International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

716

Conceptual Modeling Patterns of Business Processes

Remigijus Gustas

Department of Information Systems
Karlstad University
Karlstad, Sweden
Remigijus.Gustas@kau.se

Abstract — System modeling patterns are similar to workflow
patterns, which were established with the purpose fo
delineating the requirements that arise during busiess process
modeling on a recurring basis. Traditionally, only dynamic
aspects are used for the specification of modelingatterns
leaving aside the static aspects of business proses. The paper
presents the conceptual modeling patterns where iagrity of
totally different aspects can be analyzed. The adwméage of
such a modeling approach is that it enables visuaktion and
integration of different modeling dimensions of inbrmation
system specifications using a single diagram. Mangraphical
representations do not allow such visualization anéhtegration
of static and dynamic aspects. We also represent aphically
interpretation of the conversation for action schema by
constructs of our semantically integrated conceptudamodeling
method.

Keywords-Modeling patterns, service-oriented constructs,
static and dynamic aspects; sequence, iteration, synchronization,
selection and enclosing patterns, universal interaction pattern.

l. INTRODUCTION

Analysis patterns are groups of concepts that septea
common construction in business modeling [7]. Tlaeg
similar to workflow patterns that were originallgtablished

with the aim to define and visualize the fundamlenta

requirements that arise during business procesglingdn
a recurring basis [19]. Workflow patterns are ulsudéfined

by using Business Process Modeling Notation, Udifie
Modeling Language (UML) Activity Diagram [16], or a

Colored Petri-Net model [15]. All these notatiome able to
express process behavior but do not take into atcine
static aspects of business processes. They doxptitity

show what happens with the objects, which repredats,
when some activity takes place. Integration ofistand
dynamic aspects is important for the control of aetic
integrity among interactive, behavioral and strrataspects
of a system [9]. Semantic integrity is criticalrtmintain the
holistic representation of system specifications. cepture

the holistic structure of the problem domain, inecessary business strategy [17]. From a business management

Prima Gustiené

Department of Information Systems
Karlstad University
Karlstad, Sweden
Prima.Gustiene@kau.se

for two major reasons. Firstly, they can be used fo
demonstration of the interplay among
constructs that are used in system analysis andgrdes
process. Secondly, patterns are important for taduation

of the expressive power of semantic modeling laggsa
[18]. Comprehension and visual recognition of theaterns
is necessary for building more specific patternatams and

composing them in different ways. Each modelingguat
language can be formally described using a setarfefing

constructs and semantic rules.

Service-oriented modeling method [9] presentedhia t
paper is based on the ontological principles [2] tioé
concept of service [6], and on a common understandf
the general structure of service, which is notui@ficed by
any implementation decisions. The most fascinaithegn
about a service concept is that it can be applipaiéy well
to organizational as well as technical settingsnéians that
the conceptual representations of service defimepotation
independent aspects of business processes.
processes can be seen as service compositionsh \ahéc
used to specify service architecture. Service tchire can
be applied for the specification of business preegsin
terms of organizational or technical services. @sgumption
is that service-oriented representations can bearaorcated

among business experts and system designers more

effectively. Using service-oriented modeling, infation

systems can be structurally visualized as evolving

conceptualizations of service architectures.

The concept of service in the area of information
systems is mostly bound to the term of servicenbeid
architecture. According to Hagg and Cummings [12],
Service-Oriented Architecture (SOA)
architectural perspective, where service is the esam
component
methodologies. SOA represents a set of guidelimed a
design principles, such as loose coupling, encafieul,
reuse and composability [5] [22],
processes can be effectively reorganized to supitt

to understand how various components are inteelat perspective, SOA can provide the possibility tochea

Analysis patterns presented in this paper are narist
using the principles of service orientation ands/taee called
conceptual modeling patterns. These patterns gpertant

business flexibility. It enables business processese
analyzed in terms of services. Conflicting views the
concept of service is one of the obstacles to ttemgpts to

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fundamental

Business

is a software

in component-based system development

in which business

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

717

develop a new science of services [3] and new awide service loses its meaning. Service performers vecei
programs focusing on services [1]. This discipltakes a service requests and transform them into respahs¢sare
broader perspective of services as opposed to imthn sent to the service requesters. Service can baatkarzed
descriptions [20]. by an interaction loop that can be defined by a lenmrof
We use the concept of service as in the sensergtee flows in two opposite directions. This idea is egented
science. It“can be understood as an action or a set ofgraphically by an elementary service interactiasplowhich

actions that are performed for some valugl]. In the
context of enterprise modeling, it is necessanhéwe a
broader understanding and interpretation of thevicer
concept as the definition of service goes well Inelyo
activities that are realized using software apfilices. The
definition of service provided by Sheth [20] emphes a
provider - client interaction that creates and gegdt value. It

is delineated in Figure 1.

