
716

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Conceptual Modeling Patterns of Business Processes

Remigijus Gustas
Department of Information Systems

Karlstad University
Karlstad, Sweden

Remigijus.Gustas@kau.se

Prima Gustiené
Department of Information Systems

Karlstad University
Karlstad, Sweden

Prima.Gustiene@kau.se

Abstract — System modeling patterns are similar to workflow
patterns, which were established with the purpose of
delineating the requirements that arise during business process
modeling on a recurring basis. Traditionally, only dynamic
aspects are used for the specification of modeling patterns
leaving aside the static aspects of business processes. The paper
presents the conceptual modeling patterns where integrity of
totally different aspects can be analyzed. The advantage of
such a modeling approach is that it enables visualization and
integration of different modeling dimensions of information
system specifications using a single diagram. Many graphical
representations do not allow such visualization and integration
of static and dynamic aspects. We also represent graphically
interpretation of the conversation for action schema by
constructs of our semantically integrated conceptual modeling
method.

Keywords-Modeling patterns; service-oriented constructs;
static and dynamic aspects; sequence, iteration, synchronization,
selection and enclosing patterns, universal interaction pattern.

I. INTRODUCTION

Analysis patterns are groups of concepts that represent a
common construction in business modeling [7]. They are
similar to workflow patterns that were originally established
with the aim to define and visualize the fundamental
requirements that arise during business process modeling on
a recurring basis [19]. Workflow patterns are usually defined
by using Business Process Modeling Notation, Unified
Modeling Language (UML) Activity Diagram [16], or a
Colored Petri-Net model [15]. All these notations are able to
express process behavior but do not take into account the
static aspects of business processes. They do not explicitly
show what happens with the objects, which represent data,
when some activity takes place. Integration of static and
dynamic aspects is important for the control of semantic
integrity among interactive, behavioral and structural aspects
of a system [9]. Semantic integrity is critical to maintain the
holistic representation of system specifications. To capture
the holistic structure of the problem domain, it is necessary
to understand how various components are interrelated.
Analysis patterns presented in this paper are constructed
using the principles of service orientation and they are called
conceptual modeling patterns. These patterns are important

for two major reasons. Firstly, they can be used for
demonstration of the interplay among fundamental
constructs that are used in system analysis and design
process. Secondly, patterns are important for the evaluation
of the expressive power of semantic modeling languages
[18]. Comprehension and visual recognition of these patterns
is necessary for building more specific pattern variations and
composing them in different ways. Each modeling pattern
language can be formally described using a set of modeling
constructs and semantic rules.

Service-oriented modeling method [9] presented in this
paper is based on the ontological principles [2] of the
concept of service [6], and on a common understanding of
the general structure of service, which is not influenced by
any implementation decisions. The most fascinating idea
about a service concept is that it can be applied equally well
to organizational as well as technical settings. It means that
the conceptual representations of service define computation
independent aspects of business processes. Business
processes can be seen as service compositions, which are
used to specify service architecture. Service architecture can
be applied for the specification of business processes in
terms of organizational or technical services. Our assumption
is that service-oriented representations can be communicated
among business experts and system designers more
effectively. Using service-oriented modeling, information
systems can be structurally visualized as evolving
conceptualizations of service architectures.

The concept of service in the area of information
systems is mostly bound to the term of service-oriented
architecture. According to Hagg and Cummings [12],
Service-Oriented Architecture (SOA) is a software
architectural perspective, where service is the same as
component in component-based system development
methodologies. SOA represents a set of guidelines and
design principles, such as loose coupling, encapsulation,
reuse and composability [5] [22], in which business
processes can be effectively reorganized to support the
business strategy [17]. From a business management
perspective, SOA can provide the possibility to reach
business flexibility. It enables business processes to be
analyzed in terms of services. Conflicting views on the
concept of service is one of the obstacles to the attempts to

717

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

develop a new science of services [3] and new academic
programs focusing on services [1]. This discipline takes a
broader perspective of services as opposed to technical
descriptions [20].

