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Abstract—Advanced user interface sensors are able to observe the
environment in three dimensions with the use of specific optical
techniques such as time-of-flight, structured light or stereo vision.
Due to the success of modern sensors, which are able to fuse
depth and color information of the environment, a new focus on
different domains appears. This survey studies different state-
of-the-art registration algorithms, which are able to determine
the motion between two corresponding 3D point clouds. This
survey starts from a mathematical field of view by explaining
two deterministic methods, namely Principle Component Analysis
(PCA) and Singular Value Decomposition (SVD), towards more
iteratively methods such as Iterative Closest Point (ICP) and
its variants. We compare the performance of the different
algorithms to their precision and robustness based on a real
world dataset. The main contribution of this survey consists of
the performance benchmark that is based on a real world dataset,
which includes 3D point clouds of a Microsoft Kinect camera,
and a mathematical overview of different registration methods,
which are commonly used in applications such as simultaneous
localization and mapping, and 3D-scanning. The outcome of our
benchmark concludes that the ICP point-to-surface method is the
most precise algorithm. Beside the precision, the result for the
robustness we can conclude that a combination of applying a ICP
point-to-point method after an SVD method gives the minimum
error.
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I. INTRODUCTION

This article, which is an extended version of the conference
paper [1], contains new results that defines the robustness and
the precision of the different registration algorithms.

With the advent of inexpensive depth sensing devices,
robotics, computer vision and ambient application technology
research has shifted from 2D imaging and Laser Imaging
Detection And Ranging (LIDAR) scanning towards real-time
reconstruction of the environment based on 3D point cloud
data. On the one hand, there are structured light based sensors
such as the Microsoft Kinect and Asus Xtion sensor, which
generate a structured point cloud, sampled on a regular grid,
and on the other hand, there are many time-of-flight based
sensors such as the Softkinetic Depthsense camera, which yield
an unstructured point cloud. These point clouds can either be
used directly to detect and recognize objects in the environment
where ambient technology is been used, or can be integrated
over time to completely reconstruct a 3D map of the camera’s
surroundings [2], [3], [4]. However, in the latter case, point
clouds obtained at different time instances need to be aligned,
a process that is often referred to as registration. Registration

algorithms are able to estimate the ego-motion of a robot by
calculating the transformation that optimally maps two point
clouds, each of which is subject to camera noise.

Registration algorithms can be classified coarsely into rigid
and non-rigid approaches. Rigid approaches assume a fixed
rigid environment such that a homogeneous transformation
can be modelled using only 6 Degrees Of Freedom (DOF).
On the other hand, non-rigid methods are able to cope with
articulated objects or soft bodies that change shape over time.
Additionally, registration algorithms can be classified into
coarse and fine approaches. Coarse registration approaches
compute an initial geometric alignment whereas fine regis-
tration approaches compute a transformation that can register
two point clouds precisely. A combination of coarse and fine
registration algorithms is often used in applications to reduce
the number of iterations while an optimal alignment still
occurs.

Registration algorithms are used in different fields and
applications, such as 3D object scanning, 3D mapping, 3D
localization and ego-motion estimation or human body detec-
tion. Most of these state-of-the-art applications employ either
a simple Singular Value Decomposition (SVD) [5] or Principal
Component Analysis (PCA) based registration, or use a more
advanced iterative scheme based on the Iterative Closest Point
(ICP) algorithm [6]. Recently, many variants on the original
ICP approach have been proposed, the most important of which
are non-linear ICP [7], and generalized ICP [8]. These are
explained and discussed in this publication.

To our knowledge, a general discussion of each of the
above methods that are applied in a real world scenario where
environment data is been acquired with a 3D sensor is not
available in literature. Salvi et al. presented a survey article,
which gives an overall view of coarse and fine registration
methods that are able to register range based images [9]. But
they presented a performance comparison based on synthetic
data and real data that was recorded by a laser scanner.

