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Abstract— Security has an important bearing on achieving 
successful commercial deployment of smart grids. In particular, 
availability is accorded the highest priority in smart grids. For 
end-point devices, such as smart meters or concentrators, this 
must be true since they must always be working. We present 
LiSTEETM Recovery, an architecture for a fault-tolerant 
system enabling end-point devices to monitor the status of the 
operating system and to recover even if they stop working 
owing to unexpected behavior or cyber-attacks, including zero-
day attacks. LiSTEETM Recovery provides further functions to 
prevent illegitimate memory modification and to notify a head-
end system once a security incident occurs. We demonstrate a 
full implementation of LiSTEETM Recovery on a TrustZone-
capable ARM-based processor. Our experiment shows that the 
performance degradation is sufficiently small to be ignored. 
Furthermore, we observed that the cost of production and 
maintenance can be minimized. 
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I.  INTRODUCTION 
This paper presents a security system for connected end-

point devices in smart grids. It proposes an architecture for a 
secure fault-tolerant system with commodity hardware and 
presents a detailed perspective on earlier work by the same 
authors [1]. In smart grids, requirements for the support of 
various protocols and functions to network connected end-
point devices, such as smart meters or concentrators, make 
their systems more complicated. Because a large quantity of 
source code is generally necessary to implement a 
complicated system, the risk of including vulnerability in the 
system increases. Moreover, since the devices are connected 
to home networks, the risk of devices being attacked is high 
compared with legacy devices connected only to a managed 
network. In fact, it is reported that smart meters from various 
vendors were found to improperly handle malformed 
requests that could be exploited to cause buffer overflow 
vulnerability; allowing an attacker to cause a system  to 
become unstable or freeze [2]. To keep devices secure in this 
situation, many security protocols and algorithms have been 
proposed to securely distribute a shared key between devices 
and head-end systems or to store privacy data in devices in a 
secure manner [3][4]. However, confidentiality and integrity 
are insufficient to solve the security problem in smart grids. 

Keeping high availability of the devices is strongly desired 
since they must always be working to provide demand-
response services or to use consumption data for payment 
[5][6]. As a single vulnerability may cause the system to go 
down, it is very difficult to keep high availability in a 
complicated system. Furthermore, unlike in the case of 
interactive devices, such as PCs or smartphones, it is 
unreasonable to expect end users to reset and restart devices 
once they freeze or hang since end users cannot recognize 
the status of the devices and cannot determine whether the 
device should be rebooted or not. Thus, how to keep the 
availability of the devices in smart grids is a significant 
challenge. 

To address these problems, we propose LiSTEETM 
Recovery, an architecture for fault-tolerant systems that 
automatically recovers from error status. To achieve this goal, 
LiSTEETM Recovery isolates a surveillance process 
observing the state of the system and a recovery process that 
reboots the system when it detects the system freezes. In 
LiSTEETM Recovery, surveillance and recovery processes 
run in an isolated secure environment whereas general-
purpose processes, including the operating system, such as 
network or storage access, run in a non-secure environment 
with hardware access control performed with respect to 
memory. Hence, a memory area where surveillance and 
recovery processes are arranged cannot be accessed by 
general-purpose processes. As a result, even if the operating 
system is attacked and crashes, it becomes possible to 
prevent interference in the surveillance and recovery 
processes. 

The remainder of this paper is organized as follows. In 
Section II, problems are defined. Section III presents 
background information. Sections IV and V propose a 
framework and implementation of LiSTEETM Recovery. The 
evaluation of LiSTEETM Recovery is shown in Section VI, 
related work is referred to in Section VII, and the paper 
concludes with Section VIII, which is devoted to the 
conclusion and future work. 

II. PROBLEM DEFINITION 
In a legacy system, surveillance and recovery processes 

and their execution environment are monolithically 
configured. In other words, the reliability of surveillance and 
recovery processes depends on the reliability of their 
execution environment. In order to keep reliability high, a 
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system needs to be implemented without vulnerability. In 
order to detect and eliminate vulnerability in source code, 
various testing methods have been proposed [7][8]. However, 
since end-point devices will be deployed without 
maintenance over a long period of time within smart grids 
and new vulnerabilities are found day after day, there is a 
large risk that such devices will continue operating without 
vulnerabilities being fixed even if those devices had no 
vulnerabilities at the time of shipping. For example, there is a 
well-known attack against x86 processors called “Ret2Libc” 
which enables an attacker to inject and execute code, and it 
had been regarded as invalid against ARM processors [9]. 
However, once new attack which is similar with Ret2Libc 
against ARM processors has been proposed, buffer over flow 
on ARM processor has been regarded as real theat. Therefore, 
attackers may exploit a vulnerability, such as buffer overflow 
or malformed network input, in order to cause the device to 
crash. To make matters worse, attackers are in a somewhat 
advantageous position in launching a large attack since the 
number of device vendors is limited and the software 
installed in the devices is uniform. Furthermore, attackers 
can reverse-engineer code without administrators noticing in 
order to find a vulnerability since, unlike a server application, 
devices are located at the user side. Therefore, when 
attackers find one vulnerability in a single device, they can 
exploit it on many devices. Considering the above situation, 
the following problems are to be solved in order to keep high 
availability under a legacy system. 

A. Difficult to Keep a High Level of Surveillance 
Continuity 
End-point devices need to support various network 

protocols and data formats depending on countries or use 
cases in smart grids [10][11][12]. In order to minimize the 
implementation cost of a complicated application program or 
a minor network protocol on end-point devices, Linux will 
be used as a software execution environment. In Linux, the 
surveillance and recovery processes can be implemented as a 
user task executed on the operating system or as an interrupt 
handler in the operating system. When a surveillance target 
process is implemented as a user task running on the 
operating system then support functions in the operating 
system, such as the “cron” service in Linux, can be used to 
detect a failure of the user task and to automatically restart 
the target process. When the surveillance process is 
implemented as an interrupt handler in the operating system, 
then more sophisticated implementation is necessary than for 
an application program; it is automatically and periodically 
called by a timer interrupt as long as the operating system 
works. Another legacy approach is implementation of a 
monitoring and detecting mechanism in the operating system. 
For example, in order to find buffer overflow attacks, an 
anomaly detection method is proposed where a protection 
element monitors system call frequencies, and if the 
frequencies are different from normal behavior, it determines 
that an attack occurs [13]. However, the fundamental 
problem of a legacy approach is that there is no way to 
restart the process if the operating system itself crashes for 
any reason. Furthermore, the protection mechanism itself 

could be a target of the attack, and as a result the protection 
mechanism could be invalidated. Thus, there is a large risk of 
devices in a smart grid breaking down and the attack may be 
able to cause an extensive blackout in the worst case. In 
order to prevent devices breaking down, a robust method of 
recovering the system from failure is required in order to 
keep a high level of availability. Still, some existing 
hardware devices support a watchdog timer function that 
detects the status of the operating system and automatically 
reboots the system [14]. Since not all devices support the 
function and it is difficult to implement complicated 
functions in the system as discussed below, a new approach 
is desired. To clarify the conditions, only a software failure 
including an attack is assumed in this paper. A physical fault, 
such as a hardware failure or loss of power, or a hardware 
attack, such as physically destroying devices or cutting 
cables, are beyond the scope of this paper. 

