
179

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Spaces-Based Platform Enabling Responsive Environments

Daniela Micucci, Alessio Vertemati, Francesco Fiamberti, Diego Bernini, and Francesco Tisato

Department of Informatics, Systems and Communication
University of Milano - Bicocca

Milano, Italy
Email: {daniela.micucci, alessio.vertemati, francesco.fiamberti, diego.bernini, francesco.tisato}@disco.unimib.it

Abstract—Space Integration Services is a software communica-
tion platform that enables the seamless integration of sensors,
actuators, and application-logic components through a multi-
space model and a spaces-based publish/subscribe mechanism.
The underlying model is based on finite spaces only, thus the
application-logic components that need to reason on spaces like
the geodetic or the Cartesian ones, are obliged to use a discretized
version of those spaces and to maintain the correspondence be-
tween “real” locations and their discretized representation if they
are interested in exploiting the services offered by the platform. To
compensate for these limitations, the platform has been extended
in order to add support for spaces with an infinite number of
locations, (e.g., spaces described by continuous coordinates, such
as geodetic or Cartesian spaces). Such extension is essential for
the use of SIS also as enabling platform for outdoor pervasive
computing systems thanks also to the wide spread of outdoor
localization systems. This paper presents the new conceptual
model that results from a generalization of the existing one
valid for finite spaces only. To encompass both finite and infinite
spaces, the new model moves the primitive concept of elementary
position from location to spatial context (as a set of locations).
Several kind of spatial contexts have been introduced to offer a
(quite) complete set of localization typologies, for example, from
a single position to a set of positions described by a function. The
model has been turned in a prototypal implementation realized by
means of an additional layer on top of the finite-space version.
Such an implementation has been experimented in a real case
scenario dealing with a parcel distribution company. Finally, the
performance of the prototype is then compared to the one of the
finite-space version in a series of experimental tests.

Keywords–infinite spatial models; spaces-based communication;
software architecture; location-aware; responsive environments.

I. INTRODUCTION

Space Integration Services (SIS) [1] is a platform that
enables pervasive computing [2], supporting information flows
between devices and applications. Pervasive computing aims
at simplifying the everyday life through digital environments
that are sensitive, adaptive, and responsive to the user’s needs.
A pervasive computing system requires the perception of the
context in which the user operates to provide a richer and
expanded mode of interaction, in addition to an intelligence
for performing actions on the environment. From a technolog-
ical point of view, pervasive computing relies on responsive
environments. The term responsive environment [3] refers to
physical environments enhanced by input devices (e.g., sensors
or cameras) and output devices (e.g., displays, lights, motors).
Input devices capture stimuli from the environment, whereas
output devices execute actions on the environment given a
predefined set of commands.

Responsive environments are, therefore, able to perceive
and respond to users thanks to the presence of a computer
system that receives data from the sensors (input stream)
and sends commands to the actuators (output stream). For
example, an application may locate users onto the cartographic
representation of the city and may also receive data from light
sensors (input stream) about their state (e.g., on and off).
On the basis of established rules, an application could send
commands to the street lights (output stream). A rule can state
that in nighttime, if a user is close to a street light (within a
distance of ten meters), the street light should be turned on.
When no one is close to the street light, then the street light
should be turned off. This simple example emphasizes how
responsive environments require establishing information flows
among the devices and the applications. SIS fulfills the above
requirement by enabling a seamless integration of sensors,
actuators, and application-logic components through a multi-
space model and a spaces-based publish/subscribe mechanism.
It provides various spatial models that can be used by appli-
cations to represent location-related information in order to
support complex representations of the environment with a fo-
cus on location-aware systems. In this regard, different spatial
representations can be put in appropriate correspondence to
describe the localization according to different visions of the
environment. This allows devices and end-user applications
to reason on an own representation of the environment and
thus are not obliged to share a common representation. For
example, an application that localizes persons inside a building
reason in terms of rooms and passages among them, whereas
the devices reason in terms of a Cartesian representation of the
controlled area. From the knowledge of the authors, platforms
offering interoperability rely on a shared view of the space.
Moreover, most of them provide spatial representations of the
physical environment only. On the opposite, SIS allows to
model any kind of space, be it physical (e.g., a geographical
area) or logical (e.g., an organization chart).

SIS originates from a preliminary version that supported
finite spaces only (symbolic models and grid models) [4]. Such
kind models, even if discrete, were nevertheless sufficient to
create indoor pervasive computing applications. For example,
switching on and off of lights depending on the presence of
people in the rooms. Recognition of people and then setup the
environment on the basis of their optimal configurations, and
so on. With the increase of accuracy and precision of local-
ization sensors [5] and with the need to include geographical-
related spatial models to support outdoor applications also, a
revision of the platform was required. The revision aims at in-

180

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

troducing mechanisms to deal with spatial representations that
contain a potentially infinite number of locations, for example
those described by continuous coordinates, such as geodetic
and Cartesian spaces, but also unbounded grids described by
discrete coordinates. For example, such a platform will support
applications that require to locate persons outdoor (they need
to reason on a geographical space) or that require to define the
fine-grained trajectory of a mobile robot (they need to reason
on an Euclidean space).

Finally, the new version of SIS was designed from the
previous one in order to reuse the base mechanisms that
support information flows and that constitute the core of the
platform. Those mechanisms, which are based on finite spaces,
are then very efficient. The idea was then to yield the same
mechanisms, properly managing flows between infinite spaces
as if they were flows between finite spaces.

The main contributions of this article are a deep descrip-
tion of both the conceptual model and the platform reifying
it. Moreover, since the implementation has been completely
revised and completed with respect to the results presented in
[1], some of its interesting issues will be discussed. Finally,
tests have been reformulated in order to consider different
configurations with different hardware.

The paper is organized as follows. Section II presents
the overall SIS conceptual model. Section III summarizes
the principal services that SIS should provide to applications.
Section IV discusses the use of the model in an application
scenario. Section V presents some issues related to the actual
implementation of the platform. Section VI presents the results
of several tests aimed at estimating the performance of the
proposed extension with respect to the existing SIS imple-
mentation considering different configurations with different
hardware. Section VII reviews related works. Finally, conclu-
sions and future developments are presented in Section VIII.

II. CONCEPTUAL MODEL

The conceptual model of the finite space-based SIS model
was based on the assumption that spaces are finite sets of
locations built from spatial models (e.g., graph spatial model,
name spatial model, and grid spatial model). Non- empty sets
of locations belonging to a space are named spatial contexts. In
such a model, locations play a crucial role since the existence
of both spaces and contexts is subject to the existence of the
set of locations that constitutes them. In other words, spaces
and spatial contexts are defined as the collection of all the
locations that constitute them. This structural constraints is
clearly impossible to fulfill when dealing with infinite spaces,
that is, spaces that contain a potentially infinite number of
locations. Thus, the conceptual model has been revised around
a new definition of spatial context that becomes the elementary
localization building block.

A. Space and Spatial Model

A space is a set of potential locations, that are all the
locations that could be theoretically considered in that space.
For example, if the Milan subway lines are described by means
of a graph in which nodes model stops, then the potential
locations are all the stops of all the lines. On the other hand,
if a Cartesian space is used to localize entities within a room,

«m eta»
LocationType

«m eta»
SpatialModel

«m eta»
PremetricSpecification

Location Space

name

Premetric
used

1 ..*

effective

1 ..*

«instantiate»

allowable

1

«instantiate»

1 ..*

«instantiate»

Figure 1: Core concepts: meta representation and correspond-
ing instances

then the potential locations are every point in R2 of the area
delimited by the room perimeter.

Applications, when dealing with a space, explicitly manage
effective locations, which are a subset of space’s potential loca-
tions. For example, an application that monitors the position of
trains traveling on the Milan Red Line subway will only deal
with locations that represent the stops on the Red Line. On
the other hand, an application that calculates the trajectory of
a mobile entity will only explicitly consider a finite number of
locations in the Cartesian space, that is, the locations belonging
to the trajectory.

Spaces and effective locations are respectively built from
spatial models and location types. A spatial model specifies
the type of allowable locations (location type), the way in
which locations are arranged, and at least one premetric that
can be applied to a pair of locations (premetric specification).
The premetric defines the distance between two locations as a
positive, non-zero number if the two locations are distinct, and
zero if the locations are the same. A location type specifies
the structure of potential locations (e.g., a couple of double
values).

