IEEE symposium on Computers and Communi-
cations. IEEE, June 2010, pp. 489–495.

[48] G. Li and H.-A. Jacobsen, “Composite subscriptions in
content-based publish/subscribe systems,” in Proceedings of
the ACM/IFIP/USENIX 2005 International Conference on
Middleware (Middleware ’05), G. Alonso, Ed. Grenoble,
France: Springer-Verlag New York, Inc., 2005, pp. 249–269.