B. Difficult for an Administrator to Detect when an 
Incident Occurs 
End-point devices are connected with a head-end system 

through the network to provide demand-response services. 
When the devices detect an error status, such as a 
surveillance target process being stopped for an unknown 
reason, it is desirable for these devices to send a report to the 
head-end system so that an administrator can realize the 
situation and use the report to investigate the reason for the 
failure. However, for the reason described above, there is no 
way for devices to send a message to the head-end system if 
the operating system crashes in a system where the network 
connectivity function is implemented as a user task or it is 
implemented within the operating system. Even in such a 
case, it is desirable to provide a method enabling devices to 
send a message to acknowledge the error situation to the 
system administrator. In addition to the unexpected failure, 
attacks on the network connectivity function need to be 
considered. When an attacker gains full access to the system 
under control, the attacker may try to disable the network 
connectivity function in the operating system. Therefore, it is 
desired not simply to provide a method of sending a message 
but to keep the network connectivity function secure to 
protect it against the attack even if the operating system is 
modified or the control of the operating system is taken over. 

Besides notification of the error situation to the system 
administrator, a software update function is also desirable. 
However, since many existing hardware devices already 
support a secure firmware update function and its method is 
highly dependent on each device, it is beyond the scope of 
this paper. 
 

In addition to the problem described above, the following 
business problem needs to be considered when introducing a 
new architecture to the market. 

C. Development and Production Cost 
Cost is an important aspect in evaluating the proposed 

security architecture. Generally, there are two types of cost: 
development cost, consisting primarily of personnel 
expenses, and production cost, which is charged per device. 
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When implementing an end-point device, if the new security 
architecture requires a complete software rebuild, the 
architecture will never be commercialized. Thus, it is 
desirable to reuse existing software assets, such as libraries, 
middleware and applications, as much as possible in order to 
minimize the development cost, including the verification 
cost. In the case of smart grids, the verification cost is large 
since reliability is strongly required. Besides the 
development cost, we need to consider the cost per device. 
One approach to solve the problems described above is to 
utilize a dedicated hardware security chip. However, since 
such chips tend to be very expensive, their use may raise 
production cost per device. Therefore, the use of widely 
available existing commodity hardware is desirable in order 
to minimize production cost. 

III. BACKGROUND (TRUSTZONE) 
In this section, we provide background information on 

the hardware technologies leveraged by LiSTEETM Recovery.  

A. ARMv7 Architecture 
ARM processors support different processor modes 

depending on the architecture version. The ARMv7 
architecture on which LiSTEETM Recovery is implemented 
supports the seven processor modes shown in Table I.  

TABLE I.  ARM PROCESSOR MODE AND BANK REGISTER 

Mode level description Bank 
register 

# of bank 
registers 

USR unprivileged User mode r8-r14 7 

SVC privileged Supervisor 
mode 

r13-r14, 
spsr 3 

IRQ privileged IRQ mode r13-r14, 
spsr 3 

FIQ privileged FIQ mode r8-r14, 
spsr 8 

ABT privileged Abort 
mode 

r13-r14, 
spsr 3 

UND privileged Undefined 
mode 

r13-r14, 
spsr 3 

MON privileged Monitor 
mode 

r13-r14, 
spsr 3 

 
The processor is executed by selectively switching the 

modes depending on the process. The processor mode is 
changed either when a program, such as an operating system, 
calls a dedicated instruction or when software or hardware 
exception occurs. The seven modes are categorized as either 
non-privileged mode or privileged mode by privilege level. 
In a general system, an operating system is executed in 
privileged mode and application programs are executed in 
unprivileged mode. In privileged mode, execution of all 
instructions and access to all memory regions are allowed, 
whereas in unprivileged mode availability of instructions and 
accessibility of memory regions are restricted.  

The ARMv7 processor has 40 registers, consisting of 33 
general registers and 7 status registers. These registers are 
arranged in partially overlapping banks. For example, r13, 

which is a bank register and usually used for stack pointer, 
refers to different physical registers in User mode and 
Supervisor mode. For non-banked registers, which refer to 
the same physical register in different modes, an operating 
system needs to save and restore in working memory when 
switching from one mode to another mode so that execution 
can be subsequently resumed from the same point. On the 
contrary, the operating system does not need to save the 
context of banked registers. For example, the operating 
system does not need to save the context of r13 when 
switching from User mode to Supervisor mode. Therefore, 
rapid context switching is enabled. 

B. TrustZone 
TrustZone is a hardware security function supported by a 

part of the ARM processor [15][16]. In addition to 
unprivileged mode and privileged mode, a TrustZone-
enabled ARM processor supports two worlds that are 
independent of the modes. One is the secure world for the 
security process and the other is the non-secure world for 
everything else. Each processor mode shown in Table I is 
available in both the secure world and the non-secure world. 
Fig. 1 shows the relationship between worlds and modes 
conceptually. The world in which the processor is executing 
is indicated by the NS-bit in the Secure Configuration 
Register (SCR) except when the processor is in monitor 
mode. When the processor is in monitor mode, it is in the 
secure world regardless of the value of the NS-bit of SCR. 
The processor is executed by selectively switching the 
worlds if necessary. For example, it is assumed that the key 
calculation process is executed in the secure world and all 
other general processes, such as storage access or network 
accesses are executed in the non-secure world.  

The software that manages switching between the secure 
world and the non-secure world is called the monitor. The 
monitor is executed in monitor mode. TrustZone provides a 
dedicated instruction, the Secure Monitor Call (SMC) 
instruction, to transit between the worlds. As soon as the 
SMC instruction is called, the processor switches to monitor 
mode. Monitor saves a context of the program running in the 
current world on the memory and restores a context of the 
program running in the previous world, then changes the 
world to set the NS-bit of SCR, and finally executes the 
program running in the previous world. Besides the SMC 

Figure 1. Mode and world in ARM. 
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instruction, hardware exceptions can be configured to cause 
the processor to switch to monitor mode. 

Note that general registers and Saved Program Status 
Register (spsr) are not banked between worlds. For example, 
when r13 in User mode of the secure world is referred and 
the monitor switches from the secure world to the non-secure 
world, and then r13 in User mode of the non-secure world is 
referred, the same physical register is referred. Therefore, the 
monitor needs to save and restore both bank registers and 
non-bank registers when it switches worlds. 

By using TrustZone-capable hardware, it is possible to 
make a system where a process running in the secure world 
can access all system resources, such as memory or 
peripherals, whereas a process running in the non-secure 
world can access only a part of system resources. For 
example, when used in combination with the TrustZone 
Address Space Controller (TZASC), access to a particular 
region of working memory can be restricted for a process 
running in the non-secure world even if the process runs in 
privileged mode. When a process running in the non-secure 
world accesses a memory region that it is configured to be 
prohibited from accessing from a process running in the non-
secure world, TZASC generates an interrupt signal and it is 
sent to the processor. As a result, the violation causes an 
external asynchronous abort. Similar to TZASC, when used 
in combination with the TrustZone Protection Controller 
(TZPC), access to a peripheral can be restricted for a process 
running in the non-secure world. In contrast to TZASC, the 
access control policy of TZPC can be configured per 
peripheral, such as DRAM, Timer, or Real-Time Clock 
(RTC). That is, the configuration of TZPC is performed 
peripheral by peripheral. There is a correlation between 
TZASC and TZPC. For example, when configuring a policy 
such that access to a particular region of DRAM is restricted, 
the access control of TZPC corresponding to DRAM is set to 
off and the proper access control policy with the 
corresponding region is installed on TZASC. TZPC is 
configured as secure when booting the system. Therefore, for 
all peripherals whose access controls are valid by TZPC, 
access by a process running in the non-secure world is 
prohibited by default. TZASC and TZPC can only be 
configured by a process running in the secure world, in order 

to protect those configurations from illegitimate modification. 