The key aspect, shown in Figure 1, is that location types,
spatial models, and premetric specifications are meta-level
concepts (�meta� stereotype) because, according to them,
it is possible to instantiate locations, spaces, and premetrics
respectively, that are base-level concepts (i.e., they are the
element an application manages when dealing with localization
issues). The direction of arrows in Figure 1 emphasizes that
base elements originate from meta elements. In an object ori-
ented language, it is possible to compare meta-level elements
to classes and base-level elements to objects instantiated from
classes. In other words, space and spatial model, location and
location type, premetric and premetric specification respec-
tively belong to different levels of abstraction.

The definition of space applies both to cases in which the
set of locations is infinite and to cases in which it is finite.
In fact, with the term potential locations we refer to all the
locations that can be defined according to the spatial model.
Therefore, we distinguish potential locations from effective
locations that are the actual ones used by applications.

Two spatial models representing spaces with potentially
infinite number of locations have been defined: the geodetic
and the n-dimensional Cartesian. The geodetic spatial model

181

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defines locations as geodetic coordinates (i.e., latitude and
longitude) in a geodetic coordinate reference system [6]. An
applicable premetric is the orthodromic distance [7], which
is the shortest distance between two points expressed by
geodetic coordinates on the surface of a sphere. The ortho-
dromic distance is also a metric. The n-dimensional Cartesian
spatial model represents an Euclidean space Rn. In this model,
locations are represented by ordered tuples of real numbers in
an orthogonal Cartesian reference system. A premetric for the
Cartesian spatial model is the Euclidean distance, which is also
a metric.

These examples highlight that a location in an infinite space
can be identified with a potentially infinite precision, as in the
nature of the coordinate system based on real numbers.

The spatial models defined in the previous finite space-
based SIS model (i.e., graph, grid, and name spatial models)
are declinable as special cases of the new definition of space
in which the allowable locations are finite in number and are
represented with finite precision. For example, in a grid space,
allowable locations are the cells within the limits of the grid
and are represented by their respective indexes defined on the
set of integers.

B. Spatial Context

In the finite space-based SIS model spatial contexts have
been introduced in order to handle the selection of subsets of
locations. The definition of spatial context has been refined to
be also applicable in spaces with potentially infinite number
of locations.

A spatial context CS (simply context in the following) is a
subset of potential locations of a space S. It is defined by a set
of effective locations termed characteristic locations in S and
by a membership function that states if a given location of S
belongs to the context. Essentially, the membership function is
a boolean function that is true when a location is in the spatial
context. According to the membership function used, the
following kinds of contexts have been identified: enumerative,
premetric declarative, polygonal, and pure functional.

An enumerative context is a context in which the set of
characteristic locations is non-empty and the membership func-
tion is based on the standard belonging relationship defined in
set theory. The locations belonging to an enumerative context
are identified through the enumeration of the characteristic
locations. For example, given a space S, an example of
enumerative context is defined by the set CS = {l1, l2, ..., l5}
of characteristic locations (see Figure 2a). For example, such
kind of context can be useful to specify the room in which a
person has been localized.

A premetric declarative context is a context in which the set
of characteristic locations contains one location only and the
membership function is a premetric one. Thus, the locations
belonging to this kind of context are all the locations within a
given distance from the characteristic location in terms of the
premetric function (see Figure 2b). For example, such kind of
context can be useful to specify the detection area of a RFID
reader.

A polygonal context is a context in which the characteristic
locations are the vertexes of a polygon, and the membership

S

l1 l3

l2

l5 l4

(a) An enumerative context

CS

r

l0

S

(b) A premetric declarative con-
text

S
1

2

3

4

5
CS

(c) A polygonal context

S

CS

CS

x0,y0

x1,y1

(d) A pure functional context

Figure 2: Different types of spatial context

function indicates the inclusion of a location in the region
corresponding to the polygon itself (see Figure 2c). The
locations belonging to a polygonal context are all the locations
within the area delimited by the polygon. For example, such
kind of context can be useful to specify a delimited area inside
a building or the field of view of a camera.

Finally, a pure functional context is a context in which the
set of characteristic locations is empty and the membership
function is defined by using mathematical expressions defined
in terms of the space coordinate system. For example, consider
a Cartesian bi-dimensional space S. A context can be defined
by the following membership function: for all locations (x, y)
in S and for any given location (x0, y0) and (x1, y1),

f(x, y) =

{
true if x0 < x < x1 and y0 < y < y1
false otherwise (1)

(see Figure 2d). Obviously, this example aims at easily ex-
plaining the context idea. Indeed, it can be transformed into
a polygonal one by interpolating the coordinates of the points
that represent the extremes of the allowable values. Such a
context should be used to face situations in which contexts are
more complex and cannot be approximated with a polygonal
one.

C. Projection

Related to the concept of space, is the concept of projec-
tion, which is widely used in geometry and in algebra.

The projection function allows the transformation of lo-
cations belonging to a space, called the source, in locations
belonging to another space, called target. The target space can
be defined according to the same spatial model of the source,
or to a different one.

The transformation of the geodesic representation of the
Earth to any other cartographic representation, the application

182

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PeopleIds

Location
Names

Parco
Sempione

SCk

SCj

SCi• Jonh Locke

Geo

Figure 3: Explicit and implicit mappings

of a scale factor to a Cartesian representation, the transforma-
tion of a tri-dimensional environment onto a bi-dimensional
surface, are all examples of the application of a projection
function.

It is possible to observe how the application of the pro-
jection function to a region of the space may be useful in
providing the representation of that region in agreement with
the spatial model of the target space.

The projection function is used to define another kind
of context termed projective context: given a source spatial
context CS defined in a source space S and given a target
space T , the result of a projection is a spatial context CT on
the target space T containing the locations that are obtained
by applying a projection function f to all the locations in the
source context CS .

D. Mapping

Mappings relate different spaces. For example, a map-
ping can relate an area of a Cartesian space (representing
the plant of a building) to a node of a graph (representing
a synoptic view of the same building). Mappings are key
concepts because, as it will be explained afterward, they enable
the communication among components, even if they rely on
different spaces. Three kinds of mapping have been defined:
explicit, projective, and implicit.

An explicit mapping is an ordered pair of contexts defined
in different spaces (possibly based on different spatial models):
given the two spaces S1 and S2 with S1 6= S2, the ordered
pair (SC1, SC2) is an explicit mapping between the contexts
SC1 ⊆ S1 (source) and SC2 ⊆ S2 (target).

Figure 3 shows two examples of explicit mappings between
the context SCj of the Geo space (a geodetic spatial model)
and the context SCk of the LocationNames space (a graph
spatial model), and between the context SCi of the PeopleIds
space (a name spatial model) and the context SCj of Geo.

The target context may be defined independently of the
source context. But when the target context is the result of the
application of a projection to the source context, the mapping
is termed projective mapping and is fully determined by the
source context and the projection function.

Let SM be the set of all the defined explicit and pro-
jective mappings, and let SCa and SCb be contexts de-
fined in different spaces. The implicit mapping (SCa, SCb)

Match
area

SC2

SC1

S

Figure 4: Direct matching

Space1 SpaceN

SCa

SCbSC1

SC2

Figure 5: Indirect matching

is derived if there exist n contexts SC1, . . . , SCn such that
(SCa, SC1), (SC1, SC2), . . . , (SCn, SCb) ∈ SM for n >=
1.

In Figure 3 the dotted arrow represents the implicit map-
ping (SCi, SCk) between the contexts SCi of PeopleIds and
SCk of LocationNames. It is derived from (SCi, SCj) and
(SCj , SCk) mappings.

E. Matching

A direct matching occurs when the intersection between
two spatial contexts defined in the same space is not empty.
For example, given a space S defined in R2 that models a room
in a building, a pure functional context SC1, and a polygonal
context SC2 both defined in S. A direct match occurs since the
intersection between SC1 and SC2 is not empty (see Figure 4).

Let SC1 and SC2 be spatial contexts defined in different
spaces. An indirect match between SC1 and SC2 occurs when
there exists a mapping (explicit or implicit) (SCa, SCb) such
that the intersections between SC1 and SCa and between SC2

and SCb are both not empty (see Figure 5).