The choice of an algorithm generally depends on several
important characteristics such as accuracy, computational com-
plexity, and convergence rate, each of which depends on the
application of interest. Moreover, the characteristics of most
registration algorithms heavily depend on the data used, and
thus on the environment itself. As a result, it is difficult to
compare these algorithms data independently. Therefore, in
this paper we discuss the mathematical foundations that are
common to the most widely used 3D registration algorithms,
and we compare their robustness and precision in a real world
situations.
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This paper is outlined as follows: Section II briefly dis-
cusses several important application domains of 3D registration
algorithms. In Section III, rigid registration is formulated as
a least square optimization problem. Section IV explains the
most important rigid registrations algorithms, which are PCA,
SVD, ICP point-to-point, ICP point-to-surface, ICP non-linear
and Generalized ICP. Finally, Section V provides a discussion
of the precision and the robustness of each of these methods
in a real world setting. Section VI concludes the paper.

II. APPLICATION DOMAINS

Important application domains of both rigid and non-rigid
registration methodologies are robotics, healthcare, astropho-
tography, and more. In these applications, the common goal is
to determine the position or pose of an object with respect to
a given viewpoint. Whereas rigid transformations are defined
by 6 DOF, non-rigid transformations allow a higher number
of DOF in order to cope with non-linear or partial stretching
or shrinking of the object [10]. Following subsections will
give an overview of the robotic applications and healthcare
applications where 3D rigid registration methods are being
applied.

A. Robotics
Since the introduction of inexpensive depth sensors such

as the Microsoft Kinect camera, great progress has been made
in the robotic domain towards Simultaneous Localization And
Mapping (SLAM) [11], [12], [13], [14]. The reconstructed 3D
occupancy grid map is represented by a set of point clouds,
which are aligned by means of registration and can be used
for techniques such as obstacle avoidance, map exploration and
autonomous vehicle control [4], [15], [16]. Furthermore, depth
information is often combined with a traditional RGB camera
[3], [17] in order to greatly facilitate real-world problems such
as object detection in cluttered scenes, object tracking and
object recognition [18]. The main goal in robotic applications
is to develop a robust, precise and accurate algorithm that
can execute almost at real-time. In order to reach this goal
much research is nowadays focusing toward graphical process-
ing unit (GPU) and multicore processing, which enables the
execution of many computation task during one timeslot on
multiple processing cores [19], [20].

B. Healthcare
Typical applications of non-rigid registration algorithms

can be found in healthcare, where a soft-body model often
needs to be aligned accurately with a set of 3D measurements.
Applications are cancer-tissue detections, hole detection, arte-
fact recognition, etc. [10], [21]. Similarly, non-rigid transfor-
mations are used to obtain a multi-modal representation of
a scene, by combining magnetic resonance imaging (MRI),
computer tomography (CT), and positron emission tomography
PET volumes into a single 3D model [10].

III. DEFINITIONS

In this section, we briefly introduce the least-squares op-
timization problem and discuss the concept of homogeneous
transformations since these form the basis of 3D registration
algorithms.

Rigid registration can be approached by defining a cost
function that represents the current error, which indicates

how well two point clouds overlap. This cost function is
then minimized using common optimization techniques. If the
distance between corresponding points in each 3D point cloud
needs to be minimized, this can be simplified to a linear least-
squares minimization problem by representing each point using
homogeneous coordinates.

A. Homogeneous transformations

A homogeneous transformation in three dimensions is
specified by a 4 × 4 projective transformation matrix [22].
This matrix is used to project each point in Cartesian space
with respect to a specific viewpoint. Since we use (mov-
ing) rigid orthonormal reference frames, we can restrict our
considerations to rigid transformations. In the following, let
ṽ1 = (x1, y1, z1, 1)

ᵀ be standard homogeneous coordinates of
a point in an orthonormal base defined by viewpoint one, and
let ṽ2 = (x2, y2, z2, 1)

ᵀ be standard homogeneous coordinates
of the same point in an orthonormal base defined by viewpoint
two. Then it is possible to express ṽ2 relative to the base
of viewpoint one as T ṽ1 = ṽ2, where T is a Euclidean
transformation matrix defined by (1).