IV. FRAMEWORK OF LISTEETM RECOVERY 
LiSTEETM Recovery provides a method for an end-point 

device to automatically recover from an error status. It also 
provides a high-level memory protection mechanism. Hence, 
the recovery process is securely executed without 
interference. Fig. 2 shows the entire architecture of 
LiSTEETM Recovery. LiSTEETM Recovery consists of three 
components: Normal OS, LiSTEETM Tracker Application 
(LiSTEETM TA), and LiSTEETM Monitor. 

• Normal OS: An operating system that executes 
general-purpose processes, such as storage access or 
network communication. It is executed in the non-
secure world. All applications implementing smart 
meter functions or concentrator functions run on this 
operating system. 

• LiSTEETM Tracker Application (LiSTEETM TA): 
Surveillance and recovery processes executed in 
privileged mode in the secure world. LiSTEETM TA 
includes three modules: Watcher module, Recovery 
module, and Notification module. The Watcher 
module is an entry point of LiSTEETM TA. It is 
executed periodically by a timer interrupt through 
LiSTEETM Monitor. Whenever it is called, it 
investigates the status of Normal OS. If it detects 
Normal OS is not working, it calls the Recovery 
module to reboot the system. Otherwise, it calls the 
SMC instruction to switch to Normal OS. Moreover, 
the Notification module is called before the 
Recovery module reboots the system. It sends a 
message to notify that the system is about to reboot 
to the head-end system through network. 

• LiSTEETM Monitor: A program running in the 
monitor mode. It initializes configurations of 
TrustZone-related hardware when booting the 
system. It also provides a context switching function 
between worlds in the hardware interrupt handler 
and the SMC handler. Moreover, LiSTEETM Monitor 
manages the access control policy and installs the 
policy on TZASC when booting. Policy Manager 
takes on their roles. 

Figure 2. System Architecture of LiSTEETM Recovery. 
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The primary feature of LiSTEETM Recovery is to provide 

a method for the end-point device to detect the status of 
Normal OS and to recover it even if Normal OS crashes or 
stops working. Furthermore, it provides two additional 
functions. One is to enhance the security protection for 
LiSTEETM Monitor, LiSTEETM TA and Normal OS against 
attacks. The other is to send a message to the head-end 
system when an incident occurs. The details of these 
functions are described below. 
 

A. Baseline Common Functions 
LiSTEETM Monitor has the role of providing baseline 

common functions to operate Normal OS and LiSTEETM TA 
concurrently. LiSTEETM Monitor has two functions; system 
initialization and context switching between worlds. 

1) System initialization 
When booting the system, the processor is in the secure 

world and LiSTEETM Monitor is firstly executed. To run 
Normal OS and LiSTEETM TA concurrently, it needs to load 
and execute both of them. It first initializes the status of the 
processor in both worlds, and loads LiSTEETM TA in the 
secure world. Then, it invokes context switching to transit 
from the secure world to the non-secure world, loads the 
boot loader program of Normal OS, and executes it in the 
non-secure world. Finally, the boot loader program loads 
Normal OS and executes it. 

The TrustZone-enabled processor supports the function 
that is either monitor or Normal OS traps each exception 
(IRQ, FIQ, and external abort). When booting the system, 
LiSTEETM Monitor configures that hardware interrupt 
handler in LiSTEETM Monitor traps timer interrupt so that 
Normal OS cannot interfere with the execution of LiSTEETM 
TA when timer interrupt occurs. As well as timer interrupt, 
LiSTEETM Monitor configures that hardware interrupt 
handler in LiSTEETM Monitor traps external abort. Since the 
access violation causes external abort as described above, 
this configuration enables LiSTEETM TA to detect the 
occurrence of a memory access violation. 

TZPC is configured to be accessed from the secure world 
only when booting the system. Since Normal OS needs to 
use peripherals, LiSTEETM Monitor needs to change the 
configuration of TZPC to non-secure. The only exception is 
Timer, which triggers periodical execution of LiSTEETM TA. 
Since it is necessary to prevent the configuration of Timer 
from changing by a process running in the non-secure world, 
LiSTEETM Monitor remains the configuration of TZPC 
corresponding to Timer as secure. 

2) Context Switching between Worlds 
In LiSTEETM Recovery, the trigger of context switching 

between worlds is either the SMC instruction or the Timer 
interrupt caused by the hardware timer. The SMC handler in 
LiSTEETM Monitor is executed when the SMC instruction is 
called and it transits from the secure world to the non-secure 
world. In contrast to the SMC handler, the timer interrupt 
triggers transit from the non-secure world to the secure world. 
In both cases, LiSTEETM Monitor invokes context switching 
between worlds. It first determines the current world. As 

described in section III-B, general registers and Saved 
Program Status Register are not banked between worlds. 
Therefore, LiSTEETM Monitor needs to save the contents of 
the registers belonging to the current world on working 
memory to prevent loss of the previous context, and then 
change the world. Finally, it restores the contents of the 
registers belonging to the transition destination world and 
resumes the execution. 

B. Periodical Surveillance and Recovery 
While executing Normal OS, whenever the timer 

interrupt occurs, the processor jumps to the hardware 
interrupt handler in LiSTEETM Monitor. The hardware 
interrupt handler context switches from the non-secure world 
to the secure world and calls LiSTEETM TA. Specifically 
LiSTEETM Monitor saves a context of Normal OS to 
memory and restores a context of LiSTEETM TA, then 
changes the world and finally calls the Watcher module of 
LiSTEETM TA. The Watcher module checks the status of 
Normal OS. If it judges that Normal OS is not working, the 
Watcher module calls the Recovery module that reboots the 
system. Otherwise, it calls the SMC instruction. Then, the 
SMC handler in the LiSTEETM Monitor is executed. It 
context switches from LiSTEETM TA to Normal OS, and 
restarts Normal OS at the point just before the timer interrupt 
occurred. While executing LiSTEETM Monitor and 
LiSTEETM TA, the execution of Normal OS is suspended. 
That is, Normal OS continues to be processed as if nothing 
were executed during the execution of LiSTEETM TA. Fig. 3 
shows the flowchart of the periodic surveillance and 
recovery process. 

There are many ways for the Watcher module to 
determine whether Normal OS is working or not. One of the 
methods is to check the data area of Normal OS. In general, 
when an operating system is working, there must be a certain 
data area that is updated regularly. By checking this data area, 
it is possible for the Watcher module to judge whether 
Normal OS is working or not.  

Figure 3. Flowchart of periodical surveillance and recovery. 
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C. Memory Protection 
By utilizing TZASC, LiSTEETM Monitor provides an 

access control function such that access of Normal OS 
running in non-secure mode to the working memory area, 
which LiSTEETM Tracker Application running in the secure 
world uses, is subject to restrictions. Policy Manager in 
LiSTEETM Monitor manages three kinds of access control 
policies: full access, access denied, and read-only. When 
booting the system, Policy Manager divides working 
memory into several regions and it installs one of the three 
access control policies for each working memory region on 
TZASC before loading Normal OS. 