We use the concept of service as in the sense of service
science. It “can be understood as an action or a set of
actions that are performed for some value” [21]. In the
context of enterprise modeling, it is necessary to have a
broader understanding and interpretation of the service
concept as the definition of service goes well beyond
activities that are realized using software applications. The
definition of service provided by Sheth [20] emphasizes a
provider - client interaction that creates and captures value. It
emphasizes a value exchange between two or more parties
and a transformation received by a customer [3]. The
concept of service facilitates a change of business data from
one valid and consistent state to another. In the public sector
it sometimes denotes organizational actions. According to
Ferrario and Guarino [6], services are not transferable,
because they are events, not objects. The main purpose of
service orientation is to capture business-relevant
functionality. Taking into account the nature of the service
concept, which is based on interaction between different
actors to create and capture value, a service-oriented way of
thinking could be applied for a computation-neutral analysis
and design of business processes as well as for creation of
conceptual modeling patterns.

This paper is organized as follows. In the next section,
static and dynamic aspects of service interaction are
described. Five different modelling modeling patterns of an
integrated method are presented in the third section. In the in
the fourth section, we describe a conversation for action
schema and its interpretation in terms of a semantically
integrated conceptual modeling method. Finally, concluding
remarks are presented. This is an extended version of paper
[1], which was published in BUSTECH 2014.

II. SERVICE AS AN INTERACTION

A service cannot be defined without specifying the
interaction, the result of which creates value to the actors [8]
involved. Service is first of all a dynamic act of doing
something to somebody. It means that there are more
elements necessary to construct a concept of service than
just the process of ‘doing’. As there are always some actors
involved in such process, it signifies that it is a
communication act or an interaction between human,
organizational or technical components. One is asking for
something and another actor provides it. The purposeful
action always takes place in a service. It prescribes
responsibilities for the actors involved [10]. Every business
process action is goal-driven and it should always result in
some value to an actor. To get the result, which provides
value on demand, four key elements are necessary: service
requester, service request, service performer and service
response. Interrelations among these elements construct an
interaction loop, which is necessary to represent service
structure. Without one of these four elements, the concept of

service loses its meaning. Service performers receive
service requests and transform them into responses that are
sent to the service requesters. Service can be characterized
by an interaction loop that can be defined by a number of
flows in two opposite directions. This idea is represented
graphically by an elementary service interaction loop, which
is delineated in Figure 1.

The main principle of service-oriented method is based
on designing services as interactions among different
enterprise actors. Service architecture can be represented by
a composition of interaction loops. Actors in interaction
loops can be seen as active elements. These elements can be
organizational or technical subsystems. Organizational
subsystems can be individuals, companies, divisions or roles,
which denote groups of people. Technical subsystems can be
represented as software or hardware components. Any
coordination flow between actors [4] must be motivated by
the resulting value flow. In such a way, any enterprise
system can be represented and analyzed as a set of
interacting loosely connected subsystems that form service
architecture.

Figure 1. An elementary service interaction loop

The dynamic aspect of service includes not just

interaction (�����) between actors, but also the resulting
behavior among passive classes of objects when service
actions are initiated. The transitions between passive classes
of objects are resulting from interactions between active
concepts. The internal behavior or so called objective
perspective defines the dynamic aspect, which is expressed
by object transitions between various classes of objects.
Concepts A, B, and C define the structural aspects of data.
These concepts constitute pre- and post-condition classes,
which will be explained later. In such way, service modeling
enables integration of business process and business data
(see Figure 1).

There are two basic events for semantic modeling of
service construct: creation and termination of objects [9].
These two events are used for the definition of a
reclassification event, which is considered as a generic
modeling construct. A creation event is denoted by an
outgoing transition arrow to a post-condition class. A
termination event is represented by a transition dependency
directed from a pre-condition object class. Before an object
is terminated, it must be created. Since a future class makes
no sense for a termination event, it is not included in a

718

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specification of action. Pre-condition class in a termination
action can be understood as final during an object’s life
time. Reclassification of an object can be defined in terms of
a communication action that is terminating an object in one
class and creating it at the same time in another class.
Sometimes, objects pass several classes, and then they are
removed. A graphical notation of the reclassification action
is presented in Figure 2.

Figure 2. Graphical representation of a reclassification action

Fundamentally, three kinds of changes are possible

during any transition (──�). An action is either terminating
or creating an object, or it can perform termination and
creation at the same time. Pre-condition and post-condition
classes typically define constraints on objects, which restrict
the sending and receiving of communication flows between
technical or business components. A reclassification action
in a computerized system can be implemented either as a
sequence of one or more object creation and termination
operations. Request and response flows, together with
created and terminated object classes, are crucial to
understand the semantic aspects of service interactions. A
pre-condition object class and the input flow should be
sufficient for determining a post-condition object class.