III. SERVICES

The concepts introduced in Section II are the basis of
several services that SIS offers to applications. They can be
divided into two main groups: 1) management and inspection
of spaces’ configurations; 2) communication support through
spatial contexts (spaces-based publish/subscribe).

A. Space Structure Support

Before applications may reason on spatial contextualiza-
tions, spaces must be defined and properly configured. For
this purpose, a set of services is provided.

When defining a space, applications must initially choose
the appropriate spatial model (i.e., the spatial model that best
fits the needed space). For example, if an application needs
to plan the movements of a mobile entity inside a building in
terms of sequences of rooms it has to traverse before reaching

183

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

final destinations, then such an application may rely on a
synoptic representation of the building built according to the
graph spatial model; on the opposite, if another application is
in charge of fine tuning the movement of the mobile entity,
then it may rely on a Cartesian representation of the building
built according to the Cartesian spatial model.

Once the spatial model has been chosen, it must be con-
figured so that the resulting space will contain all the potential
locations (i.e., all the locations an application possibly needs
to use). For example, the synoptic view of the building can be
obtained by specifying the list of nodes and arcs constituting
the building; the Cartesian representation can be obtained by
specifying the boundaries of the area containing the building.

From the above consideration, space definition is supported
by the primitive

defSpace(SpaceName, Model, Parameters)

where SpaceName is the unique name for the new space,
Model specifies the spatial model from which building the
space, and Parameters are configuration information that
depends on the spatial model. For example

defSpace(U14, GraphSpatialModel,
<{r1, r2, r3}, {r1-r2, r1-r3}>)

defines a graph space named U14 whose nodes are r1, r2,
and r3, and whose arcs are r1-r2 and r1-r3.

Once spaces exist, explicit mappings among spatial con-
texts can be specified through the

defMapping(Source, Target)

primitive, where Source and Target are respectively the
source and the target contexts. Each context definition is spec-
ified by <SpaceName, Structure> where SpaceName
is the unique name of the space in which the context is being
defined, and Structure specifies the context typology, the
set of characteristic locations, and the membership function.
For example <U14, <ENUM, {r1, r2}, ∈>> defines an
enumerative context in the U14 space whose characteristic
locations are r1 and r2 and the membership function is the
belonging function of the set theory. Suppose that a Cartesian
space named 1St has been defined representing the first floor
of the U14 building, then

defMapping(
<U14, <ENUM, {r1}, ∈>>,
<1St, <POLYG, {p1, p2, p3, p4, p5}, fin>>)

specifies a direct mapping. It may be interpreted as follows:
room r1 in U14 building is represented by the context
<U14, <ENUM, {r1}, ∈>> in the graph space U14 and
by <1St, <POLYG, p1, p2, p3, p4, p5, fin>>, a
polygonal context defined in the Cartesian space 1St.

The above primitives can be used both when configuring
SIS spaces before any application starts using the services, and
during the normal execution of the applications. Moreover, SIS
provides a set of primitives that allow applications to reason
about spatial configurations. For examples:

• getSpaces: returns the list of all the defined spaces.

• getSpaceInfo: given the name of a space, returns
all the related information (i.e., space typologies and
parameters).

• getMappings: given two contexts, returns (if any)
all the defined mappings.

• getMapped: given a context, returns (if any) all the
defined mappings in which the context is involved.

• getProjection: given a context, a target space,
and a projective function, returns the projected con-
text.

The complete set of primitives that a platform reifying SIS
model should provide is presented in the Figure 9 in Section
V, which discusses the implementation we developed.

B. Communication Support

As previously introduced, SIS enables information flows
relying on the publish and subscribe mechanism: applications
publish information on spatial contexts, and subscribe on spa-
tial contexts for the asynchronous reception of the published
information. The published information is called thematic
information, which is domain dependant and is not in any way
interpreted by SIS.

Contexts of any kind may be defined on any spatial model:
from the enumerative to the pure functional one. The choice
of the context type depends on application domain issues.
For example, in a situation of emergency, the State Forestry
Department may report the area affected by a fire by publishing
a thematic information (specifying information dealing with
the fire) in a polygonal context (representing the affected
area) defined in the geodesic space. On the opposite, if a
room is equipped with a very accurate localization system
(e.g., Ubisense), it may publish entity positions (the thematic
information) exploiting enumerative contexts that contain the
single position inside the Cartesian space modeling the room.

An application performs a publication via

publish(info, <C1, C2, ...>)

where info is the thematic information and <C1, C2,
...> is a list of spatial contexts in which the information
has been localized.

An application performs a subscription via

subscribe(C1, C2, ...)

where <C1, C2, ...> is the list of spatial contexts in which
the application declares its interests.

When an application performs a publication, the enclosed
thematic information is received by all the applications that
previously performed a subscription such that at least one of
its contexts matches, either directly or indirectly, a context of
the publication. The thematic information is enriched with all
the contexts that contributed to the matching.

Referring to the example in Figure 6a, Component2

subscribes to a context defined in the Floor2D space built
from a Cartesian spatial model. The subscription context is
polygonal (the hexagon in Figure 6a). Component1 makes

184

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S2

wh1
wh3

wh2

SC2

S3

SC3 = SCS• Italy

• Spain

S1

SC1

SCP

M1

M2
M3

Vehicle

App1

Figure 7: Example scenario

a publication on the same space Floor2D. The context is
premetric (the circle in Figure 6a) and intersects the polygonal
one. Thus, a direct match occurs and Component2 receives
the thematic information info enriched with additional infor-
mation that includes, in addition to the time instant in which
the match occurred, the complete contextualization, that is, all
the contexts contributing the matching (the polygonal and the
premetric).

In Figure 6b Component2 and Component1 reason on
different spaces. Component2 subscribes to an enumerative
context (the highlighted node labeled ”Living room“ in Figure
6b) in the space FloorGraph space built from a graph spatial
model. Component1 makes the same publication as in 6a.
Since a mapping between the publication and subscription
contexts has been defined, an indirect match occurs so that
Component2 receives the thematic information info en-
riched with all the additional information (the matching time
instant and the complete contextualization).

IV. APPLICATION SCENARIO

This section will apply the concepts introduced in both
Section II and Section III considering an exemplified scenario,
in particular the geodetic space and the mappings between
infinite spaces and finite ones. Consider a parcel distribution
company with warehouses distributed in Europe (for the sake
of simplicity, we consider only six warehouses distributed in
Italy and Spain). The company exploits vehicles to distribute
parcels. Each vehicle is equipped with a device (mounting a
GPS) that periodically notifies its position. Before reaching
the final warehouse, vehicles can pass through intermediate
warehouses. Each time a vehicle enters a warehouse, different
operations have to be performed according to the country’s
rules, including the decision of the next warehouse the vehicle
has to reach.

As depicted in Figure 7, the required spaces are: S1, a
geodetic spatial model covering the involved countries; S2,
a graph spatial model where each node corresponds to a
specific warehouse (identifiers wh1, wh2, ..., wh6) and each
arc connects the warehouses that can be reached without any
intermediate stop; finally, S3, a name spatial model containing
the identifiers of the two countries (Italy, Spain).

Explicit mappings are required from S1 to S2 with the aim
of localizing each warehouse in the geodetic space. Mappings
are in the form

M = <<S1, <PREM, <[lat, long], radius, d>>>,
<S2, <ENUM, {whi}, ∈>>>

where the target is an enumerative context containing a
node of the S2 space (i.e., a warehouse whi) and the
source is a premetric declarative context specifying the area
in S1 where the warehouse whi is located. For exam-
ple, the mapping M1 = <SC1, SC2>, where SC1 = <S1,
<PREM, <[45.523653, 9.219436], 50, d>>> and
SC2 = <S2, <ENUM, {wh1}, ∈>>. In Figure 7 spatial
contexts on S1 have been hugely enlarged for visualization
purposes. Moreover, explicit mappings are required from S2

to S3 with the aim of localizing each warehouse in its country.
Mappings are in the form

M = <<S2, <ENUM, {whi}, ∈>>,
<S3, <ENUM, {country}, ∈>>>

where the source is an enumerative context containing a node
of the graph (i.e., the identifier of a warehouse) and the target is
an enumerative context containing the identifier of the country.
For example, the mapping M2 = <SC2, SC3>, where SC2 =
<S2, <ENUM, {wh1}, ∈>> and SC3 = <S3, <ENUM,
{Italy}, ∈>>. Finally, six indirect mappings are derived:
their source contexts are the source contexts of the explicit
mappings defined between S1 and S2, and their target contexts
are the target contexts of the explicit mappings defined between
S2 and S3. For example, M3 = <SC1, SC3>.