The main principle of service-oriented method isduh
on designing services as interactions among differe
enterprise actors. Service architecture can besepted by
a composition of interaction loops. Actors in itetion
loops can be seen as active elements. These ekn@mnbe
organizational or technical subsystems. Organiaatio

emphasizes a value exchange between two or motiespar subsystems can be individuals, companies, divisiomeles,
and a transformation received by a customer [3]e Thwhich denote groups of people. Technical subsystambe

concept of service facilitates a change of busidesa from
one valid and consistent state to another. In th@igpsector
it sometimes denotes organizational actions. Adogrdo
Ferrario and Guarino [6], services are not traadfer,
because they are events, not objects. The mairogeirpf
service orientation is to capture
functionality. Taking into account the nature o€ tbervice
concept, which is based on interaction betweenemifft
actors to create and capture value, a servicetedenay of
thinking could be applied for a computation-neutmahlysis
and design of business processes as well as fatiareof
conceptual modeling patterns.

This paper is organized as follows. In the nextisec

static and dynamic aspects of service interactioa a

described. Five different modelling modeling patteof an
integrated method are presented in the third sedtiothe in
the fourth section, we describe a conversation afction
schema and its interpretation in terms of a seralhti
integrated conceptual modeling method. Finally,cbading
remarks are presented. This is an extended veo$ipaper
[1], which was published in BUSTECH 2014.

I. SERVICE AS AN INTERACTION

A service cannot be defined without specifying the

interaction, the result of which creates valueh® dctors [8]
involved. Service is first of all a dynamic act dbing

something to somebody. It means that there are mo

elements necessary to construct a concept of sethi@n
just the process of ‘doing’. As there are always\s@ctors
involved in such process, it signifies that it
communication act or an
organizational or technical components. One isragskor
something and another actor provides it. The puwfubs
action always takes place in a service. It pressrib
responsibilities for the actors involved [10]. Eydausiness
process action is goal-driven and it should alwagilt in
some value to an actor. To get the result, whiavides
value on demand, four key elements are necessamyice
requester, service request, service performer amdice
response. Interrelations among these elementsraohstn
interaction loop, which is necessary to represemvise
structure. Without one of these four elements ctimecept of

is a
interaction between human

represented as software or hardware components. Any
coordination flow between actors [4] must be mdgdaby
the resulting value flow. In such a way, any enisg
system can be represented and analyzed as a set of
interacting loosely connected subsystems that feemvice

business-relevanirchitecture.

Requester Performer

Figure 1. An elementary service interaction loop

The dynamic aspect of service includes not just
interaction {==») between actors, but also the resulting
behavior among passive classes of objects whericeerv
actions are initiated. The transitions betweenipasdasses
of objects are resulting from interactions betwestive
concepts. The internal behavior or so called ohject

r%erspective defines the dynamic aspect, which |Bessed

by object transitions between various classes géatd
Concepts A, B, and C define the structural aspetctiata.
These concepts constitute pre- and post-conditiasses,
which will be explained later. In such way, servicedeling
enables integration of business process and busidas
(see Figure 1).

There are two basic events for semantic modeling of
service construct: creation and termination of otsjg9].
These two events are used for the definition of a
reclassification event, which is considered as aege
modeling construct. A creation event is denoted doy
outgoing transition arrow to a post-condition clags
termination event is represented by a transitigmeddency
directed from a pre-condition object class. Befaneobject
is terminated, it must be created. Since a futlasscmakes
no sense for a termination event, it is not inctude a

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specification of action. Pre-condition class ineanination
action can be understood as final during an olgelite

time. Reclassification of an object can be defimettrms of
a communication action that is terminating an dbije@ne
class and creating it at the same time in anoth&ssc
Sometimes, objects pass several classes, and libgrate
removed. A graphical notation of the reclassifizataction
is presented in Figure 2.

Reclassification
Construct

Pre-condition
Class

Reci-

Agent pient

Post-condition
Class

Figure 2. Graphical representation of a reclasgifin action

Fundamentally, three kinds of changes are possibl

during any transition—»). An action is either terminating
or creating an object, or it can perform termimatiand
creation at the same time. Pre-condition and pmstition
classes typically define constraints on objectdciwhestrict
the sending and receiving of communication flowsrdeen
technical or business components. A reclassifinatiction
in a computerized system can be implemented eikea
sequence of one or more object creation and tetimima

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

718

This notation corresponds to a classical way for
representing associations between two entities. [CB]e
significant difference of this notation in serviogented
modeling method [9] from the traditional approackethat
the association ends are nameless. Dependencigeeee
used to represent association hames or mappingee et
two sets of objects in two opposite directions. Amyo
concepts (in the same way as any two actors) cdimbe
by the attribute, inheritance or composition degerdes [9].