The attribute dependencies are stemming from the
traditional data models. Semantics of static dependencies in
object-oriented approaches are defined by multiplicities.
They represent a minimum and maximum number of objects
in one class that can be associated to objects in another
class. We use only mandatory static dependencies from at
least one side of association. A graphical notation of the
attribute dependencies and their cardinalities is represented
in Figure 3.

A

B
B is a condition

or state of concept A

A B

B is a mandatory single-valued

attribute of concept A

A B

Concept A is a composition of

exactly one part B

B is a mandatory multi-valued

attribute of concept A

A B A B

Concept A is a composition of

one or more parts of B

A B

A is a specialisation of

concept B

Figure 3. Graphical notation of the attribute dependencies

This notation corresponds to a classical way for

representing associations between two entities [13]. One
significant difference of this notation in service-oriented
modeling method [9] from the traditional approaches is that
the association ends are nameless. Dependencies are never
used to represent association names or mappings between
two sets of objects in two opposite directions. Any two
concepts (in the same way as any two actors) can be linked
by the attribute, inheritance or composition dependencies [9].

III. CONCEPTUAL MODELING PATTERNS

Constructs based on service orientation were used for the
design of five modeling patterns. A single diagram type
helps to focus on modeling integration of static and dynamic
aspects. Various combinations of dependencies are able to
express the main workflow control patterns such as
sequence, iteration, selection, synchronization and enclosing
of transaction. Ignoring the static aspects of data in the
pattern modeling research creates fundamental difficulties.
If just dynamic aspects are taken into consideration, then the
quantity of patterns increases and their usage for business
process modeling becomes more complex.
Comprehensibility and visual recognition of the
fundamental patterns is necessary in constructing more
specific pattern variations by composing them in various
ways.

Similar attributes are inherited by more specific classes
according to the inheritance link (). Inheritance arrow
denotes a specialization and generalization. Inheritance is
always pointing out to a more general concept. In the
diagram in Figure 4, it is possible to see two subclasses
Reservation[Bill Sent] and Reservation[Paid], which are
characterized by two different sets of dependencies.

We may distinguish between complete or incomplete as
well as total and partial inheritance situations [24]. All these
cases can be expressed by using the exclusive specialization
and mutual inheritance link. Mutual inheritance dependency
(◄==►) can be used for representing classes that are
viewed as synonyms. It is defined as follows:
A◄==►B if and only if A B and B A.

Classification dependency (●──) specifies objects or
subsystems as the instances of concepts. Classification is
often referred to as instantiation, which is reverse of
classification. It should be noted that classification
dependency in the object-oriented approaches is a more
restricted relation. It can be only defined between an object
and a class. A class cannot play a role of meta-object, which
is instantiated in another class.

Any class A can be viewed as an exclusive
generalization of concepts B and C. A concept can be
specialized by using a notion of state. For instance, Payment
is specialized by Payment[Confirmed] as a result of confirm
payment action. Various states of Reservation concept such
as Bill Sent and Paid are also represented in Figure 4.

719

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Example of static and dynamic dependencies

This example shows an interaction flows among three
actors: Travel Agency, Customer and Bank. Interaction
dependency (A �����B) indicates that one actor (A) depends
on another actor (B). Rectangles with shaded background
are used for denotation of resource flows and light
rectangles indicate information flows. Three communication
actions Send Bill, Pay, and Transfer Money, which are
triggered in a sequence, are used to express the business
process of payment. Pay action can be executed only if the
Send Bill action has been completed. It uses a
Reservation[Bill Sent] object and produces a
Reservation[Paid] object. When Customer receives the bill,
he initiates the Pay action, which creates a new object
Reservation[Paid] and links it to the specific Payment. A
Reservation[Paid] consists of the compositional object of
Payment. Transfer Money action can be executed only if the
process of payment has been confirmed. So, according to
this example, every action creates new object links that are
associated with the post-condition object class. Since the
post-condition class of Payment Confirmed is linked with
the pre-condition class Payment by the inheritance link, the
initial object is not terminated. Removal of objects in more
general classes with their own attributes should occur if they
are not preserved by the created objects. For instance, the
missing inheritance arrow from the post-condition class
would justify termination of a post-condition class object.
Note that a Reservation object is required to be created in
advance by another service, which is not presented in this
example.