Two applications are required (App1 for Italy and App2 for
Spain), each implementing the local rules. Each application
subscribes to the appropriate country to be notified when a
vehicle enters a warehouse in the country of competence. For
example, App1 performs a subscription to the enumerative
context SCS in S3 containing the location Italy (i.e., SCS =
<S3, <ENUM, {Italy}, ∈>>). Periodically, the vehicles
make publications in the S1 space, thus sharing their position
with all the interested applications. Publications are in the form

Pub = <vehicleID,
<S1, <PREM, <[lat, long], radius, d>>>>

where vehicleID is the thematic information that identifies
the vehicle, and <S1, <PREM, <[lat, long], radius,
d>>> is a premetric declarative context specifying the position
of the vehicle identified by vehicleID in the geodetic
space. For example, publication Pubi = <12345, SCP>,
where 12345 is the identifier of the vehicle that performs
the publication and SCP = <S1, <PREM, <[45.51788,
9.214071], 20, d>>> is the location in which it has
been localized.

When the vehicle 12345 makes the publication Pubi,
App1 is notified because an indirect match occurs. Indeed,
the following conditions result true: SCP intersects SC1, SC1

is indirectly mapped to SC3 (M3 mapping), and SCS intersects
SC3. When notified, App1 receives the thematic information
12345 enriched with all the contexts that enabled the match-
ing, that is, SCP , SC1, SC2, SC3, and SCS . This way, App1 is
aware of the warehouse in which the vehicle 12345 is, and,
if it is able to manage S2, it can inspect the graph in order to

185

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<info,
 2013-03-22 08:39:02,
 <Floor2D, <POLYG,{[3.5,1.5], [4.0,1.8], [4.0,2.8],...}, fin>>,
 <Floor2D, <PREM, <[3.0, 1.5], 0.75, dist>, fin>>>

Matching:

Component2

0,0

6,5

Floor2D

publish(info, <Floor2D, <PREM, <[3.0, 1.5], 0.75, dist>, fin>>)

noti�cation

Component1

subscribe(<Floor2D,
 <POLYG,
 {[3.5,1.5], [4.0,1.8],[4.0,2.8],...},
 fin>>)

(a) Publish and subscribe in the same space

0,0

6,5

subscribe(<FloorGraph,
<ENUM, {“Living room”}, fin>>)

noti�cation

<info, 2013-03-22 08:39:02,
<Floor2D, <PREM, <[3.0, 1.5], 0.75, dist>, fin>>,

<FloorGraph, <ENUM, {“Living room”}, fin>>>

Matching:

Component2

Kitchen

Dining
area

Living
room

Bedroom

FloorGraph

Floor2D

publish(info, <Floor2D, <PREM, <[3.0, 1.5], 0.75, dist>, fin>>)

Component1

(b) Publish and subscribe in different spaces

Figure 6: Publication and subscription services

decide the next stop for the vehicle.

The finite-space version of SIS could not handle this
application scenario for the presence of a geodetic space that
is infinite. In any case, the operations used in this scenario are
exactly the same as they would be used with the finite-space
version to maintain backwards compatibility. What differs is
how these operations are managed in the case involving infinite
spaces. Obviously, using the finite-space version of SIS to
handle this applicative scenario would have involved the use of
a grid space to represent the geodetic space. The application
would have had to manage all the correspondences between
geodetic positions and locations on the grid space.

V. IMPLEMENTATION

This section will present issues related to the implementa-
tion of the current version of SIS, focusing on the new aspects
that allow SIS to manage both finite and infinite spaces.

A. Layering

The developed prototype is based on the implementation
of the finite-space version of Space Integration Services.

The infinite-space extension of SIS is organized according
to two different software layers [8] on top of the finite-space
SIS Core layer. Figure 8 shows the resulting structure.

The Distributed Access layer exhibits three different mech-
anisms allowing the interaction with the platform. The Web
Services interface provides applications access to the platform
features by means of the Representational State Transfer
(REST) paradigm. The Web Services offers the SIS services
through the SISManager class that implements the interfaces
shown in the class diagram presented in Figure 9:

• SpacesManagement allows the creation, update,
and deletion of spaces, as well as the management
of the projections defined between spaces.

SIS

Software
Components

C1 C2 C3

Core

Manager Spatial Models Data types Con�guration

Distributed Access

Web Services Web Socket Web Interface

In�nite Space Extension

Manager Extension TypesSpatial Models

Figure 8: The extended SIS Structure

• SpacesInspection allows an application to ex-
plore the currently configured spaces, as well as the
projections defined on those spaces.

• MappingsManagement provides an application
with the necessary primitives for creating, editing, and
removing mappings.

• MappingsInspection exposes the primitives for
the exploration of the mappings (explicit and im-
plicit) defined on the SIS instance; similarly to
SpacesInspection, it offers a notification when
a mapping is changed.

• SpacesPublishSubscribe exposes the primi-
tives for the publication and subscription operations,
as well as the necessary methods to enable the push
notifications towards the applications.

• MatchingNotifier enables the asynchronous no-

186

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tification (to applications) of new thematic informa-
tion located in the subscribed contexts through the
observer-observable pattern.

• MappingChangeNotifier enables the asyn-
chronous notification (to applications) of mapping
changes through the observer-observable pattern.

Web Sockets [9] are a recent W3C standard for two-
way asynchronous communication in the context of web
applications; this technology makes available asynchronous
communication of notifications to the applications. Finally,
the Web Interface visually exposes all the primitives of the
platform and allows for the configuration of the users with
their access permissions.

The Infinite Space Extension layer encloses the manage-
ment of the new spatial models (Spatial Models), the new data
structures (Extension Types), and the business logic to handle
publications and subscriptions, the definition of contexts, and
the creation of mappings between contexts of different spaces
(Manager).

The Core layer contains the finite spatial models (i.e.,
graph, name, and grid) with related primitive types and the
manager in charge of monitoring instances of SIS itself. In
particular, the Spatial Models manages the finite spatial mod-
els, the Data Types manages the data structures, the Manager
handles the subscription, publication, and the mappings, finally
the Configuration handles the startup of the SIS instance. The
Core layer uses the JESS rule engine in order to handle the
operations of transitive closure and matching. This layer grants
the full compatibility of the SIS extension with the previous
versions of SIS.

The prototype has been developed in Java because the
current Core layer is implemented in this language.

B. Inherited Basic Classes

The current developed prototype uses the base
classes already defined in SIS. In particular the Space,
SpaceParameters, and Location classes that serve
as the basic foundation for describing the supported spatial
models.

Every spatial model is strictly related to a
SpaceParameter subtype, which defines the characteristic
configuration parameters of that kind of space. As an example,
a geodetic space will have the starting and ending coordinates
defining the boundary of the region as parameters.

The Space class defines a set of common operations that
could be performed on every kind of space instance; these
operations include the calculation of the distance between two
valid locations, the listing of the supported metrics, and the
check of validity of a given location. The Space class also
specifies that a space needs a name which will be used as the
unique identifier.

C. Geodetic and Bi-dimensional Cartesian Spaces

In order to verify the suitability and applicability of the
conceptual model described in Section II, two spatial models
that are inherently infinite have been implemented: the Carte-
sian two-dimensional and the geodetic. The Cartesian space

implementation provides as basic premetric the Euclidean
metric and the related space parameter has been defined so
that it specifies the boundary of the 2D region.

Two different models of the geodetic space have been pro-
vided according to two standard terrestrial representations de-
fined by the European Petroleoum Survey Group (EPSG): the
first called EPSG:3857 [10] (also known as Pseudo-Mercator)
and the second called EPSG:4326 [11]. Both the represen-
tations use the WGS84 reference ellipsoid. The EPSG:3857
model is principally used to support tiled map representations
of the World ([12], [13], [14]) as found in Google Maps,
Bing Maps, OpenStreetMaps, and Nokia Here; whereas the
EPSG:4326 model is used by the GPS satellite navigation
system and for NATO military geodetic surveying.