Table II shows how each policy works. Full access 
indicates no restriction. A process running in both non-
secure world and secure world can freely access the region 
configured according to this policy. This policy is primarily 
used to share data between Normal OS and LiSTEETM TA. 
Access denied indicates full restriction. A process running in 
the non-secure world can neither read nor write to a region 
configured according to this policy, whereas a process 
running in secure world can read and write to the region. 
Read-only indicates a process running in the non-secure 
world cannot overwrite the content on the memory, whereas 
a process running in the secure world can freely access the 
region using ordinary random access memory, such as 
DRAM or SRAM, as the working memory which is, of 
course, physically writable memory.  

TABLE II.  ACCESS CONTROL POLICY 

Policy From secure 
world process 

From non-secure world 
process 

Read Write 
Full access OK OK OK 

Access denied OK NG NG 
Read-only OK OK NG 
 
Using these policies, LiSTEETM Recovery provides two 

memory protection mechanisms. Fig. 4 shows how these 
memory protection mechanisms work. One is protection for 
the kernel area of Normal OS. The other mechanism is 
protection for LiSTEETM Monitor and LiSTEETM TA. 

To realize protection for the kernel area of Normal OS, 
LiSTEETM Monitor provides read-only memory. In general, 

when a program is loaded into memory, a data region (data 
segment) and a code region (code segment) are assigned. In 
the initial state before booting the system, all regions are 
allowed to be accessed from the non-secure world by default. 
In order to allow the boot loader to write the code segment 
into the memory, LiSTEETM Monitor leaves the memory 
region as is until the code segment is loaded. Just after 
executing the kernel of Normal OS, LiSTEETM Monitor sets 
the memory region as read-only for kernel code segment of 
Normal OS. As a result, even Normal OS is prohibited from 
overwriting its own code segment. 

To protect LiSTEETM Monitor and LiSTEETM TA, Policy 
Manager in LiSTEETM Monitor installs an access control 
policy such that Normal OS cannot access the memory area 
allocated to LiSTEETM Monitor and LiSTEETM TA, whereas 
LiSTEETM TA and LiSTEETM Monitor can access all areas 
when booting the system. This policy protects LiSTEETM 
Monitor and LiSTEETM TA from illegitimate falsification by 
Normal OS, even if Normal OS is attacked and under the 
control of an attacker.  

Besides the protection for LiSTEETM Monitor and 
LiSTEETM TA, memory protection provides a hardware 
access control mechanism. One of the possible attacks to 
disable end-point devices is that of shutting down the system. 
To prevent such an attack, Policy Manager in LiSTEETM 
Monitor installs an access control policy so that Normal OS 
cannot access the registers corresponding to power 
management. Thus, it is possible to protect the system 
against the shutdown attack even if Normal OS is under the 
control of an attacker. 

In the case of policy configured to access denied or read-
only, TZASC generates an interrupt signal when the access 
violation caused by a process running in the non-secure 
world occurs. LiSTEETM Monitor configures the hardware 
interrupt handler in LiSTEETM Monitor to trap the interrupt 
so that the system will continues to work without crashing 
even if access violation occurs, and LiSTEETM Monitor can 
detect the access violation. 

D. Message Notification 
LiSTEETM Recovery provides a function to notify the 

head-end system that Normal OS has stopped working and is 
rebooting the system by sending a message through the 

Figure 4. Memory protection mechanism. 
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network even if the operating system is modified or the 
control of the operating system is taken over; the resulting 
network function is disabled by an attacker. The Notification 
module has the role of sending a message. Although Normal 
OS has a network connectivity function, such as TCP/IP 
stack, LiSTEETM TA cannot use the function since there is a 
case where it is not working when sending a message. Thus, 
LiSTEETM TA supports the network connectivity function 
including the network application, the network protocol stack 
and the network driver to notify the error situation to the 
system administrator through the network. Obviously, it is 
possible to send a head-end system a message whenever 
LiSTEETM TA is executed to notify that the system works 
correctly. 

V. PROTOTYPE IMPLEMENTATION 
We used ARM C/C++ Compiler 5.01 to build LiSTEETM 

Monitor and LiSTEETM TA. We used gcc 4.4.1 to build 
Linux 3.6.1 as Normal OS. We chose Motherboard Express 
uATX with the CoreTile Express A9x4 processor that 
supports TrustZone as an execution environment.  

Regarding a memory map, from 0x48000000 through 
0x4A000000 is assigned for SRAM, and from 0x60000000 
through 0xE0000000 is assigned for DRAM. Table III shows 
the memory map with the access control policy of the 
memory. In Table III, Normal OS (code) indicates the Linux 
kernel code. Normal OS (data) includes the Linux data, the 
application code and the application data. For clarification, 
full access is applied from the non-secure world for an area 
not described in Table III.  

TABLE III.  MEMORY MAP 

Data  Start 
Address Size 

Security 
Permission 
(From non-

secure world) 
Vector tables + 

Initialization code 
+ LiSTEETM 
Monitor + 

LiSTEETM TA 

0x48000000 0x01B00000 Access denied 

Normal OS (code) 0x60000000 0x002FE000 Read-Only 
Normal OS (data) 0x602FE000 0x3EF02000 Full access 
Shared memory 0x9F200000 0x00C00000 Full access 
 
For the Policy Manager in LiSTEETM Monitor to install 

an access control policy on TZASC, the start address and the 
size of each memory region are predefined. After the boot 
loader loads Linux at the predefined value, LiSTEETM 
Monitor installs the access control policy on TZASC. As 
shown in Table III, the access to the memory regions 
allocated to LiSTEETM Monitor, LiSTEETM TA and the code 
segment of Normal OS is restricted for the Normal OS 
running in the non-secure world, whereas the access to the 
region allocated to the data segment of Normal OS and 
shared memory is not. For clarification, LiSTEETM Monitor 
and LiSTEETM TA running in the secure world can access all 
regions. Furthermore, since LiSTEETM Monitor sets the 
configuration registers of TZASC to prohibit Normal OS 

from accessing them, Normal OS cannot change this 
configuration. 

Table IV shows the configuration of TZASC. In Table IV, 
the meaning of the value of the security permissions field is 
as follows: 0b1111 indicates full access from both the secure 
world and the non-secure world, 0b1100 indicates secure 
read/write is permitted but non-secure read/write is restricted 
(access denied), and 0b1110 indicates secure read/write and 
non-secure read are permitted but non-secure write is 
restricted (read-only). An entry with larger entry number is 
accorded higher priority than one with smaller entry number. 
Therefore, we first set all regions with a policy of full access 
as entry number 0, and then set access control policies from 
entry number 1 through 7. The size of a region to which 
access control is applied is discrete, such as 32 KB, 64 KB, 
…, 1 MB, 2 MB, 4 MB, …, 2 GB, 4 GB. Therefore, to set 
policy for LiSTEETM Monitor and LiSTEETM TA whose size 
is 0x01B00000 (27 MB), we used four entries: entry number 
1 (16 MB), entry number 2 (8 MB), entry number 3 (2 MB), 
and entry number 4 (1 MB). In contrast to the size of 
LiSTEETM Monitor and LiSTEETM TA, the size of Normal 
OS (code) is a fraction (32 MB – 8 KB), and TZASC has 
restrictions such that it is impossible to define an entry 
whose size is smaller than 32 KB. Instead, it is possible to 
define a subregion to equally divide a region into eight with 
the access control policy, and enable the policy for each 
subregion. For example, when the size of a region is 32 KB, 
it is possible to enable a policy for each 4 KB subregion. An 
8 bit subregion disable field controls enabling and disabling 
the policy. Each bit in a subregion disable field enables the 
corresponding subregion to be disabled. For example, when 
zero is set to the value of the highest bit in a subregion 
disable field, the policy for subregion 0 (the subregion 
having the highest address) is enabled. To set the policy for a 
Normal OS (code) region, we first defined two regions, 2 
MB (entry number 5) and 1 MB (entry number 6) and set the 
read-only policy. Then, we defined the region with a size of 
64 KB (entry number 7) that overlaps the last portion of 
entry number 6, equally divides the region into eight, sets the 
policy of full access, and enables the policy for the last 
subregion only. As a result, the policy of full access is set to 
the subregion having the highest address only, and the policy 
of read-only remains for the rest of the subregions.  