I1l. CONCEPTUALMODELING PATTERNS

Constructs based on service orientation were usethé
design of five modeling patterns. A single diagréype
helps to focus on modeling integration of statid dgnamic
aspects. Various combinations of dependencies ldeeta
express the main workflow control patterns such
sequence, iteration, selection, synchronizationearaiosing
of transaction. Ignoring the static aspects of datahe

attern modeling research creates fundamentakudifi@s.
It just dynamic aspects are taken into considematioen the
quantity of patterns increases and their usagebfisiness
process modeling becomes more complex.
Comprehensibility and visual recognition of the
fundamental patterns is necessary in constructiragem
specific pattern variations by composing them imiows
ways.

Similar attributes are inherited by more specifiasses

as

operations. Request and response flows, togethén wiaccording to the inheritance link=®). Inheritance arrow

created and terminated object classes, are -cruaal
understand the semantic aspects of service ini@nactA

pre-condition object class and the input flow skoble

sufficient for determining a post-condition objetdss.

denotes a specialization and generalization. Itdmese is
always pointing out to a more general concept. Ha t
diagram in Figure 4, it is possible to see two $fagmes
Reservation[Bill Sent] and Reservation[Paid], whiahe

The attribute dependencies are stemming from thenaracterized by two different sets of dependencies

traditional data models. Semantics of static depeaigs in
object-oriented approaches are defined by mulits
They represent a minimum and maximum number ofabbje
in one class that can be associated to objectmdather
class. We use only mandatory static dependencies &t
least one side of association. A graphical notatbrthe
attribute dependencies and their cardinalitiee@esented
in Figure 3.

[AF—+58] [a {5]

B is a mandatory single-valued B is a mandatory multi-valued
attribute of concept A attribute of concept A

5 A 5]

Concept A is a composition of
exactly one part B

Concept A is a composition of
one or more parts of B

[A F—> B |

A is a specialisation of
concept B

A B is a condition

or state of concept A

Figure 3. Graphical notation of the attribute dejeties

We may distinguish between complete or incomplste a
well as total and partial inheritance situation4][2ll these
cases can be expressed by using the exclusiveafipation
and mutual inheritance link. Mutual inheritance elegency
(«==p) can be used for representing classes that are
viewed as synonyms. It is defined as follows:

A «==p-B if and only if A~B and B—»A.

Classification dependency-—) specifies objects or
subsystems as the instances of concepts. Classifices
often referred to as instantiation, which is reeersf
classification. It should be noted that -classifimat
dependency in the object-oriented approaches isoee m
restricted relation. It can be only defined betweaarobject
and a class. A class cannot play a role of metaebhjvhich
is instantiated in another class.

Any class A can be viewed as an exclusive
generalization of concepts B and C. A concept can b
specialized by using a notion of state. For insgtaRayment
is specialized byaymentConfirmed as a result of confirm
payment action. Various statesRéservatiorconcept such
asBill SentandPaid are also represented in Figure 4.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

Reservation

Customer |

T e ————
4 =4

Travel
Agency

y
Reservation
Customer (1‘" .“‘:
)
\
\\
N
755 o
g -

Reservation

Payment

Figure 4. Example of static and dynamic dependsncie

This example shows an interaction flows among threservice interaction loop. A lifecycle of an objéstypically
actors: Travel Agency, Customer and Bank. Intevacti represented by an initial, intermediate and finigsgs. A
dependency (A==»B) indicates that one actor (A) dependscreation event corresponds to a starting point ramaoval
on another actor (B). Rectangles with shaded backgt action — to the end point in an object’s lifecycldne most
are used for denotation of resource flows and lightritical issue in the modeling of the interacticetalls is the
rectangles indicate information flows. Three comioation semantic integrity of static and dynamic aspedtss Inot
actions Send Bil] Pay, and Transfer Money which are sufficient to represent what type of objects ameated and
triggered in a sequence, are used to express thiedss terminated. Service-oriented models must clearnhyregent
process of paymenPRay action can be executed only if the attributes that must be either removed or presemezhy
Send Bill action has been completed. It uses &creation, termination and reclassification actidrhis is

ReservatiofBill Senl object and produces a crucial to ensure the consistency of integrity ¢raists.