The main difference between the two representations is that
in EPSG:3857 the coordinate system is projective (i.e., the
satellite coordinates are projected using the Mercator projec-
tion or the spherical projection Mercator), whereas EPSG:4326
is a reference geographic system [6] where the coordinates are
not projected.

Both the geodetic spaces provide as basic premetric the
orthodromic distance. The orthodromic distance is calculated
using the haversine formula [15].

D. Infinite Space Management

Since the finite-space SIS Core has been used as the foun-
dation of the prototypical implementation, some techniques
have been required to manage infinite spaces in terms of finite
spaces without incurring in the limitations of discretization.
The use of a finite representation also enables a backward
compatibility with all the already defined spatial models (i.e.,
name, grid, and graph spaces).

Techniques in the area of Geographic Information Sys-
tems (GIS) have been analyzed, in particular, the tessellation
technique [16]. Tessellation is the process of tiling a plane
using one or more geometric shapes (called tiles) with no
overlaps and no gaps. Although the tessellation technique is
well known and there exist implementations that overcome
known problems of efficiency [17], this technique is difficult
to apply since it is based on individual locations as the
base unit of ”reasoning“ on spaces. Beside being in contrast
with the model that considers the spatial context as the base
unit, its exploitation will result in a huge memory occupancy
because when defining mappings among spatial contexts, all
the locations involved will be stored.

The second analyzed technique is partially inspired by
[18] and [19] and overcomes the problems that tessellation
introduces. The proposed technique is based on the following
considerations that directly derive from the conceptual model:

• The base unit used is the spatial context; each opera-
tion the platform supports is based on spatial contexts;
each operation on a space, either finite or infinite,
can be reduced to a sequence of operations on spatial
contexts.

• A spatial context may contain one location only.

• The number of effective spatial contexts in a space is
finite.

187

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

«interface»
MappingChangeNotifier

{abstract}

+ notify(MappingChangeSubHandle, List<MappingChange>) :void
+ close(MappingChangeHandle) :void

«interface»
MatchingNotifier

{abstract}

+ notify(SubscriptionHandle, A rrayList<Matching>) :void
+ close(AsyncSubscriptionHandle) :void

«interface»
MappingsInspection

{abstract}

+ getExplic itMappings() :List<MappingDescription>
+ getMappings() :List<MappingDescription>
+ getForwardMapped(SpatialContext, String) :SpatialContext
+ getReverseMapped(S tring, SpatialContext) :SpatialContext
+ getMapped(SpatialContext) :List<SpatialContext>
+ subscribeMappingChange(SpatialContext, SpatialContext, MappingChangeNotifier) :MappingChangeHandle
+ unsubscribeMappingChange(MappingChangeHandle) :void

«interface»
MappingsManagement

{abstract}

+ map(SpatialContext, SpatialContext)
+ unmap(SpatialContext, SpatialContext) :void

«interface»
SpacesInspection

{abstract}

+ getSpaceNames() :List<String>
+ getSpatialModelName(S tring) :String
+ getSpaceDescription(String) :SpaceDescription
+ getLocations(SpatialContext) :List<Location>
+ getDistance(S tring, S tring, S tring, String) :double
+ spaceExists(String) :boolean
+ getP rojections() :List<ProjectionDescription>
+ getP rojection(S tring, S tring) :List<ProjectionDescription>
+ projectionExists(P rojection) :boolean
+ project(SpatialContext, Space, P rojection) :ProjectedContext

«interface»
SpacesManagement

{abstract}

+ defSpace(S tring, String, SpaceParameters)
+ undefSpace(S tring) :void
+ addLocations(S tring, List<Location>) :void
+ removeLocations(SpatialContext) :List<Location>
+ defP rojection(S tring, S tring, P rojection) :void
+ undefP rojection(P rojection) :void
+ convertSpatialContext(SpatialContext) :EnumerativeContext

«interface»
SpacesPublishSubscribe

{abstract}

+ publish(ThematicInfo, List<SpatialContext>) :void
+ subscribe(List<SpatialContext>, MatchingNotifier) :SubscriptionHandle
+ unsubscribe(SubscriptionHandle) :void

SISManager

notifies

notifies

subscribes

subscribes

Figure 9: SIS services

• Each spatial context can have a unique identifier;
if two contexts share the same identifier then they
describe the same region of space.

Given the above considerations, the key idea is to use a
finite space (in particular a name space) in the finite-space SIS
Core to represent an infinite space. The proposed approach
makes use of two concepts: (1) spatial context fingerprint
(SCF) and (2) finite support space. The spatial context fin-
gerprint is a unique identifier of a spatial context that is built
from its characteristic locations and membership function. In
particular, current implementation uses hash functions [20] to
generate the identifier. Each SCF is maintained as a location
of a space built form a name spatial model and termed finite
support space. Each infinite space has its own finite support
space containing the SCFs of all the defined contexts in
that space. Obviously, a relation between the original spatial
context and the fingerprint inserted in the support space must
be maintained.

As an example consider Figure 10. Suppose that the
application needs to create the spaces S1 and S2 as specified
in the application scenario presented in Section IV. They are
respectively a geodetic and a graph space. To define the spaces,
the application relies on the defSpace primitive as follows:

defSpace(S1, GeodeticSpatialModel,
Boundary.WORLD)

defSpace(S2, GraphSpatialModel,
<{wh1, wh2, wh3, ...},
{wh1-wh2, wh2-wh3, ...}>)

In order to represent the geodetic space S1 in the finite SIS
Core, a new space (support_S1) based on the name spatial

S2

wh1
wh3

wh2

S1

support_S1

SCP

Application requests

In�nite Space
Extension

Finite
Core

SC_E7984AD89...

Figure 10: Definition of infinite spaces: an example

model is created. For each spatial context defined in S1, a
corresponding SCF is defined as location in the support space
support_S1. In the example, the SCP context defined in S1

will be represented by the location SC_E7984AD89... in
the support_S1 space. On the opposite, the graph space is
directly created in the finite SIS Core.

In conclusion, an infinite space is managed through a
finite space representing the collection of the defined spatial
contexts. This approach maintains compatibility with all the
originally supported finite spaces and does not impact on the
publish and subscribe mechanism offered by the SIS Core.

188

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FunctionalContext

membershipFunction :MathFunction

+ FunctionalContext(S tring, MathFunction)

PolygonalContext

vertices :List<Location>

+ PolygonalContext(S tring, List<Location>)
+ getCharacteristcLocations() :List<Location>

PremetricContext

characteristicLocation :Location
premetricName :String
distValue :double

+ P remetricContext(S tring, Location, String, double)
+ getDistValue() :double
+ getP remetricName() :String
+ getCharacteristicLocation() :Location

SpatialContext
{abstract}

spaceName :String

SpatialContext(String)
+ getSpaceName() :String
+ contains(Location) :boolean {abstract}
+ intersect(SpatialContext) :boolean {abstract}
+ getSpatialFingerprint() :S tring {abstract}

EnumerativeContext

characteristicLocations :List<Location>

+ EnumerativeContext(String, Location)
+ EnumerativeContext(S tring, List<Location>)
+ getLocations() :List<Location>

T : SpatialContext

ProjectedContext

projection :P rojection

P rojectedContext(S tring, Projection)

Figure 11: Hierarchy of spatial contexts

E. Spatial Contexts and Projections

As explained in the Section II, each spatial context is
identified by a set of characteristic locations and a membership
function. Accordingly, the spatial contexts supported by the
current implementation are those shown in Figure 11.

An enumerative context (EnumerativeContext class)
is just a list of locations, whereas a premetric context
(PremetricContext class) is specified by means of a
single location and a radius. Both enumerative and premetric
contexts can be used on infinite and finite spaces.

In the prototypical implementation, the polyg-
onal (PolygonalContext class), functional
(FunctionalContext class), and projected
(ProjectedContext class) contexts are limited to
infinite spaces. The polygonal context represents a polygonal
closed region of the space. It is defined by providing the
vertexes of the region from which the boundaries are linearly
interpolated. Vertexes should be provided so that the resulting
edges do not overlap. The intersection test between polygonal
contexts is done using state of the art techniques in the field
of Computational Geometry. In the proposed prototype the
general polygon clipper technique [21] has been used.

