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Abstract—High functioning autistic people can exhibit excep-
tional skills with numbers, eidetic imagery and recall of concrete
detail, as brought to popular attention in the film Rain Man.
However, it now transpires that these skills are to some extent
latent within all of us. We do not have access under normal
circumstances to this concrete detail, because it is dynamically
inhibited by higher level concepts. Brain stimulation using Trans
Cranial Magnetic Stimulation or Direct Current Stimulation,
which blocks this inhibition, releases savant-like skills in non-
savants. This paper proposes that one of the reasons for this lies
in the brain’s need to conserve energy. Computer simulations
using a spiking neural network support this hypothesis. A spiking
neural network was set up with a number of feature detectors
feeding an output unit, which in turn generates inhibition of the
input neurons. This reduces the spike activity of the input, and
thus overall energy usage. We introduce a theoretical analysis
for the gains, which might be made. Thus, we demonstrate that
energy conservation is a possible cause of inhibition of sensory
detail by high level concepts.

Keywords—energy, spiking neuron, inhibition, simulation, sen-
sory detail.

I. INTRODUCTION

The evidence from high functioning autistic individuals
shows the overwhelming advantage of concept formation in
the human brain. Such individuals tend to have weak concept
formation but can have very powerful perception and memory
for detail. The evolutionary significance is abundantly clear.
What is less clear is why the raw detail, to which these
people have access is not available to everybody else. The
surprising thing, revealed by direct brain stimulation, is that
this detail is not destroyed on the way to conscious awareness,
but is somehow blocked from access. This paper provides a

novel solution to this conundrum, which was first described
in Bossomaier et al. [1].

To demonstrate that such a conjecture is feasible, we ran a
series of computer simulations of spiking neurons and found,
that, indeed, energy could be saved in this way. Access to raw
detail could create a better brain, able to accomplish a greater
range of tasks and arguably be more creative [14]. Thus, a
powerful argument is needed for why such a brain has not
evolved. Energy could be one such factor.

The energy cost of neural computation is split between the
generation of spikes and synaptic activity. Thus, the energy
used by a neuron communicating with another neuron depends
on the rate at which it fires spikes and the excitatory post
synaptic potentials associated with each synapse. Thus, the
number of other neurons with which a neuron communicates
significantly affects the energy requirements. The relative pro-
portion varies across species [45], but the focus in this article is
on the spike activity. We show that spiking neural networks,
even using the most basic approximation to the established
Hodgkin-Huxley spike-dynamic equations [22], can exhibit
significant energy savings in these inhibition models.

We consider two cases. The first implements our concept
model of the previous paragraph. The second uses a Bayesian
or attention approach to reduce energy costs even further. The
essential feature of both models is the inhibition of inputs as
soon as a concept has been activated.

To begin with, Section II surveys some of the related
background work on the suppression of detail and energy
constraints in the brain. Section III describes the simulation
model. The methodology of the paper and the parameters for
the simulation are given in Section IV. Section V provides
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theoretical analysis, Section VI gives results from the sim-
ulation and Section VII provides a detailed discussion and
contextualisation. Section VIII concludes.

II. RELATED WORK

Early indicators that some of this low-level detail might
be accessible came from studies on victims of stroke and
brain injury, where, for example, a person might discover the
ability to draw realistically. Snyder and Mitchell [52] predicted
that such access might be obtained using brain stimulation
techniques, in which the conceptual part of the brain was
blocked, because concepts inhibit lower level detail [51].