Service architecture can be composed of various
interaction loops. The semantics of such composition is
defined by using two or more constructs of the basic action
(Figure 2). The composition of these three types of
constructs can be used for the conceptualization of a
continuous or finite lifecycle for one or more objects in the

service interaction loop. A lifecycle of an object is typically
represented by an initial, intermediate and final class. A
creation event corresponds to a starting point and removal
action – to the end point in an object’s lifecycle. The most
critical issue in the modeling of the interaction details is the
semantic integrity of static and dynamic aspects. It is not
sufficient to represent what type of objects are created and
terminated. Service-oriented models must clearly represent
attributes that must be either removed or preserved in any
creation, termination and reclassification action. This is
crucial to ensure the consistency of integrity constraints.

A. Sequence pattern

A pattern of sequence is a special case of an elementary
interaction loop, which was presented in Figure 1. It
consists of a request and response. A service request creates
an object of type B, which in the second communication
action is reclassified to the object of type C. These two
actions are performed in a sequence and are represented in
Figure 5.

Figure 5. Sequence pattern

This pattern is used for representation the succession of
events. For example, customer may order the goods by

720

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

creating a purchase order. If the goods are available, a
vendor accepts the purchase order. The example of sequence
pattern is represented in Figure 6.

Customer

Purchase Order Order

Vendor

Accept

Order

Accepted

Purchase Order

Purchase

Order Item

Purchase

OrderInvoice

Purchase

Request

Figure 6. Example of a sequence pattern

A newly created purchase order is defined by three
properties: Invoice, a set of Purchase Order Items and
Purchase Request, which are necessary for delivering the
order. It is not specified what will happen after that. Either
the customer may withdraw the order, or it must be
delivered.

B. Iteration pattern

Iteration pattern is a special case of a sequence pattern. It
consists of one creation action and one removal action. The
first action creates an object, which is subsequently
removed. The iteration pattern is represented in Figure 7.

Figure 7. Iteration pattern

This pattern can be used for the representation of events
that are repeated a number of times. For example, customer
may order goods, which are not available. In this case, the
vendor rejects the purchase order by removing it from
existence. The message about the rejected purchase order is
sent to the customer. The example of iteration pattern is
represented in Figure 8.

Figure 8. Example of iteration pattern

As we can see, when the Purchase Request is removed, the
Customer may initiate a new the Purchase Order again. This
interaction loop can be repeated a number of times. The
diagrams that are represented in Figure 6 and Figure 8 can

be superimposed into the single diagram. In this way, we
can see what kind of alternative actions are available to the
actors involved.

C. Synchronization pattern

A synchronization pattern is used when some activities
must be performed concurrently. This pattern combines two
parallel paths of activities. Both paths must be completed
before the next process can take place. The primary
interaction loop is composed of a more specific loop on a
lower level of granularity. In this case, a service interaction
loop on the lower layer of decomposition is viewed as an
underlying interaction loop. The execution of the underlying
loop must be synchronized with the primary interaction
loop. The synchronization pattern is presented in Figure 9.

Figure 9. Synchronization pattern

This pattern illustrates that the action of Request1 creates
a compositional object B, which consist of parts D. At least
one part D must be created. Then object B is reclassified to
C, object D must be also reclassified to E and then to F. If a
compositional object is created, then the parts are created as
well. If a compositional object is removed, then the parts are
terminated at the same time. That is the reason why the
action is propagated from a whole to a part according to the
rule of class composition. The propagation of actions is a
useful modeling quality. It allows a natural modeling of
concurrency. Synchronization pattern is similar to concurrent
activities (fork and merge of control) in an activity diagram
[16].

The graphical example of synchronization is illustrated
in Figure 10. In this example, the object reclassification
effects represent the important semantic details of an
unambiguous scenario in which three interaction loops are
combined. Create Reservation action propagates to parts on
the lower level of abstraction. Termination of Hotel
Reservation Request requires termination of Hotel
Room[Desirable]. Creation of Hotel Reservation requires

721

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Example of a synchronization pattern

creation of one or more Hotel Room[Reserved]. According
to the presented diagram, the underlying interaction loop
action Select Room can be reiterated more than once,
because Hotel Reservation is defined as the composition of
one or more Hotel Room[Reserved].