ReservatiofPaid] object. WhenCustomerreceives the hill,
he initiates thePay action, which creates a new object
ReservatiofPaid] and links it to the specifiayment A

the pre-condition class Payment by the inheritdimée the ~ Figure 5.
initial object is not terminated. Removal of obgat more
general classes with their own attributes shoutliod they

are not preserved by the created objects. Forriostathe
missing inheritance arrow from the post-conditiciass Requester
would justify termination of a post-condition clasbject.

Note that a Reservation object is required to leated in
advance by another service, which is not presemtetis
example.

Service architecture can be composed of various
interaction loops. The semantics of such compasii®
defined by using two or more constructs of the dastion
(Figure 2). The composition of these three types of

constructs can be used for the conceptualizationa of This pattern is used for representation the suimmess

Figure 5. Sequence pattern

A. Sequence pattern

ReservatiofPaid| consists of the compositional object of A pattern of sequence is a special case of an elamye
PaymentTransfer Moneyaction can be executed only if the interaction loop, which was presented in Figure Ifl.
process of payment has been confirmed. SO, ac@min ConS|S-tS of a request anq res_ponse. A service SEQL@teS
this example, every action creates new object lthis are @n object of type B, which in the second commuiocat
associated with the post-condition object classic&ithe —action is reclassified to the object of type C. Shawo
post-condition class of Payment Confirmed is linkeith ~ actions are performed in a sequence and are repeesa

Performer

719

continuous or finite lifecycle for one or more otiein the events. For example, customer may order the gogds b

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014,

creating a purchase order. If the goods are avajlad
vendor accepts the purchase order. The examplgoksce
pattern is represented in Figure 6.

Vendor
Customer

Purchase
Request

Accepted --7
___________ Purchase Order
. F’u(;Cgﬁse | Purchase
Invoice rder Y Order Item

Figure 6. Example of a sequence pattern

T
’
’

Accept
Order

http://www.iariajournals.org/intelligent_systems/

720

be superimposed into the single diagram. In thig, wee
can see what kind of alternative actions are abigléo the
actors involved.

C. Synchronization pattern

A synchronization pattern is used when some aig#vit
must be performed concurrently. This pattern combitwo
parallel paths of activities. Both paths must benpketed
before the next process can take place. The primary
interaction loop is composed of a more specifiplanm a
lower level of granularity. In this case, a servigtraction
loop on the lower layer of decomposition is viewasl an
underlying interaction loop. The execution of thelerlying

A newly created purchase order is defined by thred0OP must be synchronized with the primary integact

properties: Invoice, a set of Purchase Order Itemd
Purchase Request, which are necessary for deliyeha
order. It is not specified what will happen afteat. Either

the customer may withdraw the order, or it must be

delivered.

B. Iteration pattern

Iteration pattern is a special case of a sequeatterp. It
consists of one creation action and one removabract he
first action creates an object, which is subsedyent
removed. The iteration pattern is representedgurei 7.

Requester Performer

Figure 7. Iteration pattern

This pattern can be used for the representati@vefits
that are repeated a number of times. For examp&pmer
may order goods, which are not available. In tlaisec the
vendor rejects the purchase order by removing omfr
existence. The message about the rejected purchadseis
sent to the customer. The example of iterationepatis

represented in Figure 8.
,@ T

_———— Purchase Order |- ---
Customer
Rejected
Purchase Order

Purchase
Figure 8. Example of iteration pattern

Vendor
Request

As we can see, when the Purchase Request is remtneed
Customer may initiate a new the Purchase Ordenagais
interaction loop can be repeated a number of timés
diagrams that are represented in Figure 6 and &i§uwan

loop. The synchronization pattern is presentedgure 9.

Performer
Requester

Performer

.
Requester |
~

~

~ -
~ -
= Response2

Figure 9. Synchronization pattern

This pattern illustrates that the action of ReqlLieseates
a compositional object B, which consist of partsADleast
one part D must be created. Then object B is reified to
C, object D must be also reclassified to E and thdr. If a
compositional object is created, then the partscezated as
well. If a compositional object is removed, then pharts are
terminated at the same time. That is the reason thhy
action is propagated from a whole to a part acogrth the
rule of class composition. The propagation of adigs a
useful modeling quality. It allows a natural modgliof
concurrency. Synchronization pattern is similac@acurrent
activities (fork and merge of control) in an advidiagram
[16].