The functional context represents a region of the space
using a mathematical function, which currently is limited to a
two variable inequality. This function is internally represented
by the MathFunction class, which makes use of the exp4j
library [22] to enable the evaluation of the mathematical
function. The evaluation is done with the Dijkstra version
of the shunting yard algorithm ([23], [24]). The usage of
this approach enables the specification of the mathematical
function using a string representation that is also suitable for
the web service interaction.

Finally, the projected context derives from the application
of a projection function on a source spatial context. Projections

(that are instances of the Projection class) are specified
by a mathematical function (that operates on locations) and
by a source and a target spatial model. The mathematical
function is realized by means of the MathFunction class.
A projection may specify the same spatial model both for
the source and the target. It is useful, for example, to define
a projection that reifies a rotation defined on a Cartesian
space or, more trivially, to define a projection that realizes the
identity operation on a space. The characteristic locations of a
projected context are those obtained by applying the projective
function of the Projection to all the characteristic locations
of the source spatial context. The membership function for
a location in a projected context relies on the membership
function for the corresponding (i.e., inverse projected) location
in the source space, thus the invertibility constraint on the
projection function. To obtain a ProjectiveContext, an
application can rely on the project primitive defined in the
SpacesInspection interface (see Figure 9).

Finally, to support mappings, subscriptions, and publica-
tions, the three following methods have been defined in the
base class SpatialContext:

• contains, which checks if a specified location in
the space is included in the context.

• intersect, which enables the matching operation
on contexts defined on infinite spaces.

• getSpatialFingerprint, which returns the spa-
tial context fingerprint (SCF).

F. Mapping Management

As in the finite-space case, the definition of a mapping
enables the creation of one or more relations between regions
of different spaces. The creation of a mapping involving
infinite spaces includes the following two steps:

1) The spatial context fingerprint is computed for each
context and the corresponding locations are added to
the corresponding finite support spaces (unless they
have already been defined).

2) A finite-mapping request is sent to the finite-space
SIS Core for the actual creation of the mapping.

This solution allows both the new spatial models and the
already existing finite spatial models to be deal with in a
similar way, so that both types can be used as source and
target contexts for the mapping.

In order to clarify on how the mappings are handled, the
mapping M1 defined in the application scenario presented in
Section IV will be deeply discussed. To define the mapping, the
application relies on the defMapping primitive as follows:

defMapping(SC1, SC2)

where

SC1 =
<S1, <PREM, <[45.523653, 9.219436], 50, d>>>

SC2 =
<S2, <ENUM, {wh1}, ∈>>

189

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SC2

S2

wh1
wh3

wh2

S1

support_S1

SC1

SCP

M1

Application requests

In�nite Space
Extension

Finite
Core

SC_E7984AD89...

SC_AAB547A81...

Figure 12: Definition of mappings: an example

As sketched in Figure 12 (that enriches Figure 10), the
infinite extension defines a new location SC_AAB547A81...
in the support space support_S1 for the spatial context SC1

(that is defined on the infinite space S1). Successively, the
mapping M1 is created between the contexts <support_S1,
<ENUM, SC_AAB547A81..., ∈>> and <S2, <ENUM,
wh1, ∈>>.

G. Publication

A generic publication on an infinite space (in the following,
publication space) is converted into a publication on the
corresponding finite support space as follows:

1) An intersection test is performed between the publica-
tion context and the source context of each mapping
defined in the publication space. Only the source
contexts are explicitly considered thanks to the fact
that the finite-space SIS Core already contains all
the implicit mappings. The result is a set (possibly
empty) of intersecting contexts.

2) A new publication context is defined with all the
fingerprints of the intersected contexts. The context is
an enumerative one defined in the support finite space
of the original publication space. Such a new context
will be used to define a new publication whose
thematic info contains the original thematic info plus
the original infinite publication context so that, when
a notification will be performed, the original context
can be restored.

3) The newly created publication is delivered to the
finite-space SIS Core to the reasoning process.

The above operations are performed for each spatial context
of the publication that has been defined in an infinite space.

H. Subscription and Notification to Applications

A subscription is made on one or more spatial contexts. It
involves the creation of a communication channel for receiving
the notifications (for example, a communication channel could

be created using Web Sockets). Each subscription is stored
until the application removes it.

A subscription request is handled in a way similar to the
publication case. For each spatial context defined in a infinite
space (in the following, subscription space), the following
operations are performed:

1) An intersection test is performed between the sub-
scription context and the target context of each map-
ping defined in the subscription space. The result is
a set (possibly empty) of intersecting contexts.

2) A new subscription context is defined with all the
fingerprints of the intersected contexts. The context
is an enumerative one defined in the support finite
space of the original subscription space.

3) The newly created subscription is delivered to the
finite-space SIS Core to be managed.

The deletion of a subscription closes the communication
channel and removes all the support subscriptions created.

The notification process is performed only if the spatial
contexts involved in a publication are in direct matching
with the subscription contexts already stored. Only the direct
matchings are considered because the finite-space SIS Core
calculates the indirect matching in the transitive closure.

The construction of a notification is a bit more complicated
because the contexts reported by the matching process can
contain both finite and infinite spaces. Since the core imple-
mentation internally operates only on finite spaces, a check
on the defined infinite spaces needs to be done in order to
convert the involved contexts in the finite support spaces into
the original contexts on infinite spaces.

The infinite-space layer of the SIS platform acts as the
receiver for all the notifications raised by the finite-space SIS
Core. Each notification includes the list of the corresponding
matchings. A matching contains the published thematic infor-
mation and all the contextualization information (i.e., all the
contexts that have been found during the matching operation).
Each notification is then checked to find possible contexts de-
fined in finite support spaces. Each of these contexts, identified
by its fingerprint, is then substituted with the original finite
one. The resulting notification is then made available to the
subscribed applications through the communication channel.

VI. PERFORMANCE EVALUATION

Several performance tests have been conducted aimed at
comparing the mean reasoning times registered by the SIS
prototype (SIS 2 in the following) and by the previous version
based on finite spaces only (SIS 1 in the following). The mean
reasoning time is the mean time between the reception of a
publication and the moment at which notifications are made
available to interested applications. The mean reasoning time
is evaluated with respect to both the number of mappings and
the size of the context. Since the contexts involved in the tests
are defined over infinite spaces, they have been approximated
in SIS 1 as it will be discussed in the following subsections
describing the setup of the experiments and the achieved
results.

The experimental tests have been performed on an SIS 1
and a SIS 2 instances running on a desktop PC equipped

190

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Space1 Space2 SpaceN

Figure 13: Space configuration for the mapping test

with an Intel Core i5 2.8 GHz, 4GB of RAM, Windows(R) 7
64bit, and the 64bit version of the Java Runtime Environment
1.6.33. Publications were generated by a client and sent to
the SIS server. Moreover, performance tests have been also
conducted on an Intel(R) Next of Computing Unit (NUC)
equipped with an Intel(R) Core i3 1.8 GHz processor, 8GB
of RAM, Windows(R) 8.1 64bit, and the 64bit version of
the Java Runtime Environment 1.7.0 build 45. Indeed, such
an hardware platform can be easily integrated in an actual
pervasive computing environment because of its characteristics
that make it a good compromise between performance and
dimensions.

A. Mean Reasoning Time vs. Mappings

The first experimental setup allows studying the depen-
dence of the mean reasoning time on the number of mappings.
In this test, the mappings are created in the configuration phase
and do not change dynamically. In particular, we analyzed
the mean reasoning time in two different configurations: the
mappings between polygonal contexts, and mappings between
premetric declarative contexts.

In both the configurations, SIS 2 includes n Cartesian
spaces, each containing a single context. Every context is
directly mapped onto a context in the next space, thus realizing
a chain of (n − 1) explicit mappings, as shown in Figure 13
for the polygonal contexts. On SIS 1 the Cartesian space
has been approximated using a grid space and each context
is approximated with a number of cells equals to the area
occupied by context itself.