T =

r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3
0 0 0 1

 (1)

The transformation matrix shown by (1) consists of a 3×3
rotation matrix (2),

R =

(
r1,1 r1,2 r1,3
r2,1 r2,2 r2,3
r3,1 r3,2 r3,3

)
(2)

and the column vector ~t = (~t1,~t2,~t3)
ᵀ representing a trans-

lation. Because the nine entries of the rotation matrix can
be generated by three parameters (e.g., the Euler angles), we
conclude that a rigid transformation has six DOF.

B. Least-Squares Minimization

A rigid transformation is defined by only 6 DOF, whereas
many noisy observations, i.e., point coordinates, are available.
Therefore, the number of parameters of any cost function for
this problem is much smaller than the number of equations,
resulting in an ill-posed problem that does not have an exact
solution. A well known technique to obtain an acceptable
solution in such case, is to minimize the square of the residual
error. This approach is called least-squares optimization and is
often used for fitting and regression problems.

Whereas a linear least-squares problem can be solved ana-
lytically, this is often not the case for non-linear least-squares
optimization problems. In this case, an iterative approach
can be used by iteratively exploring the search space of all
possible solutions in the direction of the gradient vector of the
cost function. This is illustrated by Figure 1, where the cost
function f(d) of the ICP registration algorithm is minimized
iteratively. The cost function in this case represents the sum of
the squared Euclidean distances, defined by the rotation and
the translation, between all corresponding points of two point
cloud viewpoints.
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Figure 1. ICP Least square approach.

IV. REGISTRATION ALGORITHMS

Both rigid and non-rigid registration algorithms can be fur-
ther categorized into pairwise registration algorithms and mul-
tiview registration methods. Pairwise registration algorithms
calculate a rigid transformation between two subsequent point
clouds while the multi-view registration process takes multiple
point clouds into account to correct for the accumulated drift
that is introduced by pairwise registration methods.

In the next sections, we discuss five widely used rigid
registration algorithms. Each of these methods tries to estimate
the optimal rigid transformation that maps a source point cloud
on a target point cloud. Both PCA alignment and SVD are
pairwise registration methods based on the covariance matrices
and the cross correlation matrix of the point clouds, while
the ICP algorithm and its variants are based on iteratively
minimizing a cost function that is based on an estimate of
point correspondences between the point clouds. The selected
correspondences will determine the quality of how the final
transformation fits the source point cloud to the target point
cloud.

A. Principal Component Analysis
PCA is often used in classification and compression tech-

niques to project data on a new orthonormal basis in the
direction of the largest variance [23]. The direction of the
largest variance corresponds to the largest eigenvector of the
covariance matrix of the data, whereas the magnitude of this
variance is defined by the corresponding eigenvalue.

Therefore, if the covariance matrix of two point clouds
differs from the identity matrix, a rough registration can be
obtained by simply aligning the eigenvectors of their covari-
ance matrices. This alignment is obtained as follows.

First, the two point clouds are centered such that the origins
of their original bases coincide. Point cloud centering simply
corresponds to subtracting the centroid coordinates from each
of the point coordinates. The centroid of the point cloud
corresponds to the average coordinate and is thus obtained
by dividing the sum of all point-coordinates by the number of
points in the point cloud.

Since registration based on PCA simply aligns the direc-
tions in which the point clouds vary the most, the second step
consists of calculating the covariance matrix of each point
cloud. The covariance matrix is an orthogonal 3 × 3 matrix,
the diagonal values of which represent the variances while the
off-diagonal values represent the covariances.

Third, the eigenvectors of both covariance matrices are
calculated. The largest eigenvector is a vector in the direction
of the largest variance of the 3D point cloud and, therefore,
it represents the point cloud’s orientation. In the following,
let A be the covariance matrix, let ~v be an eigenvector of
this matrix, and let λ be the corresponding eigenvalue. The
eigenvalues decomposition problem is then defined as:

Ax̃ = λx̃ (3)

and further reduces to:

x̃(A− λI) = 0. (4)

It is clear that (4) only has a non-zero solution if A − λI is
singular and, consequently, if its determinant equals zero:

det(A− λI) = 0 (5)

The eigenvalues can simply be obtained by solving (5),
whereas the corresponding eigenvectors are obtained by sub-
stituting the eigenvalues into (3).