The graphical example of synchronization is illatd
in Figure 10. In this example, the object reclasatfon
effects represent the important semantic detailsaof
unambiguous scenario in which three interactiorptoare
combined. Create Reservation action propagatearns pn
the lower level of abstraction. Termination dlotel
Reservation Requestrequires termination of Hotel
RoonjDesirablg. Creation ofHotel Reservatiomequires

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

721

» Room | = Request \ _ _ _ _____
-7 Requirements - Room J —~~ T TTTTTTTTe==- Pl Hotel

Reserva-
tion System
Customer ,
Hotel Reservation //
Request L’
_4 Reservation (4~
- Ld
Customer
Hotel
Reservation
Available Hotel
- == Rooms -
- Rooms ~k.
e < -
7 ~
Hotel
Cust Offer Hotel Room HoteIRoom Customer Reserva-
ustomer e e X {'Logged-in)
(" Available Reserved | |.Loggedin, tion System
‘‘‘‘‘‘ - ”
________________ Select e ________——"
Room

Request to
Authorize

-

Customer
Customer

Hotel
Reserva-
____________________ 1 tion System

~ > Room Guest |
Data | T T-=~--_

Enter
Customer
Data

Figure 10. Example of a synchronization pattern

creation of one or morklotel RoorfReserveld According

to the presented diagram, the underlying interactamp

action Select Roomcan be reiterated more than once,

becauseHotel Reservatiorns defined as the composition of action cannot be triggered prior to the Offer Ro@wison. It

one or moréHotel RoorfiReservet can be performed several times for eadHotel
The underlying interaction loop describes a Custtsne RoonfAvailablg. Hotel Reservationis a compositional

response to the Hotel Reservation System’s requiest. object. When it is created, such parts &botel

customer expects to receive a Reservation flow ftom RooniReservepand CustomeflLogged-ify must be created

Hotel Reservation System, it is necessary for tonget a as well. The first underlying loop is necessary défiering

reply in the underlying loop from the technical qmnent. available rooms and selecting of a desirable roGreation

The request and reply of the second underlying lsop of Customejlogged-i) object requires to initiate Request to

specified as follows: Authorize and Enter Customer Data actions that are
If Offer Rooms (Hotel Reservation System» Customer), represented by the second underlying loop. o
then Select Room(Customer=» Hotel Reservation This modeling pattern is similar to a synchronizati
System). which can be defined by fork and merge of contnoUML

The actions of the underlying loop are synchronizégti ~ activity diagram.
the primary interaction loop. According to the mEneted
description, Create Reservation is a reclassificatiction,
which is composed of the Offer Rooms and Selectnfi®oo
actions on the lower granularity level. The SelBdom

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

D. Selection pattern

The Selection pattern can be expressed using
composition of two different sequences between sime
two actors. It represents two alternative outcornésa
service request that can be selected by serviderpesr.
Two possible ways of replying by performer are nailju
exclusive. Only one type of response is expected $grvice
requester. If the first alternative is rejectedenththe
performer is trying to invoke the second altermatifhe
selection pattern was previously published andaih be
found in [11]. It is similar to branches in UML [[L6The
selection pattern is represented graphically iufed.1.

Requester Performer

of selection pattern is represented in Figure 12.

722

The selection pattern in the presented examplebean
explained as follows. Thé&light Reservation Requess
dcreated and then it is reclassified ifflight Reservatiorin
the Create Reservatioraction from theTravel Agent If
Travel Agentcannot create &light Reservationthen the
alternative action of Decline Request is takingcpldn this
case, theFlight Reservation Request terminated and a
flow of Rejected Request is sent to tleistomer This
action allows th&Custometto reiterate the search again.

This pattern reminds us alternatives in UML, whéie
typically described as branches in activity diagram

E. Enclosing pattern

An enclosing patternis defined by a primary and a
secondary interaction loop between requester arfdrpeer.
In carrying out the work, a performer may play toh&e of
requester in the secondary interaction loop byiaitiitg
further interactions. In this way, a network of $ety
coupled actors with various roles comes into idtsrpo
fulfill the original service request. Organizatibreystems
may be composed of several interaction loops, wiaih
delegated to more specific components. Enclositigpais
similar to the enclosing of a transaction [4]. Ancksing
pattern is represented graphically in Figure 13.

A + D
Figure 11. Selection pattern i
. ——— R NN R 2 o
Response 1 and Response 2 are two exclusive adtiions Pt " 7 S~
a service performer. If Response 1 is initiate@ntla pre- / Y
condition class object B is removed and a post-itmmd [" >] \' / I
class C is created. If Response 1 has failed, Remponse 2 AN Pertormor -
is triggered, which reclassifies object B to D. Theample o “'“' Reester [~ "'
[