It transpired that this was indeed the case. The direct
brain stimulation techniques, Transcranial Magnetic Stimu-
lation (TMS) and the more recent technique, Transcranial
Direct-Current Stimulation (TDCS) can be used to “switch
off” part of the brain. By targeting the anterior temporal
lobe in the left hemisphere—a brain area highly involved in
concept formation and storage—it is possible to block access
to concepts and thus release access to lower-level detail. In
the first such study, now nearly a decade ago, drawing and
proof-reading [53] were found to be enhanced by TMS. So,
for example, it is hard for many people to see the word
“the” when it is repeated on a following line. The ability to
spot the error is enhanced when the meaning of the sentence
is blocked by brain stimulation. Likewise numerosity [50]
(rapidly estimating the number of objects in the field of
view, and inspired by an incident in the film Rain Man),
also goes up with TMS to the left anterior temporal lobe,
i.e., blocking left temporal lobe activity. Over the subsequent
decade, a diverse range of higher-level cognitive phenomena
have been shown to be enhanced through dis-inhibition with
brain stimulation. False memory, where like objects may get
mixed up in memory tests (e.g., chair instead of stool), can be
reduced [4]. Even the ability to solve visual puzzles can be
enhanced [7].

There are numerous arguments for why this might be
the case, such as the possibility of computational overload,
discussed further in Section VII. In this era of information
overload, such an explanation is at first sight appealing, but is
hard to quantify with our existing knowledge of the brain.

Closely linked to computational overload is the energy cost
of neural computation. The human brain uses about 20% of
the body’s energy [41] and various evolutionary changes, such
as the appearance of meat in the diet, may have allowed the
brain’s energy consumption to grow. In fact estimates of brain
energy usage per gram is about the same as human leg muscle
during a marathon [2]. Navarette et al. [36] show that in over
100 species of mammal, adipose deposits correlate negatively
with encephalisation. Thus, fat storage and increased brain size
are oppositional strategies for avoiding starvation. But the cost
of neural computation appears as a constraint across the animal
kingdom. Plaçais and Preat show that in flies the brain disables
costly memory mechanisms in the face of starvation [39].

Laughlin and Sejnowski [31] show that the brain’s overar-
ching network structure is consistent with preserving energy.

The energy required for the transmission of nerve impulses, or
spikes, and synaptic transmission are very tightly optimized,
approaching the thermodynamic limits within cellular con-
straints [30]. The energy cost of transmission of a single bit
of information turns out to cost around 104 ATP molecules.
A single protein molecule, switching conformational states,
was estimated to be able to switch at 1 ATP/bit, but the
incorporation of this switch into the rest of the cellular
circuitry is very costly.

The fundamental unit of energy across most animal systems
is the energy released by conversion of the adenosine triphos-
phate (ATP) to adenosine diphosphate (ADP). This is about
10kT at human body temperature, where k is Boltzmann’s
constant and T is absolute temperature. The theoretical limit
for transmission of a single bit would be kT, so the cellular
cost is about 5 orders of magnitude above the theoretical limit.

Neuronal spikes account for a significant fraction of the
neuronal energy usage [2].

The idea that the number of spikes might be kept to a
minimum to save energy began with the idea of sparse coding
in sensory systems [49][38]. More recently, cells have been
observed, which fire strongly when the subject is exposed
to stimuli corresponding to a particular person, say Bill
Clinton, and to very little else [11][40]. They respond to the
concept, and can be activated by pictures, voice or unique
events. Obviously, for most people such a cell would fire very
infrequently. The alternative distributed representation might
have many cells coding for all US presidents. All of these cells
would be active for any president, thus making their average
activity much higher.

However, sparse coding is not the only way to reduce energy
consumption by neurons using action potentials (APs). Chang-
ing the kinetics of the ion channels involved in generating
the spike can reduce the energy requirements of the APs.
Sengupta et al. [45] show that considerable differences in
the relative cost of spike transmission versus the energy of
synaptic transmission may be found, depending upon the exact
ion channel kinetics, for example between giant squid neurons
and those in mouse cortex.

This strong need to conserve energy suggests a possible ex-
planation for why the raw sensory input is not accessible other
than through external means such as TMS. It is turned off to
save energy. Snyder et al. [51] and Bossomaier and Snyder [5]
propose a concept model for how inhibition mechanisms might
generate the observed effects of TMS. The effect is to turn off
the inhibitory mechanisms, dis-inhibiting their targets.