Considering the implicit mappings, the total number of
mappings is therefore equal to n(n− 1)/2. Publications occur
on the context in the first space, whereas the subscription
is made on the context in the last space. With this generic
configuration, the mean reasoning time for a publication can
be measured as a function of the number of spaces n. In the
experimental tests, n varies from 2 to 150. Obviously, in actual
applications, a chain of 150 mappings is to be considered an
exceptional case: the objective of this configuration was to
stress the system only.

In the first configuration, each Cartesian space in SIS 2
contains a single hexagonal polygonal context inscribed in
a circle with a radius of two units. On SIS 1, each context
is approximated with a number of cells equals to the area
occupied by the polygonal context (i.e., 16 cells).

Figure 14 and Figure 15 show the mean reasoning time
(expressed in milliseconds), using polygonal spatial contexts,
registered by both the implementations (SIS 1 and SIS 2)
when running on the desktop PC and the NUC respectively.
As expected, the mean reasoning time obtained from SIS 2
deployed on the desktop PC is lower than that obtained when

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5
5,5

6
6,5

7
7,5

8
8,5

9
9,5
10

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

)s
m(e

miT gninosaeR nae
M

Number of spaces

Polygonal Context (on Desktop PC)

SIS 2SIS 1

Figure 14: Mean reasoning time vs number of spaces on the
desktop PC - Polygonal context

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

)s
m(e

miT gninosaeR nae
M

Number of spaces

Polygonal Context (on Intel NUC)

SIS 2SIS 1

Figure 15: Mean reasoning time vs number of spaces on the
Intel NUC - Polygonal context

deployed on the Intel NUC: an average of 5.91 ms for SIS 2
on desktop PC vs an average of 81.63 ms for SIS 2 on Intel
NUC. Moreover, the mean reasoning time on the desktop PC
is almost constant during the execution of the test, whereas on
the NUC is almost sublinear. Finally, as pointed out by both
the figures 14 and 15, SIS 2 is faster that SIS 1 using a grid
approximation. In particular, SIS 2 on desktop PC is 3.99 ms
faster than SIS 1, whereas SIS 2 on Intel NUC is 45.27 ms
faster than SIS 1.

In the second configuration, each Cartesian space in SIS 2
contains a single premetric declarative context with a radius
of two units. On SIS 1, each context is approximated with a
number of cells equals to the area occupied by the premetric
declarative context (i.e., 16 cells).

Figure 16 and Figure 17 show the mean reasoning time
(expressed in milliseconds), using premetric spatial contexts,
registered by both the implementations (SIS 1 and SIS 2) when
running on the desktop PC and the NUC respectively. As in
the previous configuration, the mean reasoning time obtained
from SIS 2 deployed on the desktop PC is lower than that
obtained when deployed on the Intel NUC: an average of
5.91 ms for SIS 2 on desktop PC vs an average of 81.63 ms for
SIS 2 on Intel NUC. Again, the mean reasoning time on the

191

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5
5,5

6
6,5

7
7,5

8
8,5

9
9,5
10

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

)s
m(e

miT gninosaeR nae
M

Number of spaces

Premetric Context (on Desktop PC)

SIS 2SIS 1

Figure 16: Mean reasoning time vs number of spaces on the
desktop PC - Premetric context

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

2 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

)s
m(e

miT gninosaeR nae
M

Number of spaces

Premetric Context (on Intel NUC)

SIS 2SIS 1

Figure 17: Mean reasoning time vs number of spaces on the
Intel NUC - Premetric context

desktop PC is almost constant during the execution of the test,
whereas on the NUC is almost sublinear. The mean reasoning
time for premetric contexts and for polygonal contexts are
equal because the underlying implementation is the same as
discussed in Section V: it consists in a single spatial context
fingerprint for each defined spatial context. Finally, as in the
previous configuration, SIS 2 is faster that SIS 1 using a grid
approximation. In particular, SIS 2 on desktop PC is 4.07 ms
faster than SIS 1, whereas SIS 2 on Intel NUC is 46.06 ms
faster than SIS 1.

B. Mean Reasoning Time vs. Context Size

The second test aims to investigate the dependence of the
mean reasoning time on the size of the contexts.

The space configuration in this case includes two Cartesian
spaces for SIS 2 and two bi-dimensional grids for SIS 1. One
hexagonal polygonal context was defined in each space, the
first one for publication and the second one for subscription.
As in the previous test, the hexagonal polygon has been
approximated with a number of cells equals to its area on the
grids. During the test, the number of mapped spaces has been
maintained fixed at two, whereas the radius of the circle used

0

20

40

60

80

100

120

140

160

180

200

220

240

260

1 2 3 4 5 6 7 8 9 10

M
ea

n
 R

ea
so

n
in

g
Ti

m
e

(m
s)

Context size

Polygonal Context Size on NUC

SIS 1 SIS 2

Figure 18: Mean reasoning time vs. size of context on the Intel
NUC

0

20

40

60

80

100

120

140

160

180

200

220

240

260

1 2 3 4 5 6 7 8 9 10

M
ea

n
 R

ea
so

n
in

g
Ti

m
e

(m
s)

Context size

Polygonal Context Size on desktop PC

SIS 1 SIS 2

Figure 19: Mean reasoning time vs. size of context on the
Desktop PC

to calculate the vertices of the inscribed polygonal contexts
was varied according to the values between 1 and 10.

As pointed out by Figure 18 and Figure 19, the SIS 2
prototype has a constant mean reasoning time; about 2 ms on
the desktop PC and around 9ms on the Intel NUC, while the
SIS 1 implementation behaves like O(24n) on the Intel NUC
and O(20n) on the desktop pc.

As expected, the SIS 2 prototype presents a constant trend
independent from the context size because every context is
represented using a single entity.

C. Discussion

The experimental tests show how the implemented tech-
niques allow for a better management of different context sizes
in infinite spaces, maintaining a constant time of reasoning.
Moreover, the prototype has a better scaling behavior with
respect to the finite-space implementation, both for increasing
number of mappings and for increasing size of publication
and subscription contexts. Such improved scalability can be
understood in terms of the number of facts that form the
knowledge base of the rule engine managing the operations

192

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of transitive closure and matching; the infinite-space imple-
mentation reduces the number of facts to one per context, and
thus to two facts for a single mapping, whereas the finite-space
implementation creates a fact for each location involved in the
mapping.

Finally, the execution of the first test of SIS 2 (number
of mappings vs mean reasoning time) states that the Desktop
PC has been faster than the NUC regardless of the type of
context. This is obviously true, but it is reasonable to assume
that in actual situations, the chain of mappings will contain a
number of mappings that is substantially lower than 150. By
considering a chain of 10 mappings (a plausible value), the
mean reasoning time is approximately equal to 9 ms (about
3,5 times compared to the PC). Although each application has
its own time constants, we consider a delay of 9 ms to be
acceptable for pervasive computing applications.

VII. RELATED WORK

Location-aware computing has been an active area of
research. Different platforms at the state of art enable location-
aware applications focusing on sensor fusion and reasoning
with the help of a multi-spatial model, or hybrid model (as
called by Becker et al. [25]).

Location Stack [26] defines a layered model for fusing
location information from multiple sensors and reasoning
about an object’s location. It, however, does not incorporate
a spatial model of the physical world and does not support
representations of immobile objects. This leads to a lack of
support for spatial reasoning relative to stationary entities such
as rooms or corridors.

Loc8 [27], on the other hand, extends the Location Stack
layered architecture by considering only high level position and
data instead of low level sensor data. Reasoning is applied to
that position data, enriched by the knowledge given by a base
ontology, to infer additional spatial relationships.

The Aura Space Service [28] combines coordinate and
hierarchical location models into a single hybrid model, which
supports spatial queries. The focus of the Aura Space Service
is only on modeling the physical space and supporting spatial
queries. It does not address location inferencing and does not
provide a framework for spatial reasoning.

MiddleWhere [29] uses the hybrid location model intro-
duced by the Aura Space Service and enables the fusion of dif-
ferent location sensing technologies. MiddleWhere introduces
also probabilistic reasoning techniques to resolve conflicts and
deduce the location of people given different sensor data. The
model of the world is stored in a spatial-enabled database.