Request ——
_ - W Flight Request ==~ Flight J =~ 77" ===<__ -
L ~<
.
,

Flight
Reservation
Request

Travel
Agent

Customer

> K
\ \
\ \

\ \
\ N
\ AN
\ ~ ———

\ ~+ Reservation -
\
Rejected
Request

~

Decline
Request

Figure 12. Example of a selection pattern

F

Figure 13. Enclosing pattern

The primary interaction loop consists of Requestdl a
Responsel actions. For the creation of object Bthim
primary loop, it is necessary to create its propé&tin the
secondary loop. The reclassification of object Etrequires
the removal of E and creation of F. So, the enctpsoop
cannot be completed if the secondary loop is nwlified.
The example of the enclosing pattern is representedyure
14.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

723

Hotel Room
Hotel Reservation H < i IS Reserved b
_ Hotel » Reservation Request _——
4 -P| Dpata [~ - T =
- Counter b~ Data Room SQ .
Reservation Staff |
Data L N
\ Requested Hote!
Room Reception
System
7
~ - 4
~~~~~ 455
£
+ Room Guest

Hotel
Reception
System

T
1
/
/

/
4

Room { Returned } Vol
g (!

Hotel

rd
Staff

@

Room Guest

Figure 14. Two examples of enclosing pattern

If a Room Guestvants toCheck-in he needs t®resent  which is initiated by alotel Counter Staffcorresponds to a
Reservatiorto theHotel Counter Stafflf the hotel room is computerized process. It is necessary for findimgl a
ready, theHotel Reception Systeassigns this room to the releasing an assigned room.
hotel guest and produces the key, which is givehldtel
Counter Staff The Assign Rooraction is executed by the
Hotel Reception Systenwhich is playing the role of
software component. Théheck-inaction is performed by
Hotel Counter Staff which is playing the role of the Interaction dependencies are extensively used @ th
organizational component. There is one enclosirdy@me context of enterprise engineering methods [4]. €hes
enclosed interaction loop, which is representefiigure 14. methods are rooted in the interaction pattern amalgnd
The primary interaction loop between Room Guest andhe philosophy of language. The underlying idea of
Hotel Counter Staff encloses the secondary intemadbop  interaction pattern analysis can be explained byvedi-
between the Hotel Counter Staff and the Hotel Rismep known conversation for action schema [23]. The paepfor
System. So, théssign Roonaction is considered as a part introducing this schema was initially motivated the idea
of theCheck-inaction. of creating computer-based tools for conducting

The business process, which is represented ind iy ~ conversations. Our intention is to apply the intéom
consists of four interaction loops. The first primmboop is an ~ dependencies as they are defined by the semanticall
organizational process. The secondary loop correlpto a  integrated conceptual modeling approach [9] in coition
computerized  process, which creates alotel  with conventional semantic relations, which areduisethe
RoonjAssignefiobject, and connects it with tfitoom Guest area of system analysis and design. Interactiops@an be
and Key[Borrowed objects. The second primary loop is expressed by the interplay of coordination or potidm
necessary for returning a key and checking-out @stgut  events, which appear to occur in a particular patt&his
corresponds to an organizational process. The setlmop, pattern is represented in Figure 15.

IV. THE EXTENDED UNIVERSALPATTERN OF
INTERACTION

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



R: Request P: Promise

R: Reject
P:Withdraw

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

724

R:Decline

R:Accept

Figure 15. Conversation for action schema (Winogtddores, 1986)

The idea behind a conversation for action schemabea
explained as turn-taking. Any service interacti@tt@rn can
be characterized by the same four types of maimteye
which compose a basic transaction pattern:

a) Request,

b) Promise,

c¢) Perform and

d) Accept.
The Requester (R) initiates a request (R:Requettreand
then waits for a particular promise (P:Promise)qursst,
promise and acceptance are typical coordinatiomragt
which are triggered by the corresponding types asid
events. Coordination events are always related oimes
specific production event, which is
P:Perform. Both coordination and production evesats be

respond by rejecting the request. For example, hibtel
reservation system may reject a request of a custom
because it is simply incorrect or incomplete. Thezjdester
may also express disappointment in the result &otine it.
Decline is represented by the termination of Reantt the
creation of a Declined Result object. For instartiee,hotel
guest may decline the assigned hotel room, whicls wa
assigned by the provide hotel room action. In taise, the
basic transaction pattern can be complemented hy tw
dissent patterns. This extended schema is knowthe&s
standard pattern [4].

In practice, it is also common that either requeste
performer is willing to completely revoke some etger-or

represented byexample, a requester may withdraw his own requast,