The underlying interaction loop describes a Customer’s
response to the Hotel Reservation System’s request. If a
customer expects to receive a Reservation flow from the
Hotel Reservation System, it is necessary for him to get a
reply in the underlying loop from the technical component.
The request and reply of the second underlying loop is
specified as follows:
If Offer Rooms (Hotel Reservation System ����� Customer),
then Select Room(Customer ����� Hotel Reservation
System).

The actions of the underlying loop are synchronized with
the primary interaction loop. According to the presented
description, Create Reservation is a reclassification action,
which is composed of the Offer Rooms and Select Rooms
actions on the lower granularity level. The Select Room

action cannot be triggered prior to the Offer Rooms action. It
can be performed several times for each Hotel
Room[Available]. Hotel Reservation is a compositional
object. When it is created, such parts as Hotel
Room[Reserved] and Customer[Logged-in] must be created
as well. The first underlying loop is necessary for offering
available rooms and selecting of a desirable room. Creation
of Customer[Logged-in] object requires to initiate Request to
Authorize and Enter Customer Data actions that are
represented by the second underlying loop.

This modeling pattern is similar to a synchronization,
which can be defined by fork and merge of control in UML
activity diagram.

722

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Selection pattern

The Selection pattern can be expressed using a
composition of two different sequences between the same
two actors. It represents two alternative outcomes of a
service request that can be selected by service performer.
Two possible ways of replying by performer are mutually
exclusive. Only one type of response is expected by a service
requester. If the first alternative is rejected, then the
performer is trying to invoke the second alternative. The
selection pattern was previously published and it can be
found in [11]. It is similar to branches in UML [16]. The
selection pattern is represented graphically in Figure 11.

Figure 11. Selection pattern

Response 1 and Response 2 are two exclusive actions of

a service performer. If Response 1 is initiated, then a pre-
condition class object B is removed and a post-condition
class C is created. If Response 1 has failed, then Response 2
is triggered, which reclassifies object B to D. The example
of selection pattern is represented in Figure 12.

Figure 12. Example of a selection pattern

The selection pattern in the presented example can be
explained as follows. The Flight Reservation Request is
created and then it is reclassified into Flight Reservation in
the Create Reservation action from the Travel Agent. If
Travel Agent cannot create a Flight Reservation, then the
alternative action of Decline Request is taking place. In this
case, the Flight Reservation Request is terminated and a
flow of Rejected Request is sent to the Customer. This
action allows the Customer to reiterate the search again.

This pattern reminds us alternatives in UML, which are
typically described as branches in activity diagram.

E. Enclosing pattern

An enclosing pattern is defined by a primary and a
secondary interaction loop between requester and performer.
In carrying out the work, a performer may play the role of
requester in the secondary interaction loop by initiating
further interactions. In this way, a network of loosely
coupled actors with various roles comes into interplay to
fulfill the original service request. Organizational systems
may be composed of several interaction loops, which are
delegated to more specific components. Enclosing pattern is
similar to the enclosing of a transaction [4]. An enclosing
pattern is represented graphically in Figure 13.

Figure 13. Enclosing pattern

The primary interaction loop consists of Request1 and
Response1 actions. For the creation of object B in the
primary loop, it is necessary to create its property E in the
secondary loop. The reclassification of object B to C requires
the removal of E and creation of F. So, the enclosing loop
cannot be completed if the secondary loop is not finalized.
The example of the enclosing pattern is represented in Figure
14.

723

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Hotel

Counter

Staff
Guest

Hotel

Reception

System

Hotel

Counter

Staff

Return

Key

Check-in

Present

Reservation

Room

Guest

Reservation

Data

Request

Room

Reservation

Data

Hotel Room

Assigned

Bill

Release

Room

Key

Borrowed

Hotel Reservation

Hotel Room

Reserved

Check-out

Room

Guest

Key

Key

Returned

Key

Assign

Room

Hotel

Reception

System

Room

Requested

Room

Request to

Release RoomRoom

Hotel Room

Found

Hotel Reservation

Found

Hotel Room

Released

Room Guest

Room Guest

Figure 14. Two examples of enclosing pattern

If a Room Guest wants to Check-in, he needs to Present

Reservation to the Hotel Counter Staff. If the hotel room is
ready, the Hotel Reception System assigns this room to the
hotel guest and produces the key, which is given to Hotel
Counter Staff. The Assign Room action is executed by the
Hotel Reception System, which is playing the role of
software component. The Check-in action is performed by
Hotel Counter Staff, which is playing the role of the
organizational component. There is one enclosing and one
enclosed interaction loop, which is represented in Figure 14.
The primary interaction loop between Room Guest and
Hotel Counter Staff encloses the secondary interaction loop
between the Hotel Counter Staff and the Hotel Reception
System. So, the Assign Room action is considered as a part
of the Check-in action.