As shown in Table III and Table VI, the policies can be 
clearly defined and there is no overlapped region. Thus, no 
policy conflict exists in LiSTEETM Recovery. 

TABLE IV.   CONFIGURATION OF TZASC 

Entry 
Number 

Start 
Address Size 

Subreg
ion 

disable 
Security 

Permission 

0 -- -- -- 0b1111 
1 0x48000000 0x17(16MB) 0x0 0b1100 
2 0x49000000 0x16(8MB) 0x0 0b1100 
3 0x49800000 0x14(2MB) 0x0 0b1100 
4 0x49A00000 0x13(1MB) 0x0 0b1100 
5 0x60000000 0x14(2MB) 0x0 0b1110 
6 0x60200000 0x13(1MB) 0x0 0b1110 
7 0x602F0000 0xF(64KB) 0x7F 0b1111 
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Fig. 5 shows the assignment of the timer interrupt. We 
allocated a timer interrupt caused by a timer (timer 1) to Fast 
Interrupt Request (FIQ) and the timer interval was set to 1 
second. The FIQ interrupt is handled by the hardware 
interrupt handler in LiSTEETM Monitor, then it calls 
LiSTEETM TA and, as a result, LiSTEETM TA is periodically 
called. We used another timer (timer 2) and allocated it to 
Interrupt Request (IRQ), and the timer interval was set to 4 
milliseconds. The IRQ interrupt is handled by the interrupt 
handler in Linux. Since Linux assumes the timer interrupt is 
allocated to IRQ, modification of the Linux source code to 
adopt LiSTEETM Monitor is unnecessary.  

Table V shows a configuration of hardware interrupt. We 
configured Secure Configuration Register (SCR) and Current 
Program Status Register (CPSR) so that the FIQ handler of 
LiSTEETM Monitor is called when the FIQ interrupt occurs, 
whereas the IRQ handler in Linux is called when the IRQ 
interrupt occurs during executing Linux. Table VI shows the 
register setting to achieve the configuration of Table V. 
CPSR.I indicates the Interrupt disable bit and is used to mask 
the IRQ interrupt. CPSR.F indicates the Fast interrupt disable 
bit and is used to mask the FIQ interrupt. CPSR.A indicates 
the asynchronous abort disable bit and is used to mask 
asynchronous abort. SCR.FIQ controls which mode the 
processor enters when the FIQ interrupt occurs. If one is set, 
it enters monitor mode, otherwise it enters FIQ mode. 
SCR.IRQ controls which mode the processor enters when the 
IRQ interrupt occurs. If one is set, it enters monitor mode, 
otherwise it enters IRQ mode. SCR.FW controls whether the 
F bit in the CPSR can be modified in the non-secure world. 
SCR.EA controls which mode the processor enters when 
external abort including the one generated by TZASC. If one 
is set, it enters monitor mode, otherwise it enters abort mode. 
SCR.AW controls whether the A bit in the CPSR can be 
modified in the non-secure world. If zero is set, CPSR.A can 
be modified only in the secure world, otherwise it can be 
modified in both worlds. 

TABLE V.  RELATIONSHIP BETWEEN WORLD AND INTERRUPT 

World when 
interrupt occurs Interrupt Jumps to 

Non-secure world FIQ Hardware interrupt handler (FIQ 
handler) in LiSTEETM Monitor 

IRQ IRQ handler in Normal OS (Linux) 

Secure world FIQ Pending FIQ 
IRQ Pending IRQ 

 

TABLE VI.  CPSR AND SCR REGISTER SETTING 

 Non-secure world Secure world 
(LiSTEETM TA) 

Secure world 
(Monitor) 

C 
P 
S
R 

I 
0/1 (depending on 
the configuration 
of Normal OS) 

1 (IRQ disabled) 1 (IRQ disabled) 

F 0 (FIQ enabled) 1 (FIQ disabled) 1 (FIQ disabled) 

A 0 (Asynchronous 
abort enabled) 

0 (Asynchronous 
abort enabled) 

1 (Asynchronous 
abort disabled) 

S
C
R 

FIQ 1 (enter monitor 
mode) 

0 (enter FIQ 
mode) 

0/1 (depending 
on which world 
transiting to) 

IRQ 0 (enter IRQ 
mode) 

0 (enter IRQ 
mode) 

0 (enter IRQ 
mode) 

FW 
0 (can be modified 
CPSR.F only in 
secure) 

0 (can be 
modified CPSR.F 
only in secure) 

0 (can be 
modified 
CPRS.F only in 
secure) 

EA 
1 (enter monitor 
mode) 

0 (enter abort 
mode) 

0/1 (depending 
on which world 
transiting to) 

AW 

0 (can be modified 
CPSR.A only in 
secure) 

0 (can be 
modified CPSR.A 
only in secure) 

0 (can be 
modified 
CPSR.A only in 
secure) 

 
As shown in Table V, when a processor is in the non-

secure world and the FIQ interrupt assigned for timer 1 
occurs, the FIQ handler in monitor mode is called since one 
is set to SCR.FIQ. The FIQ handler in monitor mode 
switches from the non-secure world to the secure world and 
calls the FIQ handler in LiSTEETM TA. Finally, the FIQ 
handler in LiSTEETM TA calls the Watcher module. The 
entry point to LiSTEETM TA from LiSTEETM Monitor is 
only the FIQ handler in LiSTEETM TA and it never returns to 
LiSTEETM TA after the Watcher module calls SMC 
instruction under the current implementation. When 
considering returning to the original location in LiSTEETM 
TA when entering the secure world next time as future 
extension, the FIQ handler in monitor mode sets the 
instruction located in the address next to the address of the 
instruction just after calling the SMC instruction in the 
previous time to r14 before calling the FIQ handler of 
LiSTEETM TA. On the other hand, when the IRQ interrupt 
occurs, the IRQ handler in Normal OS is called. Furthermore, 
Normal OS cannot change the configuration of CPSR.F since 
zero is set to SCR.FW. Therefore, the FIQ interrupt is always 
enabled and the timer interrupt is input to the monitor. 

When a processor is in the secure world and FIQ or IRQ 
interrupt occurs, the interrupt is pending since zero is set to 
CPSR.F and CPSR.I. For future extension, LiSTEETM 
Monitor changes SCR.FIQ setting during context switching 
so that LiSTEETM TA handles the FIQ interrupt directly 
without LiSTEETM Monitor when the FIQ interrupt occurs in 
the secure world. That is, zero is set to SCR.FIQ when it 
transits from the non-secure world to the secure world to 
jump to the FIQ handler in LiSTEETM TA when the FIQ 
interrupt occurs in the secure world. On the other hand, one 
is set when it transits from the secure world to the non-secure 
world to enter monitor mode when the FIQ interrupt occurs 
in the non-secure world. 