Inhibition is of course widespread in the brain, and the pre-
frontal cortex—the area with most development over other
primates—abounds in inhibitory effects. But, evidence is now
emerging that even sensory perception in early areas such as
primary visual area V1 depends upon top-down modulation,
of which a large part is inhibitory [12][44].

From an evolutionary perspective, the human brain is more
economical on energy use than other mammals. Lennie [32]
calculates the rate of glucose (the brain’s only source of
metabolic energy) is three times lower than in rat and one and
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a half times lower in monkey. Thus, since the human brain is
much bigger, this implies that fewer cells are active.

Feedback mechanisms are a common way of modulating
input from lower processing areas of the cortex to higher
processing areas. Visual processing streams provide a good
example where higher order visual areas display an inhibitory
top-down activity to lower visual processing areas such as
V1 [12][44]. However, these models only consider connectiv-
ity patterns in the cortex related to visual processing. Jelinek
and Elston [25] have shown that on a cellular level, processing
complexity increases from V1 to prefrontal cortex, with layer-
III pyramidal cell dendritic branching patterns becoming more
complex and larger, thus requiring more energy. Higher visual
processing areas deal more with conceptual phenomena by
integrating simple information bits from lower processing
areas.

Higher processing areas are not always necessary for rapid
concept formation suggesting that single spike or a limited
number of spikes representing different input to sensory areas
can be already sorted prior to higher level processing and
therefore enhancing processing speed. This has been shown
in the auditory cortex. Higher cognitive processes, such as
extracting similar patterns in varying acoustic input, or antic-
ipation of acoustic input, already occur at the level of the
sensory system rather than requiring higher cortical input.
Thus, less information is passed on to higher levels such as
the prefrontal cortex even if attention is not directed to the
current sensory input [35].

In addition, reciprocal feedback has been shown between
prefrontal areas of the cortex and hippocampus. Two pathways
exist, which carry highly specific information from the pre-
frontal cortex to the hippocampus and the reciprocal connec-
tion allow rapid retrieval of information from the hippocampus
by the prefrontal cortex [15].

Such top-down effects reduce activity at lower levels. Zhang
et al. [56] show that in inferotemporal cortex, activity corre-
sponding to a particular object is vastly different depending
upon whether attention is focussed on that object.

III. THE SIMULATION MODEL

The simplest approximation to the Hodgkin-Huxley equa-
tions is the Leaky Integrate and Fire (LIF) model. Izhike-
vich [23] points out that this neuron is capable of only a few
of the 20, or so, behaviors, of which the full Hodgkin-Huxley
model is capable. However, it is used here because if a very
simple model can generate the behavior we observe, then so
can any of the more complex models. This assures that the
model is reasonably robust to parameter variations. Since more
powerful neural models, such as the Izhikevich [23] model,
can imitate the behaviour of simpler models (such as integrate
and fire) then these more powerful models will have the same
behaviour.

LIF has been used for very large scale models of the brain,
such as that of Eliasmith [9]. Some limitations, which appeared
in the simulations herein are discussed below.

Equation (1) shows the model for one neuron, where R is
resistance, I the input current, u the membrane voltage and τ
the time constant:

du

dt
= −u

τ
+
IR

τ
(1)

Synaptic activation is represented by an alpha function with
another time constant τs:

ε(t) =
1
τs
e1−t/τs (2)

The two simulation models use the same type of neuron,
although the time constants are not the same.

A. Concept and Inhibition

Local inhibitory circuits have been studied in the visual
system and hippocampus amongst others, which through in-
hibitory GABAnergic neurons and serotonergic neurons allow
rapid information processing, in essence priming cells that
leads to changes in membrane potential and more rapid re-
sponse rates. Co-transmission and utilization of both G-protein
coupled as well as ion channel gating enhances response rates.
These structural specialisations presumably overcome synap-
tic delays in information processing due to neurotransmitter
release, passage and binding between connected neurons [24],
[17], [55].

In Model 1 we use a local inhibitory circuit, shown in
Figure 1.