The business process, which is represented in Figure 14,
consists of four interaction loops. The first primary loop is an
organizational process. The secondary loop corresponds to a
computerized process, which creates a Hotel
Room[Assigned] object, and connects it with the Room Guest
and Key[Borrowed] objects. The second primary loop is
necessary for returning a key and checking-out a guest. It
corresponds to an organizational process. The enclosed loop,

which is initiated by a Hotel Counter Staff, corresponds to a
computerized process. It is necessary for finding and
releasing an assigned room.

IV. THE EXTENDED UNIVERSAL PATTERN OF

INTERACTION

Interaction dependencies are extensively used in the
context of enterprise engineering methods [4]. These
methods are rooted in the interaction pattern analysis and
the philosophy of language. The underlying idea of
interaction pattern analysis can be explained by a well-
known conversation for action schema [23]. The purpose for
introducing this schema was initially motivated by the idea
of creating computer-based tools for conducting
conversations. Our intention is to apply the interaction
dependencies as they are defined by the semantically
integrated conceptual modeling approach [9] in combination
with conventional semantic relations, which are used in the
area of system analysis and design. Interaction loops can be
expressed by the interplay of coordination or production
events, which appear to occur in a particular pattern. This
pattern is represented in Figure 15.

724

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

P
:
R

ej
ec

t

R
:W

ith
dr

aw
 R

eq
u
es

t

P
:O

ffe
r

R
:A

c
ce

p
t
O

ff
e
r

P: R
enege

R
: W

ith
d
ra

w
 R

e
q
u
e
st

R
: C

o
u
n
te

r R
e
q
u
e
st

R
:
W

ith
d
ra

w
 R

e
q
u
e
st

Figure 15. Conversation for action schema (Winograd & Flores, 1986)

The idea behind a conversation for action schema can be
explained as turn-taking. Any service interaction pattern can
be characterized by the same four types of main events,
which compose a basic transaction pattern:

a) Request,
b) Promise,
c) Perform and
d) Accept.

The Requester (R) initiates a request (R:Request) action and
then waits for a particular promise (P:Promise). Request,
promise and acceptance are typical coordination actions,
which are triggered by the corresponding types of basic
events. Coordination events are always related to some
specific production event, which is represented by
P:Perform. Both coordination and production events can be
combined together into scenarios, which represent an
expected sequence of interactions between requester and
performer. We will show how creation, termination or
reclassification constructs of the semantically integrated
conceptual modeling method can be used to define the new
facts, which result from the main types of events of the
basic transaction pattern.

Various interaction alternatives between two actors can
also be defined by interaction dependencies, which may
produce different, similar or equivalent behavioural effects.
A provider may experience difficulties in satisfying a
request. Instead of promising, the service provider may

respond by rejecting the request. For example, the hotel
reservation system may reject a request of a customer,
because it is simply incorrect or incomplete. The Requester
may also express disappointment in the result and decline it.
Decline is represented by the termination of Result and the
creation of a Declined Result object. For instance, the hotel
guest may decline the assigned hotel room, which was
assigned by the provide hotel room action. In this case, the
basic transaction pattern can be complemented by two
dissent patterns. This extended schema is known as the
standard pattern [4].

In practice, it is also common that either requester or
performer is willing to completely revoke some events. For
example, a requester may withdraw his own request, a
performer may withdraw his promise, a performer may
cancel his own stated result or a requester may cancel his
own acceptance. These four cancellation patterns may lead
to partial or complete rollback of a transaction. These four
options, which are known as cancellation patterns, should be
integrated into a universal interaction pattern. A provider
may also create new Offer on a basis of created Request,
which can transformed into a counter request or it can be
accepted by requester. All these possible outcomes are
represented in the extended universal pattern, which is
shown in Figure 16.