Figure 5. Assignment of timer interrupt. 
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When a processor is in monitor mode, FIQ and IRQ 
interrupt are disabled to avoid occurrence of multiple 
interrupt. 

In order to determine whether Linux is working or not, 
we made a small application program, which runs on Linux 
and communicates with LiSTEETM TA. Shared memory is 
used to exchange data between LiSTEETM TA and Normal 
OS. The application program writes a counter value into the 
shared memory periodically. Then LiSTEETM TA reads the 
counter value from the shared memory. When Normal OS is 
crashed, the application program cannot update the counter 
value. If the counter value is not updated in a certain amount 
of time or the counter value is not an expected value, 
LiSTEETM TA determines that Normal OS is not working. 
Another method of checking the status of Normal OS is to 
monitor the status of a specific field, such as a task structure 
or page tables in Normal OS, but we have not implemented it. 
Thanks to the memory protection function, it is impossible 
for Normal OS to check the checking process running in 
LiSTEETM TA. Since it is possible to maintain secrecy of 
Normal OS as to which memory area of Normal OS 
LiSTEETM TA monitors or how often LiSTEETM TA checks 
it, it is difficult for an attacker to plan a countermeasure to 
circumvent the checking. 

LiSTEETM Recovery provides a method to continue 
working even if a memory access violation caused by 
TZASC occurs. Fig. 6 shows the flowchart of how 
LiSTEETM TA and LiSTEETM Monitor recover from the 
error status to the normal status when an access violation 
caused by TZASC occurs. When booting the system, 
LiSTEETM Monitor configures SCR.EA so that external 
aborts including the ones TZASC generates are handled in 
Monitor mode, instead of by the abort handler in Normal OS. 
Furthermore, it is prohibited to mask external abort from the 
non-secure world to configure SCR.AW. Therefore, when an 
access violation occurs in user mode in the non-secure world, 
for example, a processor jumps to the abort handler in 
LiSTEETM Monitor. At this time, the values of r14 (lr) and 
spsr are the values of PC (Program Counter) and spsr of the 
mode just before the access violation occurs, respectively. 
The abort handler in LiSTEETM Monitor saves registers 
including r14 and spsr of original mode in the non-secure 
world on working memory, context switches from the non-
secure world to secure world, and calls the abort handler in 
LiSTEETM TA. The abort handler in LiSTEETM TA checks 
the status of Normal OS. For example, LiSTEETM TA checks 
which process running in Normal OS triggers access 
violation or checks memory address where an access 
violation is triggered to investigate the reason for the access 
violation later. After LiSTEETM TA checks the status, it calls 
the SMC instruction and jumps to LiSTEETM Monitor. While 
LiSTEETM TA works in the background when an access 
violation occurs, LiSTEETM Recovery behaves as if data 
abort occurs from the viewpoint of Normal OS. When data 
abort occurs, a processor automatically stores PC and cpsr of 
the mode just before data abort occurs to r14 and spsr 
respectively. LiSTEETM Monitor carries out a similar 
operation with the processor when an access violation occurs. 
LiSTEETM Monitor switches from the secure world to the 

non-secure world, restores the saved values including setting 
the saved value of r14 and spsr just before the access 
violation occurs to banked registers for abort mode in order 
to be able to return to the original location after exiting abort 
mode, and calls the abort handler of Normal OS. Therefore, 
when Normal OS restarts a process, the data abort handler is 
executed. 

When LiSTEETM TA determines that Linux is not 
working, it sends the head-end system a message. In order to 
send a message to the head-end system when LiSTEETM TA 
detects that Linux is not working, we ported a network driver 
and UDP/IP stack to LiSTEETM TA. We defined a 
proprietary protocol and data format over UDP to notify the 
head-end system that LiSTEETM TA starts reboot of the 
system. An application data size of UDP packet is 32 bytes, 
and it consists of 4 bytes of device ID, 1 byte of flag 
indicating the status of the device, and 27 bytes of reserved 
area. 

VI. EVALUATION 
In this section, we describe the result of the evaluation in 

terms of security to verify the problems of the legacy system 
defined in Section II can be solved. Performance and cost 
analysis of LiSTEETM Recovery is also described below.  

A. Security Analysys 
1) Surveillance and Recovery: LiSTEETM Recovery can 

recover from a failure to reboot the system even if Normal 
OS crashes. The reason for the crash could be a software 
bug or a cyber-attack, including a zero-day attack prompted 
by unknown vulnerabilities. In either case, since the 
hardware timer interrupt continues working regardless of the 
state of Normal OS, LiSTEETM TA is always periodically 
called and can detect a failure of Normal OS. At the next 
level, it is desirable to detect the failure as soon as possible. 
Detection time depends on how frequently LiSTEETM TA 
checks the status of Normal OS. Since the execution time of 
LiSTEETM TA and context switching by LiSTEETM Monitor 
is very short, LiSTEETM Recovery can detect the crash of 
Normal OS very quickly. Some attackers may continue to 

Figure 6. Flowchart of access violation handling. 
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attack just after rebooting the system. One possible 
approach to a countermeasure for the attack is to let 
LiSTEETM TA have a minimum function like the “safe 
mode”, but we have not implemented that. 

2) Attack Prevention: The proposed system provides 
two levels of attack prevention mechanism. The first level is 
to prevent Normal OS from illegitimate modification. When 
an attacker gains full control of Normal OS to misuse the 
vulnerability, the attacker may overwrite the code segment 
of Normal OS to directly overwrite the memory. In fact, 
many vulnerabilities (e.g., CVE-2013-4342, CVE-2013-
1969, and  CVE-2008-1673) allowing a remote attacker to 
execute arbitrary code are reported [17]. In the case of 
Linux, for example, once arbitrary code is executed with an 
administrator privilege by an attacker, it is possible for the 
attacker to overwrite an arbitrary area of code segment 
through /dev/mem, resulting in system crash or misbehavior. 
Although overwriting the code segment in memory is 
generally difficult, it is relatively easy in the case of end-
point devices since the hardware configuration is fixed. As a 
result, the system may go down. However, since LiSTEETM 
Monitor sets the access control of the memory region for the 
code segment of Normal OS as read-only, and its 
configuration can be changed only from the secure world, it 
is impossible for Normal OS to overwrite the code segment 
of Normal OS. An advantage is that the protection does not 
cause any side effects. Since a data segment is used to store 
the state of the program, Normal OS updates the content of 
the data segment frequently during its execution. In contrast 
to the data segment, since a code segment is used to store 
program code, it is not expected to update its content after 
booting the system. In particular because devices such as 
smart meters or concentrators are not expected to change 
their function after being deployed, the dynamic update 
function is not required. Thus, this protection mechanism 
can protect Normal OS from illegitimate modification 
without side effects. Moreover, the feature of read-only 
memory is vey useful for the data, whose value is only 
changed by LiSTEETM TA and to which Normal OS only 
refers. The typical application is a secure clock. In a legacy 
system, it is very difficult to provide a secure clock on an 
operating system without network connectivity or dedicated 
hardware if illegitimate modification of the operating 
system is premised. However, LiSTEETM TA can provide a 
local secure clock function by software. Since LiSTEETM 
TA is executed periodically and it knows the frequency of 
the execution, it is possible for LiSTEETM TA to update a 
counter value written in a read-only memory in a certain 
amout of time periodically. Because the counter value is 
read-only from Normal OS, Normal OS cannot revert the 
counter value. The second level is to protect LiSTEETM 
Monitor and LiSTEETM TA from illegitimate modification 
and suspension. Since the first level of protection is 
effective only for a code segment of Normal OS, an attack 