Since an eye fixation takes around 200 msec [29], we
assume this represents the minimum time, for which a concept
would remain active. The inhibitory circuit requires around 20
msec. It does not matter if input spikes come in as a single
volley or as some Poisson process; if the maximum spike rate
is around 100 spikes per second, the concept cell can see about
2 spikes in 20 msec, and should it see a spike from every cell,
then it takes 40 msec to turn the input cells off. This would
represent an spike saving of around a factor of 5.

B. Model 2: Prior Knowledge and Intention

There is abundant evidence of the use of Bayesian infor-
mation processing throughout sensory and cognitive process-
ing [26], [33]. For the purposes of this paper, the implication
is that only a small subset of feature detectors need to fire to
recognise something, given the assumption that something is
going to appear.

Sometimes a single cue, such as hair color, might be enough
to distinguish two people. So, if we know that the person
coming up the driveway is one of two people who look very
similar, then hair colour might be enough to distinguish them.
In this case, it is not necessary to wait for all feature cells
to fire. Just a few cells may suffice, in which case inhibition
can start sooner. This is the essence of Model 2, illustrated
in Figure 2. The prior neuron represents the assumption of
what will appear: as soon as it has its minimal set of features
it activates the output neuron, so, in turn, reducing the input
activity early.
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Fig. 1. The basic model. Sensory signals are the features in blue, of which there may be many more than 5. Connections from features to concept and
concept to inhibitory interneuron are excitatory. Connections from the interneuron to the features are inhibitory. Parameters are in Table I

TABLE I
PARAMETERS FOR MODEL 1

neuron τ τs R
Feature 1 2 20
Concept 50 50 20
Inhibitory 1 4 20

Now, assume that we have attentional control or a mindset
that one is going to see K5 or K7 represented by the cells
labelled prior in Figure 2. The facilitating cell is activated
from higher up, but is agnostic as to whether K5 or K7
appears. It fires slowly with a long recovery time and brings a
small subset of features closer to threshold. This costs a small
number of spikes and synaptic events, since on average only
one facilitating cell will fire. Now, only this small number of
features needs to be activated for the concept to trigger. But,
since these features lead over the remainder, only they will be
allowed to fire.

IV. METHODOLOGY

We begin by carrying out a theoretical analysis of the
possible energy savings in Section V. This makes use of a
previously described framework [2] for estimating energy costs
and compares the two models described above.

We then carry out computer simulations of both models.
Simulations were carried out in Matlab using the Biological
Neural Network toolbox [43]. The toolbox uses Matlab’s
integration routines for solving differential equations, for a
variety of single neuron models. Since this is a proof-of-
concept simulation, the choice of neuron model is not critical.
Thus, the results presented here use the simple LIF model,
described above.

Table I gives the parameters for the Model 1 simulation.
Model 2 adds an additional neuron, the prior (in a Bayesian
sense). Table II shows the parameters used for the simulation.

V. THEORETICAL ANALYSIS

The most primitive biological model is Attwell and Laugh-
lin’s model A [2]. This is a concept-neuron cell model where x

TABLE II
PARAMETERS FOR MODEL 2

neuron τ τs R
Feature 1 2 20
Concept 50 50 10
Inhibitory 1 2 20
Prior 50 50 20

neurons sit latent and 1 neuron fires in response to the stimuli,
for which it codes. This has an energy expense, EA given by:

EA = (x+ 1)r + a (3)

where r is the resting energy usage, a the additional excitatory
energy usage. For N concepts there are N neurons required.