performer may withdraw his promise, a performer may

combined together into scenarios, which represemt acancel his own stated result or a requester magetdrs

expected sequence of interactions between requastbr
performer. We will show how creation, terminatiom o
reclassification constructs of the semanticallyegnated
conceptual modeling method can be used to defiaenéw
facts, which result from the main types of eventsthe
basic transaction pattern.

Various interaction alternatives between two actas
also be defined by interaction dependencies, wimay
produce different, similar or equivalent behavidwafiects.
A provider may experience difficulties in satisfgina
request. Instead of promising, the service providety

own acceptance. These four cancellation patterns ezl
to partial or complete rollback of a transactiome$e four
options, which are known as cancellation pattesheuld be
integrated into a universal interaction patternp@vider
may also create new Offer on a basis of createdu&sq
which can transformed into a counter request aait be
accepted by requester. All these possible outcoares
represented in the extended universal pattern, hwisc
shown in Figure 16.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

725

Promise

Performer

Stated Result

| |Declined Result

Figure 16. The extended universal interaction patte

The presented diagram includes the standard tramsac
pattern and four cancellation patterns, which waralysed
by Dietz [4]. It also includes an offer and countequest
actions, which are taken from the conversation dation
schema [23]. Every cancellation action can be peréal if
the corresponding fact exists. For instance, théhdvaw
Request action can be triggered, if a request bhjes
created by the Request action. Request cancellatient

may occur when the customer finds a better or airelmom

in another hotel. A Withdraw Promise action mayetakace

if a Promise for some reason cannot be fulfilled by
Performer. For instance, a Hotel Room was damaged a
consequence of some unexpected event. The requesyer
agree or disagree to accept the consequences of the
Withdraw Promise action. Please note that Withdraw
Promise action terminates the Promise object aadepves

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the Request object. So, the Requester will be ébteecope
with four possible alternatives of communicatiortiats
such as Promise, Reject, Offer or Withdraw Requdstse
four alternatives are clearly visible in our newivensal
interaction pattern.

The third cancellation event is represented bydpigon
Cancel Result. It can be initiated by Performeavoid the
Decline action by requester. The requester typicalows
cancelling the result, because after this actienRtomise is
not terminated. The forth cancellation event mage tplace
when the whole transaction was completed, but ¢éneice

requester discovers some hidden problem and hestsegr

acceptance. For instance, the customer may tryatoce€l
Acceptance of the Hotel Room for the reason thatless
Internet access fails to work properly. The possjbio

superimpose four cancellation patters on the standaconceptualization

pattern is not the only advantage of the presemedelling
approach. It has sufficient expressive power toecather
special cases, which do not match the universatial4].

V. CONCLUDING REMARKS

The goal of this paper was to demonstrate how the

suggested service-oriented constructs can be umethd
creation of five different modeling patterns. Tiamhally,
modeling patterns are constructed taking into actgust
dynamic aspects of business processes. The adeanittue
suggested modeling constructs is that they alldegiration

of both static and dynamic aspects. One of the main

contributions of this paper is the presentation tbé
extended universal interaction pattern.

The separation of static and dynamic details of the

presented patterns creates fundamental difficufbeswo
major reasons:

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

726

integrated. So, we need to do more research, whads to
complete integration of these two schemes.

The semantics of service architecture can be difine
using one or more interaction loops. Each intevacibop is
composed of creation, termination or reclassifaratictions.
By matching the interaction dependencies from retgus to
providers, one can explore opportunities that aeglable to
different actors. The static dependencies define
complementary semantic details, which are important
reasoning about service interactions. The exammlks
corresponding behavior are presented in this paperell.
The novelty of such a way of modeling is that iaklles
integration of static and dynamic aspects, whicle ar
important to maintain a holistic representatioindéérmation
system specifications. Service-oriented way of rfingeis
computation-neutral. Diagrams  follow the  basic
principle in  representing  only
computationally neutral aspects that are not imfheel by