that overwrites a data segement cannot be prevented. Thus, 
there are still possibilities that control of Normal OS is 
gained by an attacker. Even in such cases, thanks to TZASC, 
since Normal OS is prohibited from overwriting the content 
of memory where LiSTEETM TA and LiSTEETM Monitor 
are allocated, illegitimate modification is prevented. Since 
communication interface between Normal OS and 
LiSTEETM TA is limited, it is impossible to compromise 
LiSTEETM TA by an attack. Moreover, since the interrupt 
configuration register is accessible only from the secure 
world, there is no way for Normal OS to stop the timer 
interrupt. Furthermore, LiSTEETM provides a mechanism to 
protect against shutdown attack. Since it is impossible to 
prevent Normal OS from executing a shutdown procedure 
with a priviledged instruction in the non-secure world, when 
a process running in the non-secure world tries to shutdown 
the system, LiSTEETM TA can detect it and discard the 
shutdown request. Since end-point devices usually keep 
working all the time, devices could be implemeted without 
having a shutdown or reboot function. However, it is 
necessary to have a shutdown function in some cases. For 
example, the system may need to reboot when updating 
firmware. Another example is that a service enginner may 
need to reboot the system when inspecting the status of the 
end-point devices for maintanance purposes. Although it has 
not been implemented, it is possible to endow LiSTEETM 
TA with a function to determine whether it should shutdown 
or not based on the status of the system. For example, when 
LiSTEETM TA detects an access to the memory region 
mapped to the registers corresponding to power 
management and determines that the system is under a 
particular status, such as a maintanance mode, it may allow 
executing a shutdown procedure. Similarly, when 
LiSTEETM TA detects the access, it sends a head-end 
system a message to inquire whether the shutdown request 
is accepted or not by using the message notification function. 
Based on a response to the inquiry, it can determine  
whether or not a shutdown procedure can be executed 
without interference of Normal OS. 

3) System Reliability: In a legacy system, one single bug 
could affect the entire system, causing a critical failiure. 
Ideally, from a defensive viewpoint, the entire system 
including the operating system should be bug-free to 
achieve high availability. However, it is impracticable to 
build a complicated system without bugs. Linux 3.6.1 
consists of over 15 million lines of code and many new bugs 
that cause critical crash are reported frequently (e.g., CVE-
2013-4563, CVE-2013-4387, and CVE-2012-2127) even 
though it is carefully reviewed by many professionals [17]. 
Thus, the smaller the critical component that has to be 
robust within a system, the better. In the case of LiSTEETM 
Recovery, the critical components correspond to LiSTEETM 
TA and LiSTEETM Monitor. In contrast to Linux, the code 
size of LiSTEETM Monitor and LiSTEETM TA is relatively 
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small. The volume of source code for LiSTEETM Monitor is 
about 700 lines and its code and data size are 2.1 KB and 
1.6 KB, respectively. Similarly, the volume of source code 
of LiSTEETM TA is about 41200 lines and its code and data 
size are 1.09 MB. Compared to the volume of source code 
of Linux, the risk of LiSTEETM Monitor and LiSTEETM TA 
including bugs is small. 

4) Response to Failure: The Notification module in 
LiSTEETM TA sends a message to the head-end system just 
before rebooting the system. The message, which notifies 
that particular devices are about to reboot, is sometimes 
useful information for administrators. For example, if 
messages are sent by devices having a particular software 
version number, the reboot could be caused by an attack 
aimed at a vulnerability specific to the software. If messages 
are sent by devices located in one particular network, the 
reboot could be caused by a network worm  distributed in 
that specific network. Although LiSTEETM Recovery cannot 
prevent an attack in advance, the notification feature can 
help the administrator investigate the reason for the failure 
during or after the incident. For example, it is impossible for 
LiSTEETM Recovery to prevent an attacker from 
compromising Normal OS and causing reboot frequently. 
However, the administrator can notice that frequent reboot 
occurs to the device through network since Notification 
module sends a message each time when rebooting. The 
attackers may try to block sending of the message to 
circumvent the notification. However, Normal OS cannot 
interfere with the Notification module sending a message to 
the head-end server since the Notification module is 
executed inside LiSTEETM TA. Moreover, since LiSTEETM 
TA is processed in an environment isolated from Normal 
OS, security processes, such as encrypting a message, are 
easy to implement in LiSTEETM TA. Therefore, once an 
encryption key and an encryption process are implemented 
in LiSTEETM, it is possible to keep them secret from Normal 
OS. In the next step, it is possible to include a firmware 
update feature to implement functions receiving data from 

the head-end system and writing the data into the file system 
to extend the function of the Notification module. In 
combination with the “safe mode” described above, this 
function is effective against a continuous attack that occurs 
just after the system recovers. 

B. Performance Analysis 
As well as the implementation environment, we used 

Motherboard Express uATX that contains the ARM Cortex-
A9x4 processor running at 400 MHz as an experimental 
environment. Level 1 instruction cache, level 1 data cache, 
and level 2 cache are 32 KB, 32 KB, and 512 KB, 
respectively. It contains 1 GB DRAM as the main memory 
and we assigned the same memory map as that described in 
Section V. 

First, we measured the execution time of LiSTEETM TA 
during execution of Normal OS; to be precise, the time 
period from the beginning of the hardware interrupt handler 
in LiSTEETM Monitor through to the execution of the SMC 
instruction. Without calling the Notification module, the 
average time is 1.7 microseconds over 10,000 trials. 
However, if the Notification module is called, the average 
time is 4.1 milliseconds over 10,000 trials. Note that the 
Notification module is called when rebooting the system, 
which rarely occurs. Thus, this performance overhead poses 
no problem. 

Next, we measured the performance degradation of 
Normal OS. Since the execution of Normal OS is suspended 
during execution of LiSTEETM TA, the performance of 
Normal OS degrades in any case. The total of Normal OS 
suspension time depends on the frequency of calling 
LiSTEETM TA. There is a tradeoff between the performance 
degradation of Normal OS and the delay in detecting the 
crash of Normal OS. When the frequency is increased, the 
performance degradation of Normal OS is also increased. On 
the other hand, when the frequency is decreased, the delay 
for detecting the crash of Normal OS becomes larger. Since a 
general application is assumed to be executed on Normal OS, 
we used dhrystone as a benchmark program to measure the 
performance degradation [18].  

Fig. 7 shows the result of the experiment. The bar graph 

Figure 7. Result of performance degradation. Figure 8. Result of performance degradation with message transmission. 
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shows the dhrystone score and the line graph shows the 
performance degradation. The higher the score, the better the 
performance is. Each bar shows the timer interval of calling 
LiSTEETM TA and its value is default (never called), 5 
seconds, 3 seconds, 1 second, 0.2 seconds and 0.04 seconds 
respectively. When the timer interval was set to 5 seconds, 
the performance degradation was suppressed within 0.001 %. 
Even if the interval was set to 0.04 seconds, the performance 
degradation was less than 0.2 %. The result shows that 
although there is a tradeoff between performance 
degradation of Normal OS and detection rate logically, the 
performance degradation can be ignored in practice even if 
the frequency of calling LiSTEETM TA is increased. Fig. 8 
shows another result of the experiment. In the case of Fig. 7, 
it is assumed that the Notification module sends a head-end 
system a message only when Normal OS stops working and 
the system is rebooting. Therefore, the result does not 
include processing time of the Notification module. On the 
other hand, Fig. 8 assumes that the Notification module 
sends a head-end system a 32 byte message whenever 
LiSTEETM TA is executed even if Normal OS is working 
correctly. This experiment assumes that Notification module 
sends the head-end system a message periodically even if 
Normal OS keeps working so that an administrator can 
monitor the status of each device. Although the result of the 
experiment shows that the performance slightly degrades 
compared with the experiment without message transmission, 
it can still be ignored in practice. Note that the score was 
better for the experiment with message transmission than for 
the experiment without message transmission when the 
interval was set to 5 seconds, 3 seconds and 1 second. When 
the timer interval is long, the execution times of LiSTEETM 
TA and LiSTEETM Monitor are negligible compared with the 
execution time of Normal OS since the task is too small to 
measure accurately. Thus, this can be regarded as an error. 