Attwell and Laughlin’s more complex model (B) is dis-
tributed representation, in which a subset of neurons represent
each possible stimulus condition, or concept. Thus, we now
have to look for the possible combinations, ND, we can form
If there are x inactive neurons while sets of y neurons encode
a minimum number of conditions. i.e., x, y are integers such
that the number of conditions, ND is given by:

ND = (x+ y)!/(x!y!) (4)

Its energy cost function, EB , is given by:

(x+ y)r + ya (5)

Our Model 1 (denoted M1) has a concept neuron, an
interneuron and a set ni of feature neurons, the size of this
set is x = |ni|. For any concept, some number of feature
neurons will fire to represent the concept, say eyes, nose and
mouth to indicate a face. In the following analysis we make
the simplifying assumption that the number of features is the
same across all concepts. The count of the feature neurons x
determines the maximum number of conditions that need to be
encoded. A single concept neuron requires mi ⊂ ni neurons to
fire (i.e., |mi| = y, y < x). Attwell and Laughlin [2] assert that
there is a need to encode each concept as sparsely as possible,
but now there is an overhead of +2 neurons (the concept and
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Fig. 2. The model with attention. Features, concepts and inhibitory interneuron are the same as in Model 1. Here we have two concepts and a single
attention/prior neuron. This has excitatory connections to a small number of feature detectors.

the interneuron), but these two enforce the minimum sparse
coding required.

x!/((x− y)!y!) (6)

where y is the size of the minimal set of feature neurons
necessary to encode a given concept. Its energy expense
(Equation (5)) is now:

(x+ y + 2)r + (y + 2)a (7)

We assume that the energy costs of inhibition are the same
as excitation, although they might be slightly less [2]. If y >>
2, i.e., there are many features needed to encode a concept
sparsely, then the energy cost approximates Laughlin’s Model
B.

The Prior Knowledge Model, Model 2 (M2) model has
a further overhead of a prior neuron. This adds additional
neurons to the energistic overhead of M2 over and above
Attwell and Laughlin’s Model B. But the prior neuron also
reduces the number of feature neurons that need to fire in
order to activate the concept neuron. If the prior neuron is
pre-exciting z feature neurons, and one feature is sufficient to
uniquely distinguish between the other competing possibilities
(such as hair colour or glasses etc.), then we can have
optimal encoding using a prior neuron in the sense that two
neurons, one encoding black hair and one encoding blonde
hair, can encode the difference in the two concepts, so we

(nearly) recover Attwell and Laughlin’s optimal solution for
the number of different, possible concepts, Nc

Nc = x!/((x− 2)!2!) (8)

(not conditions) for a cost, Ep, of

Ep = (x+ 1 + 4)r + (4 + 1)a (9)

Note that the interneuron will still fire in this model, this
increases the fidelity of the signal propagating to the concept
neuron by suppressing possible confounding signals (just as it
usually does). Although in this paper a single prior neuron is
used, the pre-narrowing of a set of conditions, in a Bayesian
framework is a well substantiated model of perception [26],
[33].

Returning to the example above, where the selected feature
is to distinguish between either black or blonde hair, this
feature is encoded in two separate feature neurons that connect
to two different concept neurons. When the prior pre-excites
these two feature neurons they need to provide a voltage
potential to the axon hillock sufficient to fire the concept
neuron by themselves. If all feature neurons are connected to a
concept neuron with the same synaptic strength, then doubling
the firing rate of a single feature neuron doubles the energy
that neuron expends but only provides the same amount of
voltage potential (less some leakage) to the axon hillock as two
other feature neurons. If, however, it is a strongly connected
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neuron, then doubling its firing rate may equate to adding the
equivalent voltage potential of four lesser connected feature
neurons.

We can make this a stronger statement. The prior neuron
pre-excites a feature neuron by reducing the potential threshold
the feature neuron needs to achieve in order to fire. For
example, a useful ballpark figure of 100mV is needed to fire an
excitatory neuron, a prior neuron can provide the first 80mV
in the form an excitatory voltage that essentially lowers the
threshold in the feature neuron to only 20mV. This means
the feature neuron fires m = 5 times more readily than before
(assuming a linear integrate and fire profile with limited neural
voltage leakage), i.e.,

m =
100mV

(100mV − 80m)
V (10)

If the prior neuron continues to provide this excitatory signal
then potentially the feature neuron could fire 5 times more fre-
quently (original frequency times 5), again, assuming linearity
and limited leakage.