any implementation solutions. Since computationtradu
representations are easier to comprehend for assaeerts
as well as system designers, they facilitate utaledsng and
can be used for bridging a communication gap among
different types of stakeholders.

REFERENCES

R. Gustas and P. Gustiene, “Three Conceptual Mugleli
Patterns of Semantically Integrated MethodThe 4-th
International Conference on Business Intelligencad a
Technology, BUSTECH 201ARIA, pp 19-24.

M. A. Bunge,Treatise on Basic Philosophy, vol.4, Ontology
II: A World of Systems Reidel Publishing Company,
Dordrecht, Netherlands, 1979.

H. Chesbrough and J. Spohrer, "A Research Manifssto
Services ScienceCommunications and ACM, @9, 2006,
pp. 35-40.

J. Dietz, Enterprise Ontology: Theory and Methodglo
Springer, Berlin, 2006.

(1]

(2]

(3]

(4]

1) Since the static aspects must somehow be compdnsatg]
by using dynamic constructs, the number of patterns
becomes bigger than is really necessary. Sometimel§]
the pattern differences are difficult to understaaml
they are visually unrecognizable by business egpert

2) If static aspects are not taken into account, fredterns
will become more complicated to use them for the[7]
purpose of blending enterprise and software
engineering. (8]
Interaction dependencies, which define the intgrpf

coordination or production events, are lying in the 9]

foreground of the presented semantically integrated

conceptual modeling method. It was demonstrated how
interaction dependencies can be analyzed in irsgnpith
the traditional semantic relations in the area gdtam
analysis and design. However, a more systemati
comparison with the well-established conceptual @ling
languages is necessary. In our future work, we iatemd to
apply and to validate the method by more realistads in

industry. The communication for action schema anel t

extended universal interaction pattern are not yfull

Lol

(11]

T. Erl, Service -Oriented Architecture: Conceptschnology,
and Design. New Jersey: Pearson, 2005.

R. Ferrario and N. Guarino, "Towards an Ontological
Foundation for Service Science,"Future Internet-
FIS2008:The First Internet Symposium, FIS 2008 Néen
Austria. Revised Selected Papegerlin: Springer, 2008, pp.
152-169.

M. Fowler, Analysis Patterns: Reusable Object Models
Menlo Park: Addison-Westley, 1997.

J. Gordijn, E. Yu, and B. van der Raadt, "e-Senasign
Using i* and e3 value ModelinglEEE Software, 2(3) 2006,
pp. 26-33.

R. Gustas and P. Gustiene, "Conceptual Modelindhbtefor
Separation of Concerns and Integration of Structanel
Behavior," International Journal of Information System
Modeling and Designyol. 3 (1), New York: IGI Global,
2012, pp. 48-77.

S. Alter, "Service System Fundamentals: Work Sys¥atue
Chain, and Life Cycle,IBM Systems Journal, 4%), 2008,
pp. 71-85.

P. Gustiené, Development of a New Service-Oriented
Modeling Method for Information Systems Analysisdan
Design, PhD Thesis, Karlstad University Studies1®@9,
2010.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

727
[12] S. Hagg and M. Cummings, Managing Information Syste [19] N. Russell, A. H. M. Hofstede, W. M. P. Aalst andMulyar,
for the Information Age. New York: McGraw-Hill, 280 "Workflow Control-Flow Patterns: A Revised View,BPM
[13] J. A. Hoffer, J. F. George and J.S. Valacietodern Systems Centre Report BPR-06-22). Retrieved March 5, 20binf
Analysis and DesigiNew Jersey: Pearson, 2004. \c/)vE\SN\évéwc:jrrﬂowpatterns.com/documentatlon/documentsNBP
[14] I. Jacobson and P. W. NgAspect-Oriented Software ~eepat. " .
Development with Use Casé¢ew Jersey: Pearson, 2005.  [20] é Sh_ethih K-F \ﬁeéma_ a”g K't Gorgadam,_ ?ema”}';ﬁ to
[15] K. Jensen, Coloured Perti Nets. Basic Concepts,lyAisa A?:?&I?E&?),ezocl)le, pgr\gcst_em?ec rungdmmunications of the
Methods and Practical UseMonographs in Theoretical . ;
Computer Science, 1, 1997 [21] P. Spohrer, P. Maglio, J. Bailey and D. Gruhl, {St€owards

a Science of Service SystemiHEE Computer 4Q1), 2007,

[16] OMG, Unified Modeling Language Superstructure, version pp. 71-77
2.2. Retrieved March 7, 2014, from ) j

www.omg.org/spec/UML/2.2/. [22] O. Zimmerman, P. Krogdahl and C. Gee, "Elements of

[17] M. P. Papazoglou and W. J. van den Heuvel, "Service

Oriented Design and Development Methodologiglrnal of ; : o 0 0

Web Engineering and TechnologydR 2006, pp. 412-442. Literatur/Zimmermann%20et%20al.%202004.pdf.
[18] A. A. Rad, M. Benyoucef and C. E. Kuziemsky, "An

Evaluation Framework for Business Process Modelling NJ 1986

Languages in Healthcarelburnal of Theoretical and Applied ! '

Electronic Commerce Researcl{2$ 2009, pp. 1-19. [24] M. Blaha and J. Rumbaugh, Object-Oriented Modeting

Design with UML, Pearson Prentice Hall, 2005.

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Service-Oriented Analysis and Design," Retrievedrdiab,
2014 from wsdl2code.googlecode.com/svn/trunk/0662D/

[23] T. Winograd and R. Flores, Understanding Compugerd
Cognition: A New Foundation for Design, Ablex Nored)