725

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Rejection

Promise

Requester
Performer

Promise

Request

Request

Requester

Performer

Perform

Decline

Withdraw

Request

Accepted Result

Withdraw

Promise

Declined Result

Reject

Cancel

Result

Accept

Stated Result

Cancel

Acceptance

Requester Performer
Offer

Counter

Request

Offer

Accept

Offer

Figure 16. The extended universal interaction pattern

The presented diagram includes the standard transaction

pattern and four cancellation patterns, which were analysed
by Dietz [4]. It also includes an offer and counter request
actions, which are taken from the conversation for action
schema [23]. Every cancellation action can be performed if
the corresponding fact exists. For instance, the Withdraw
Request action can be triggered, if a request object was
created by the Request action. Request cancellation event

may occur when the customer finds a better or cheaper room
in another hotel. A Withdraw Promise action may take place
if a Promise for some reason cannot be fulfilled by
Performer. For instance, a Hotel Room was damaged as a
consequence of some unexpected event. The requester may
agree or disagree to accept the consequences of the
Withdraw Promise action. Please note that Withdraw
Promise action terminates the Promise object and preserves

726

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the Request object. So, the Requester will be forced to cope
with four possible alternatives of communication actions
such as Promise, Reject, Offer or Withdraw Request. These
four alternatives are clearly visible in our new universal
interaction pattern.

The third cancellation event is represented by the option
Cancel Result. It can be initiated by Performer to avoid the
Decline action by requester. The requester typically allows
cancelling the result, because after this action the Promise is
not terminated. The forth cancellation event may take place
when the whole transaction was completed, but the service
requester discovers some hidden problem and he regrets
acceptance. For instance, the customer may try to Cancel
Acceptance of the Hotel Room for the reason that wireless
Internet access fails to work properly. The possibility to
superimpose four cancellation patters on the standard
pattern is not the only advantage of the presented modelling
approach. It has sufficient expressive power to cover other
special cases, which do not match the universal pattern [4].

V. CONCLUDING REMARKS

The goal of this paper was to demonstrate how the
suggested service-oriented constructs can be used for the
creation of five different modeling patterns. Traditionally,
modeling patterns are constructed taking into account just
dynamic aspects of business processes. The advantage of the
suggested modeling constructs is that they allow integration
of both static and dynamic aspects. One of the main
contributions of this paper is the presentation of the
extended universal interaction pattern.

The separation of static and dynamic details of the
presented patterns creates fundamental difficulties for two
major reasons:
1) Since the static aspects must somehow be compensated

by using dynamic constructs, the number of patterns
becomes bigger than is really necessary. Sometimes,
the pattern differences are difficult to understand and
they are visually unrecognizable by business experts.

2) If static aspects are not taken into account, then patterns
will become more complicated to use them for the
purpose of blending enterprise and software
engineering.

 Interaction dependencies, which define the interplay of
coordination or production events, are lying in the
foreground of the presented semantically integrated
conceptual modeling method. It was demonstrated how
interaction dependencies can be analyzed in interplay with
the traditional semantic relations in the area of system
analysis and design. However, a more systematic
comparison with the well-established conceptual modeling
languages is necessary. In our future work, we also intend to
apply and to validate the method by more realistic trials in
industry. The communication for action schema and the
extended universal interaction pattern are not fully

integrated. So, we need to do more research, which leads to
complete integration of these two schemes.

The semantics of service architecture can be defined by
using one or more interaction loops. Each interaction loop is
composed of creation, termination or reclassification actions.
By matching the interaction dependencies from requesters to
providers, one can explore opportunities that are available to
different actors. The static dependencies define
complementary semantic details, which are important for
reasoning about service interactions. The examples of
corresponding behavior are presented in this paper as well.
The novelty of such a way of modeling is that it enables
integration of static and dynamic aspects, which are
important to maintain a holistic representation of information
system specifications. Service-oriented way of modeling is
computation-neutral. Diagrams follow the basic
conceptualization principle in representing only
computationally neutral aspects that are not influenced by
any implementation solutions. Since computation-neutral
representations are easier to comprehend for business experts
as well as system designers, they facilitate understanding and
can be used for bridging a communication gap among
different types of stakeholders.

REFERENCES
[1] R. Gustas and P. Gustiene, “Three Conceptual Modeling

Patterns of Semantically Integrated Method,” The 4-th
International Conference on Business Intelligence and
Technology, BUSTECH 2014, IARIA, pp 19-24.