Energy is saved only if the synaptic weights connecting
the feature neuron to the concept neuron are inhomogeneous.
To see this assume that the pre-excited feature neuron has a
synaptic weight w1 = 1 and there are n other neurons also
connected to the concept neuron with weights

wi =
1

(n+ k)
(11)

for some k a free parameter, as discussed below. Assume
that all n + 1 neurons have approximately the same noisy,
leaky integrate and fire profile (weakly leaking and linearly
integrating over time). Then each neural pulse received by the
concept neuron from the strongly connected and pre-excited
feature neuron is stronger than the weakly connected neurons
by a factor, q, given by:

q = νnat
100mV

(100mV − vpre)
w1

(n+ k)
(12)

with νnat a natural frequency. and vpre the pre-excited po-
tential. This simply says that a neural pulse received by the
concept neuron from the pre-excited feature neuron is both
stronger and occurs more frequently than the signal from the
weakly connected neurons. As k → 0 the expected firing of
the feature neurons that are not pre-excited has an expected
aggregate contribution to the firing of the concept neuron
that is equivalent to the signal provided by the pre-excited
neuron. At the point k = 0 it is just as likely that all feature
neurons have fired as it is the pre-excited feature neuron fires,
indicating the onset of an energy usage transition point where
many neurons start firing at k < 0 because the aggregate signal
from the rest of the neural population begins to fire before the
pre-excited neuron. The neurons that are not pre-excited are
unlikely to fire when k > 0 and there is an energy saving
of na non-firing neurons where a is the additional excitatory
(firing) energy over and above the resting energy as introduced

earlier. The cost of this is two neurons (the prior neuron and
the pre-excited neuron) that fire with an increased rate of:

νnat
100mV

100mV − vpre
= ∆f (13)

for a total cost of

Etotal = 2∆f (14)

Note that the term 100mV
100mV−vpre

is the ratio of the un-excited
neural firing frequency to the pre-excited neural firing fre-
quency.

Bringing all of this together we can discuss the energy
savings available in an example. Assume that 1,000 feature
neurons encode two different concepts, each concept being
uniquely composed of 500 features each, each concept has
inhibitory interneurons. We consider two examples, one, in
which there is a prior, and one, in which there is not:
• No prior neuron:

500 feature neurons contribute a noisy, linear integrate
and fire signal to each of the concept neurons. The con-
cept neuron that fires first has its winner takes all signal
passed directly to the executive. At the same time the
interneurons are activated and inhibit 450 feature neurons
from firing. In this case M1 saves a(450− 2) ATP units
per concept over the simpler model of single neurons
encoding whole concepts in an excitatory fashion. A total
of 2 × 52a ATP are used by excited neurons, the factor
of two accounts for the energy usage for both concepts.

• Prior neuron: The prior neuron pre-excites two neurons,
one for concept neuron A and one for concept neuron
B, pre-excitement occurs before any other external in-
formation excites the feature neurons. When information
does impinge upon the feature neurons, pre-excitement
increases the frequency of firing of both feature neurons
by a factor of 5, i.e., the firing threshold was 100mV, it
is now 20mV for both neurons. This costs 2∆fa = 10a
for both concept neurons, i.e., 20a total because pre-
excitement instigated firing happens regardless of whether
or not the concept neuron fires. The neural savings
achieved through this cost is 2a ATP , the net savings in
energy consumption is (88+1)a ATP (one of the concept
neurons does not fire), nearly an order of magnitude better
than without a prior neuron.

The above analysis is minimalist, but still requires a few
assumptions:
• It requires the connectivity between the non-pre-excited

feature neurons to be lower than the inverse of the number
neurons. Without this assumption the prior neuron is
unable to boost the signal from the pre-excited neuron
sufficiently to activate before the rest of the feature
neuron population can activate.