Once the eigenvectors are known for each point cloud, reg-
istration is achieved by aligning these vectors. In the following,
let matrix T y

t represent the transformation that would align the
largest eigenvector t of the target point cloud with the y-axis.
Let matrix T s

y represent the transformation that would align
the largest eigenvector s of the source point cloud with the
y-axis. Then the final transformation matrix T s

t that aligns the
source point cloud with the target point cloud can be obtained
easily, as illustrated by Figure 2.

s

t
Tt
y

Ty
s

Tt
s

X

Y

Figure 2. PCA alignment from source to target.

Finally, the centroid of the target data is added to each
of the transformed coordinates to translate the aligned point
cloud, such that its center corresponds to the center of the
target point cloud.

B. Singular Value Decomposition
PCA based registration simply aligns the directions of the

largest variance of each point cloud and, therefore, it does
not minimize the Euclidean distance between corresponding
points of the datasets. Consequently, this approach is very
sensitive to outliers and only works well if each point cloud
is approximately normally distributed.

However, if point correspondences between the two point
clouds are available, a more robust approach would be to
directly minimize the sum of the Euclidean distances between
these points. This corresponds to a linear least-squares problem
that can be solved robustly using the SVD method [5].
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Based on the point correspondences, the cross correlation
matrix M between the two centered point clouds can be cal-
culated, after which the eigenvalue decomposition is obtained
as follows:

M = USV ᵀ (6)

The optimal solution to the least-squares problem is then
defined by rotation matrix R as:

Rs
t = UV ᵀ (7)

and the translation from target point cloud to source point
cloud is defined by:

t̃ = c̃s −Rs
t c̃t (8)

C. Iterative Closest Point
Whereas the SVD algorithm directly solves the least-

squares problem, thereby assuming perfect data, Besl and Mc.
Kay [6] introduced a method that iteratively disregards outliers
in order to improve upon the previous estimate of the rotation
and translation parameters. Their method is called ‘ICP’ and
is illustrated conceptually in Figure 3.

Source

Target

Correspondences SVD Transform

Iteration

Output

Figure 3. ICP overview scheme.

The input of the ICP algorithm consists of a source point
cloud and a target point cloud. Point correspondences between
these point clouds are defined based on a nearest neighbour
approach or a more elaborate scheme using geometrical fea-
tures or color information. SVD, as explained in the previous
section, is used to obtain an initial estimate of the affine
transformation matrix that aligns both point clouds. After
transformation, this whole process is repeated by removing
outliers and redefining the point correspondences.

Two widely used ICP variants are the ICP point-to-point
and the ICP point-to-surface algorithms. These approaches
only differ in their definition of point correspondences and
are described in more detail in the next sections.

1) ICP point-to-point: The ICP point-to-point algorithm
was originally described in [2] and simply obtains point
correspondences by searching for the nearest neighbour target
point ~qi of a point ~pj in the source point cloud. The nearest
neighbour matching is defined in terms of the Euclidean
distance metric:

î = argmin
i
‖~pi − ~qj‖2, (9)

where i ∈ [0, 1, ..., N ], and N represents the number of points
in the target point cloud.

Similar to the SVD approach discussed in Section IV-B,
the rotation R and translation ~t parameters are estimated by
minimizing the squared distance between these corresponding
pairs:

R̂, ~̂t = argmin
R,~t

N∑
i=1

‖(R~pi + ~t)− ~qi‖2 (10)

ICP then iteratively solves (9) and (10) to improve upon
the estimates of the previous iterations. This is illustrated by
Figure 4, where surface s is aligned to surface t after n ICP
iterations.

q2

q1
q3

Iteration 1

Iteration n

p1 p3p2

s

t

t

q2

q1
q3

p1 p3p2

s

Figure 4. ICP alignment based on a point to point approach.

2) ICP point-to-surface: Due to the simplistic definition
of point correspondences, the ICP point-to-point algorithm
proposed by [24] is rather sensitive to outliers. Instead of
directly finding the nearest neighbour to a source point ~pj in
the target point cloud, one could take the local neighbourhood
of a correspondence candidate ~qi into account to reduce the
algorithm’s sensitivity to noise.