[2] M. A. Bunge, Treatise on Basic Philosophy, vol.4, Ontology
II: A World of Systems, Reidel Publishing Company,
Dordrecht, Netherlands, 1979.

[3] H. Chesbrough and J. Spohrer, "A Research Manifesto for
Services Science," Communications and ACM, 49(7), 2006,
pp. 35-40.

[4] J. Dietz, Enterprise Ontology: Theory and Methodology,
Springer, Berlin, 2006.

[5] T. Erl, Service -Oriented Architecture: Concepts, Technology,
and Design. New Jersey: Pearson, 2005.

[6] R. Ferrario and N. Guarino, "Towards an Ontological
Foundation for Service Science," Future Internet-
FIS2008:The First Internet Symposium, FIS 2008 Vienna,
Austria. Revised Selected Papers, Berlin: Springer, 2008, pp.
152-169.

[7] M. Fowler, Analysis Patterns: Reusable Object Models.
Menlo Park: Addison-Westley, 1997.

[8] J. Gordijn, E. Yu, and B. van der Raadt, "e-Service Design
Using i* and e3 value Modeling," IEEE Software, 23(3) 2006,
pp. 26-33.

[9] R. Gustas and P. Gustiene, "Conceptual Modeling Method for
Separation of Concerns and Integration of Structure and
Behavior," International Journal of Information System
Modeling and Design, vol. 3 (1), New York: IGI Global,
2012, pp. 48-77.

[10] S. Alter, "Service System Fundamentals: Work System, Value
Chain, and Life Cycle," IBM Systems Journal, 47(1), 2008,
pp. 71-85.

[11] P. Gustiené, Development of a New Service-Oriented
Modeling Method for Information Systems Analysis and
Design, PhD Thesis, Karlstad University Studies, 2010:19,
2010.

727

International Journal on Advances in Intelligent Systems, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/intelligent_systems/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] S. Hagg and M. Cummings, Managing Information Systems
for the Information Age. New York: McGraw-Hill, 2008.

[13] J. A. Hoffer, J. F. George and J.S. Valacich, Modern Systems
Analysis and Design. New Jersey: Pearson, 2004.

[14] I. Jacobson and P. W. Ng, Aspect-Oriented Software
Development with Use Cases. New Jersey: Pearson, 2005.

[15] K. Jensen, Coloured Perti Nets. Basic Concepts, Analysis
Methods and Practical Use. Monographs in Theoretical
Computer Science, 1, 1997.

[16] OMG, Unified Modeling Language Superstructure, version
2.2. Retrieved March 7, 2014, from
www.omg.org/spec/UML/2.2/.

[17] M. P. Papazoglou and W. J. van den Heuvel, "Service-
Oriented Design and Development Methodology," Journal of
Web Engineering and Technology, 2(4), 2006, pp. 412-442.

[18] A. A. Rad, M. Benyoucef and C. E. Kuziemsky, "An
Evaluation Framework for Business Process Modelling
Languages in Healthcare," Journal of Theoretical and Applied
Electronic Commerce Research, 4(2), 2009, pp. 1-19.

[19] N. Russell, A. H. M. Hofstede, W. M. P. Aalst and N. Mulyar,
"Workflow Control-Flow Patterns: A Revised View," (BPM
Centre Report BPR-06-22). Retrieved March 5, 2014 from
www.workflowpatterns.com/documentation/documents/BPM-
06-22.pdf.

[20] A. Sheth, K. Verma and K. Gomadam, "Semantics to
Energize the Full Service Spectrum," Communications of the
ACM, 49(7), 2006, pp. 55-61.

[21] P. Spohrer, P. Maglio, J. Bailey and D. Gruhl, "Steps Towards
a Science of Service Systems," IEEE Computer 40(1), 2007,
pp. 71-77.

[22] O. Zimmerman, P. Krogdahl and C. Gee, "Elements of
Service-Oriented Analysis and Design," Retrieved March 6,
2014 from wsdl2code.googlecode.com/svn/trunk/06-CD/02-
Literatur/Zimmermann%20et%20al.%202004.pdf.

[23] T. Winograd and R. Flores, Understanding Computers and
Cognition: A New Foundation for Design, Ablex Norwood,
NJ, 1986.

[24] M. Blaha and J. Rumbaugh, Object-Oriented Modeling and
Design with UML, Pearson Prentice Hall, 2005.