• The value of a is arbitrary, but Attwell and Laughli [2]
give estimates for rat grey matter. All calculations are
relative, relative frequencies and relative energy con-
sumption, as this is a purely comparative analysis. The
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Fig. 3. Activity of the network of model 1. Cells are laid out along the
y-axis. The top cell is the inhibitory interneuron, the next cell down is the
concept and the remainder are the features. Each dot represents a spike event.
The inhibition in neuron 12 sets in after the concept neuron has started to
fire.

actual ratio r
a depends on the temporal resolution, which

determines the firing rate, R. For rat this varies by an
order of magnitude from a = 6.4R at a low firing rate
of 4Hz to a = 64R at a high firing rate of 40Hz, with an
approximately linear increase of energy usage with firing
rate.

• There has been no explicit discussion of the synaptic
costs, with a focus on action potentials. The costs vary
depending upon species, but can be as much as a third
of the energy budget [2].

In both M1 and M2, the concept neurons are single cells,
but this is not contrary to the efficient distribued model.
The inhibitory interneurons may be activated by a collection
of cells (a distributed concept). But for simplicity we have
confined the model to just one or two concept cells.

VI. SIMULATION RESULTS

Figure 3 shows the spiking patterns for Model 1. The
features are suppressed for the duration of activation of the
concept, representing at least a substantial decrease in energy
usage. Whereas the activity of the concept and inhibitory
neurons are maintained throughout the 200msec simulation,
activity of the feature neurons rapidly dies away. Without
the inhibition, their firing would also be maintained. Figure 4
shows the average number of spikes in each neuron over 100
runs.

Turning to Model 2, Figure 5 shows the activity with input
(from the executive) to the prior neuron only. There is no
activity from the feature neurons showing that they do not get
over threshold from the prior alone.

Figure 6 shows the effect of adding a small input to the
feature detectors. The neurons sensitised by the prior (2,8,10,
here, but selected at random in each run) now fire and activate
the concept neuron (number 11).
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Fig. 4. The average number of spikes for each neuron. Neurons 1–10 are the
input features, neuron 11 the concept and neuron 12 the inhibitory neuron.

Fig. 5. Input to prior neuron only. The feature neurons do not get over
threshold

Figure 7 shows increased input to the feature neurons, which
now all get over threshold and fire.

Finally, Figure 8 introduces the inhibitory neuron. The
feature neurons and the prior are suppressed. The concept
neuron stops firing as the input dries up.

In this article, only one concept neuron appears, but a single
prior could in principle pre-activate any number of feature
neurons, subserving more than one concept, but biasing the
outcome to some subset of possible concepts, which might
occur in a given context.

VII. DISCUSSION

The simulation model presented here demonstrates the feasi-
bility of saving energy through inhibition of lower levels. Since
this is a new conjecture to the best of the authors’ knowledge,
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Fig. 6. Simulation with low input to the feature neurons, enough to drive
those pre-sensitised by the prior over threshold

Fig. 7. High input to feature neurons resulting in all of them getting over
threshold. Higher firing rate is seen for the prior-sensitised neurons.

there are no prior results for comparison. The model uses the
simplest spiking neuron, on the basis that any more complex
model would be able to reproduce the same effects if they
exist for the LIF neuron.

However, one limitation of this neuron did become apparent.
Ideally the concept neuron should be able to maintain its
firing rate until attention switches to something else. However,
to maintain firing rate in LIF would require increasing τs.
This has the consequence of either causing the concept firing
to build very slowly, or to allow the firing rate to grow
unnecessarily high. The simple LIF does not saturate easily.
Further work would look at the more sophisticated Izhikevich
models [23].

The conjecture that it is possible to reduce the spikes

Fig. 8. Full Model 2 with prior neuron and inhibition

generated by a feature might seem surprising. There is,
however, substantial work demonstrating that a single spike
per neuron may be enough for pattern recognition. Thorpe et
al. [54] discovered that people can make very rapid decisions
on whether pictures contain animals – so rapid that they are
likely to be able to use only a single spike along the path from
retina to associative cortex. Subsequent computational models
demonstrate the feasibility of the single spike model.