Semantic Spaces from Microsoft Research decomposes the
physical environment into a hierarchy of spaces. The locations
of moving users or devices are correlated to actual physical
spaces, thus it is capable of answering “containment” queries.
However, because of its inherent lack of metric attributes
and precision, it is unable to compute distance accurately or
represent locations precisely, which are requirements for some
ubiquitous computing applications [30].

Semantic Spaces and Location Stack lack any support
for infinite spaces and in general spaces with a coordinate

system, while Loc8 and MiddleWhere have at least one spatial
model with a Cartesian coordinate system and can handle
different levels of precision on that space model. These two
platforms substantially treat infinite spaces by using different
granularities for location representation on a local and a global
coordinate system.

VIII. CONCLUSION AND FUTURE WORK

The paper proposed an extension to the conceptual model
of the SIS platform. This refinement comes in order to enable
the use of infinite spatial models like the geodetic or the
Cartesian ones.

The approach that has been presented involves the exten-
sion of the concept of spatial context and the use of that
concept as the elementary unit at the basis of all the spatial
operations enabled by the platform itself (i.e., mapping and
matching).

With the help of a prototypal implementation the revised
conceptual model has been tested for performance evaluation.
The tests that have been conducted showed an overall increase
of performance and capacity to handle spatial contexts with
large extent as needed when using the geodetic space. More-
over, the tests have also highlighted that the actual prototypal
implementation can be installed into a computing machine
(e.g., an Intel NUC) that can be easily plunged in an environ-
ment: the mean reasoning time with respect to both the number
of mapped spaces and the dimension of the contexts can be
considered negligible with respect to the timing requirements
of pervasive computing applications.

The main future work consists in the deep integration of
the Infinite Space Extension layer in the Core layer. This will
enable a more efficient use of the rule engine. Moreover, the
platform will be exploited to provide spatial localization to
properties related to domain entities as inferred from stimuli
acquired by sensing devices. This results in a framework
that will support the implementation of pervasive computing
applications. Preliminary results can be found in [31].

REFERENCES

[1] D. Bernini, F. Fiamberti, D. Micucci, F. Tisato, and A. Vertemati,
“Spaces-based communication: an extension to support infinite spatial
models,” in UBICOMM 2013: The Seventh International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies,
2013, pp. 92–97.

[2] D. Saha and A. Mukherjee, “Pervasive computing: a paradigm for the
21st century,” Computer, vol. 36, no. 3, 2003, pp. 25–31.

[3] L. Bullivant, Responsive environments: architecture, art and design.
Victoria & Albert Museum, 2006.

[4] D. Bernini, F. Fiamberti, D. Micucci, and F. Tisato, “Architectural
abstractions for spaces-based communication in smart environments,”
Journal of Ambient Intelligence and Smart Environments, vol. 4, no. 3,
2012, pp. 253–277.

[5] C. A. Patterson, R. R. Muntz, and C. M. Pancake, “Challenges in
location-aware computing,” Pervasive Computing, IEEE, vol. 2, no. 2,
2003, pp. 80–89.

[6] Spatial referencing by geographic identifiers, ISO Standard ISO 19 112,
2003, accessed: 30.5.2014. [Online]. Available: http://www.iso.org/iso/
iso catalogue/catalogue tc/catalogue detail.htm?csnumber=26017

[7] C. Cauvin, “A systemic approach to transport accessibility. A methodol-
ogy developed in Strasbourg: 1982-2002,” Cybergeo: European Journal
of Geography, Systems, Modelling, Geostatistics, no. 311, 2005.

193

International Journal on Advances in Intelligent Systems, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] D. Garlan and M. Shaw, “An Introduction to Software Architecture,”
Advances in Software Engineering and Knowledge Engineering, vol. 1,
1993, pp. 1–40.

[9] I. Fette and A. Melnikov. The WebSocket Protocol - RFC 6455.
Accessed: 30.5.2014. [Online]. Available: http://datatracker.ietf.org/
doc/rfc6455/?include\ text=1 (2011)

[10] H. Butler, C. Schmidt, D. Springmeyer, and J. Livni. Epsg
geodetic parameters: 6864. Accessed: 30.5.2014. [Online]. Available:
http://spatialreference.org/ref/sr-org/6864/ (2013)

[11] ——. Epsg geodetic parameters: 4326. Accessed: 30.5.2014. [Online].
Available: http://spatialreference.org/ref/epsg/4326/ (2013)

[12] A. Aitchison. The Google Maps/Bing Maps
Spherical Mercator Projection. Accessed: 30.5.2014.
[Online]. Available: http://alastaira.wordpress.com/2011/01/23/
the-google-maps-bing-maps-spherical-mercator-projection/ (2011)

[13] OpenLayers. Spherical Mercator. Accessed: 30.5.2014. [Online].
Available: http://docs.openlayers.org/library/spherical mercator.html/
(2008)

[14] P. P. Klokan. Tiles la Google Maps: Coordinates, Tile Bounds
and Projection. Accessed: 30.5.2014. [Online]. Available: http://www.
maptiler.org/google-maps-coordinates-tile-bounds-projection/ (2008)

[15] D. F. R. Sinnott, R.W; Olson, “Virtues of the haversine,” Sky and
Telescope, vol. 68, no. 2, 1984, p. 159.

[16] R. Laurini and D. Thompson, Fundamentals of spatial information
systems, ser. The A.P.I.C. series. London, San Diego, New York:
Academic press, 1992.

[17] K.-T. Chang, Introduction to geographic information systems (4. ed.).
McGraw-Hill, 2008.

[18] H. Alt and L. Guibas, “Discrete Geometric Shapes: Matching, Interpo-
lation, and Approximation,” in Handbook of Computational Geometry.
Amsterdam: Elsevier Science Publishers B.V. North-Holland, 1999, pp.
121–153.

[19] M. T. Goodrich and K. Ramaiyer, “Geometric Data Structures,” in
Handbook of Computational Geometry. Amsterdam: Elsevier Science
Publishers B.V. North-Holland, 1999, pp. 463–489.

[20] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen, Introduction
to algorithms. The MIT press, 2001.

[21] A. Murta. A general polygon clipping library. Accessed: 30.5.2014.
[Online]. Available: http://www.cs.man.ac.uk/∼toby/alan/software/
(2000)

[22] F. Asseg, “exp4j: a simple mathematical expression parser for
java,” 2012, accessed: 30.5.2014. [Online]. Available: http://www.
objecthunter.net/exp4j/index.html

[23] E. W. Dijkstra, Primer of Algol 60 programming. Academic Press,
Inc., 1962.

[24] R. R. Redziejowski, “On arithmetic expressions and trees,” Communi-
cations of the ACM, vol. 12, no. 2, 1969, pp. 81–84.

[25] C. Becker and F. Dürr, “On location models for ubiquitous computing,”
Personal and Ubiquitous Computing, vol. 9, no. 1, 2005, pp. 20–31.

[26] D. Graumann, W. Lara, J. Hightower, and G. Borriello, “Real-world im-
plementation of the location stack: The universal location framework,”
in Proceedings of the Fifth IEEE Workshop on Mobile Computing
Systems and Applications, 2003, pp. 122–128.

[27] G. Stevenson, J. Ye, S. Dobson, and P. Nixon, “Loc8: a location model
and extensible framework for programming with location,” Pervasive
Computing, IEEE, vol. 9, no. 1, 2010, pp. 28–37.

[28] C. Jiang and P. Steenkiste, “A hybrid location model with a computable
location identifier for ubiquitous computing,” in Proceedings of the 4th
International Conference on Ubiquitous Computing, ser. UbiComp ’02.
London, UK, UK: Springer-Verlag, 2002, pp. 246–263.

[29] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. Campbell, and M. Mick-
unas, “Middlewhere: a middleware for location awareness in ubiquitous
computing applications,” in Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware. Springer-Verlag New York,
Inc., 2004, pp. 397–416.

[30] B. Brumitt and S. Shafer, “Topological world modeling using semantic
spaces,” in Proceedings of the Workshop on Location Modeling for
Ubiquitous Computing, UbiComp, 2001, pp. 55–62.

[31] F. Fiamberti, D. Micucci, M. Mobilio, and F. Tisato, “A layered ar-
chitecture based on previsional mechanisms,” in ICSOFT: International
Joint conference on Software Technologies, 2013, pp. 354–359.