C. Cost Analysis 
1) Development Cost: LiSTEETM Recovery does not 

require any modification to Linux in order to run it as 
Normal OS on LiSTEETM Monitor. Thus, in terms of 
application developer’s cost, since developers can reuse all 
existing programs including libraries, middleware, and 
applications running on Linux, no additional develpment 
cost is necessary. In terms of device developper’s cost, 
configuration, such as network address setting of 
Notification module, and memory address setting and 
security permission setting of TZASC is necessary to 
integrate LiSTEETM Recovery into a device. In addition to 
the development cost, verification cost in order to check that 
the configuration is correct is necessary. For embedded 
devices in Smart Grid, there are cases where the 
performance requirement is specified. For example, in the 
case of a smart meter, it is reported that an acceptable delay 
in responding to a management server is in the range of 50 
ms to 300 ms under a specific condition [19]. As described 
in the performance analysis, since performance degradation 
is insignificant when introducing our proposed method, the 

cases requiring performance tuning are limited. Therefore, 
the development cost can be controlled. 

2) Production Cost: LiSTEETM Recovery is software-
based technology and no additional hardware except  a 
TrustZone-capable ARM processor and an address space 
controller is required. TrustZone-capable processors are 
widely available. In fact, all ARM Cortex A series 
processors support TrustZone. Therefore, the additional cost 
is mitigated. As a result, development cost per device can be 
minimized.  

3) Maintenance Cost: It is assumed that a tremendous 
number of devices will be deployed in the field for smart 
grids. In the case of a cyber-attack, since many devices 
could be a target of the attack and the attack could be done 
in a very short period of time through the network, it is 
impracticable in terms of both cost and time for field service 
engineers to physically visit each site and reboot them. The 
autorecovery feature of LiSTEETM Recovery mitigates this 
problem. Moreover, the report is sent to the head-end 
system once the device reboots. This function contributes to 
reduction of the cost of troubleshooting. Thus, LiSTEETM 
Recovery provides an opportunity to reduce maintainance 
cost compared with legacy systems. 

VII. RELATED WORK 
To recover from an operating system failure, various 

approaches have been proposed. 
The simplest approach is that of including the recovery 

mechanism within the operating system. One method is to 
use Non-maskable Interrupt (NMI) as a watchdog timer [20]. 
NMI is a processor interrupt that cannot be ignored. When 
NMI is generated, the NMI handler implemented within the 
operating system is called regardless of the status of the 
operating system. Since it is not necessary to save and 
restore registers to execute a process implemented in NMI 
handler, performance overhead is mitigated. Thus, NMI can 
be used as a surveillance and recovery process to implement 
the NMI handler so that it detects whether the operating 
system hangs or not. In [21], Dolev et al. propose self-
stabilizing operating system by utilizing NMI. Although 
NMI is easy to use as a watchdog timer because it has 
already been implemented in Linux, it is vulnerable because 
the NMI handler could be invalidated to overwrite the code 
segment of the operating system. Furthermore, since 
implementation of a rich application in an interrupt handler, 
such as a network communication function or a data 
encryption function, is not anticipated, it is difficult to realize 
the notification function.  

Another approach to recover from the failure is to check 
the status of the operating system from outside using 
virtualization technology. It is easy to realize an isolation 
environment by utilizing virtualization technology. Karfinkel 
developed the trusted virtual machine monitor (TVMM), on 
which a general-purpose platform and a special-purpose 
platform executing security-sensitive processes run 
separately and concurrently [22]. The libvirt project develops 
a virtualization abstraction layer including a virtual hardware 
watchdog device [23]. To cooperate with the watchdog 
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daemon installed in a guest OS, a virtual machine monitor 
can notice that the daemon is no longer working when 
periodically trying to communicate with it. Although 
virtualization technology is widely deployed in PC-based 
systems, it is difficult to implement it in embedded devices 
as fewer hardware devices support it. Moreover, since the 
volume of source code for a virtual machine monitor (VMM) 
tends to become large, the risk of VMM including bugs also 
becomes large. To overcome the restriction, Kanda 
developed SPUMONE, which a lightweight virtual machine 
monitor designed to work on embedded processors [24]. It 
provides a function to reboot the guest OS. However, 
SPUMONE does not provide a memory protection 
mechanism between the virtual machine monitor and the 
guest OS (Normal OS). Thus, it is vulnerable to an attack on 
the virtual machine monitor from the guest OS. 

To make a secure environment by utilizing TrustZone, 
various systems have been proposed. 

In [25], Yan-ling et al. propose a secure embedded 
system environment with multi policy access control 
mechanism and a secure reinforcement method based on 
TrustZone. It assumes various applications and services runs 
on it. In [26], Sangorrin et al. propose a software architecture 
on which real-time operating system and a general-purpose 
operating system are executed concurrently on a single ARM 
processor with low overhead and reliability by utilizing 
TrustZone. Baseline common functions described in Section 
IV basically uses the same technique in the existing 
approaches. Our contribution is clarifying a total architecture 
and functions which must work in a secure environment with 
a full implementation to enable end-point devices 
automatically to recover from an error status in a Smart Grid. 

VIII. CONCLUSION AND FUTURE WORK 
LiSTEETM Recovery works effectively to resist critical 

bugs or attacks including zero-day attacks, that could 
potentially cause the system to crash, in order to keep 
availability of end-point devices. The performance 
evaluation has been presented to show that the degradation 
of the existing system is sufficiently small. Considering 
commercialization, we have shown that the development 
cost and production cost can be minimized. Moreover, 
LiSTEETM Recovery can save maintenance cost. 

Future work includes resistance to sophisticated attacks. 
In one possible attack, an attacker illegitimately modifies the 
shared memory area to fake as if Normal OS works correctly 
while almost all Normal OS functions actually stop. As a 
result, LiSTEETM TA misunderstands that Normal OS works 
correctly. One approach to solve this attack is to implement 
LiSTEETM TA so that it itself checks the status of Normal 
OS without the support of an application program running on 
Normal OS. For example, whenever Normal OS is running, 
it must update a certain data area, such as page tables or 
process tables. Therefore, in monitoring the data area, 
LiSTEETM TA can determine whether Normal OS is working 
or has crashed. An advantage of LiSTEETM is that it is 
impossible for an attacker to reverse-engineer and to tamper 
with an algorithm of LiSTEETM TA from Normal OS 
because of the memory protection mechanism. Thus, an 

attacker cannot know how to compromise Normal OS in 
order to produce misleading information. We have not 
implemented this though. Another possible attack involves 
damaging the file system locating Normal OS. Network boot 
can be a solution where LiSTEETM TA downloads a small 
rescue program from the head-end system when booting fails. 
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