The information overload argument suffers from a lack of
understanding of what the brain can actually do on a large
scale. We know something about the capacity of simple neural
networks, such as the number of patterns storable in a Hopfield
net or the Vapnik-Chervonenkis Dimension of feedfoward
networks. But on the scale of the cortex we have only the
most rudimentary of measures.

There has been some interesting progress made in under-
standing the macroscopic (i.e., psychological) aspects of such
limits in real cognitive processes. As early as 1956 Miller [34]
proposed on information theoretical grounds that our ability
to store and retrieve information is limited. Recent work
has extended this idea for complex games [21] showing that
chunks have a finite information capacity that can be inferred
from game data. Chunks can be thought of approximately
as the feature neurons of the cognitive models discussed in
this work. These chunks have been extensively studied by
Simon, Gobet and colleagues [48], [47], [42], [6] in order
to explain the rapid, efficient and quite remarkable talents of
world leading experts in diverse specialist domains such as
chess, nursing and physics.

Beyond these chunks a further mechanism, called templates
has been suggested as a way to aggregate and contextu-
alise chunks [13], [16], [19], [20]. Using these notions of
chunks and templates there is some empirical evidence to
suggest that experts may pass through transition points in their
development [18] as first suggested on theoretical grounds
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by Ericsson [10]. These cognitive results provide high level
principles with, which to inform the neuro-cognitive models
such as that presented in this work.

It is of no small significance that the prior neuron as
described in this work might be identifiable with a concept
neuron (or a small set of neurons encoding the same or a very
similar concept). Recent neurological studies on monkeys and
humans [28] have shown that categories of objects, candidates
for the instantiation of templates, have a remarkable similarity
between species. A theoretical model [46] of feedforward
processes for generating and implementing such categories or
concepts has been put forward for more general processes such
as searching a scene or recognising objects. Such neurological
and psychological studies continue to provide the substantive
empirical support for the theoretical frameworks such as the
one proposed in this work.

Darwin [8] famously remarked: to suppose that the eye [...]
could have been formed by natural selection, seems, I freely
confess, absurd in the highest degree. A century later, Nillson
and Pelger [37] showed that evolving an eye was actually
relatively easy. By the same token, without a very good model
of the computational limits of the brain, the information-
overload argument is hard to substantiate.

On the other hand, people are good at blocking out stimuli.
The noise of a busy road, the drone of the engines in an aircraft
cabin, the buzz of other speakers in a cocktail party – all
demonstrate our remarkable capacity to shut out interference
when we so desire. But this blocking is reversible and we can
turn our attention to the distractions themselves. Koechlin [27]
shows that the pre-frontal cortex can select one context and
block others in choosing an action.

A model that allow specific context retrieval that combines
alternate views of top-down guidance by prefrontal cortex or
selection of goal-relevant information has been proposed by
Badre et al. [3] It proposes that different areas of the prefrontal
cortex are specialised for different functions that combine to
enhance cognitive processing speed.

The blocking of sensory detail seems to be hardwired and
is not switchable. To turn off this inhibition would require
additional circuits to turn off conceptual information. In gen-
eral, such circuits do not seem to have evolved, and external
techniques such as TMS are required for their inhibition. This
would make sense: strategies to save energy would be likely
to have evolved much earlier than the expansion of the cortex
and its sophisticated filters and control mechanisms.

VIII. CONCLUSIONS

One of the most remarkable findings of the last two decades
has been the discovery of the way higher level concepts
inhibit low level detail in most individuals, although not in
high-functioning autistic savants. The building of conceptual
structures on top of the the raw sensory detail is essential for
advanced cognition, and is illustrated by the many difficulties
experienced in Asbergers and autism, where this conceptual
building seems to be impaired [53].

This paper shows that there is an energetic cost to maintain-
ing access to this this raw detail. Thus, the reason we cannot
have both a conceptual system and a savant-like raw detail
system, might arise from the need to conserve energy.
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