The ICP point-to-surface algorithm assumes that the local
neighbourhood of a point in a point cloud is co-planar. This
local surface can then be defined by its normal vector ~n, which
is obtained as the smallest eigenvector of the covariance matrix
of the points that surround correspondence candidate ~qi.

Instead of directly minimizing the Euclidean distance be-
tween corresponding points, we can then minimize the scalar
projection of this distance onto the planar surface defined by
the normal vector ~n:

R̂, ~̂t = argmin
R̂,~̂t

(
N∑
i=1

‖((R~pi + ~t)− ~qi)~ni‖

)
(11)

This is illustrated more clearly in Figure 5.
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Figure 5. ICP alignment based on a point to surface approach.
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3) ICP non-linear: Both the point-to-point and point-
to-surface ICP approaches defined a differentiable, convex,
squared cost function, resulting in a simple linear least-squares
optimization problem, known as a L2-optimization, that can be
solved numerically using SVD. However, L2-optimization is
known to be highly sensitive to outliers because the residuals
are squared. An approach that solves this problem is known as
L1-optimization, where the sum of the absolute value of the
residuals is minimized instead of the square. However, the L1
cost function is non-differentiable at the origin, which makes
it difficult to obtain the optimal solution.

As a compromise between L1 and L2 optimization, the
so called Huber loss function can be used as shown by
(12). The Huber loss function is quadratic for small values
and thus behaves like an L2 problem in these cases. For
large values, however, the loss function becomes linear and,
therefore, it behaves like an L1 cost function. As Figure 6
shows differentiation between the Huber-Loss function by the
green curve, the blue curve shows the L2 quadratic function.
Moreover, the Huber loss function is smooth and differentiable,
allowing traditional numerical optimization methods to be used
to efficiently traverse the search space.

e(n) =

{
n2/2 if |n| ≤ k
k|n| − k2/2 if |n| > k

(12)

where k is an empirically defined threshold and n is the
distance measure.

n

e
(n
)

Figure 6. Huber Loss function.

The ICP non-linear algorithm uses the Huber loss function
instead of a naive squared loss function to reduce the influence
of outliers:

R̂, ~̂t = argmin
R̂,~̂t

N∑
i=1

e2(n) (13)

where
n = ‖(R~p− ~t)− ~q‖ (14)

To obtain the optimal estimates R̂, ~̂t in (13), the Levenberg-
Marquardt algorithm (LMA) [7] is used. The LMA method
is an iterative procedure similar to the well known gradient
descent and Gauss-Newton algorithms, which can quickly find
a local minimum in non-linear functions.

4) Generalized ICP: A major disadvantage of the tradi-
tional point-to-point ICP algorithm, is that it assumes that the
source point cloud is taken from a known geometric surface in-
stead of being obtained through noisy measurements. However,
due to discretization errors it is usually impossible to obtain
a perfect point-to-point matching even after full convergence
of the algorithm. The point-to-surface ICP algorithm relaxes
this constraint by allowing point offsets along the surface, in
order to cope with discretization differences. However, this
approach still assumes that the source point cloud represents
a discretized sample set of a known geometric surface model
since offsets along the surface are only allowed in the target
point cloud.

To solve this, Segal et al. [8] proposed the Generalized ICP
(GICP) algorithm that performs plane-to-plane matching. They
introduced a probabilistic interpretation of the minimization
process such that structural information from both the source
point cloud and the target point cloud can be incorporated
easily in the optimization algorithm. Moreover, they showed
that the traditional point-to-point and point-to-surface ICP
algorithms are merely special cases of the Generalized ICP
framework.

Instead of assuming that the source point cloud is obtained
from a known geometric surface, Segal et al. assume that both
the source point cloud A = {~ai} and the target point cloud
B = {~bi} consist of random samples from an underlying un-
known point cloud Â = {~̂ai} and B̂ = {~̂bi}. For the underlying
and unknown point clouds Â and B̂, perfect correspondences
exist, whereas this is not the case for the observed point clouds
A and B, since each point ~ai and ~bi is assumed to be sampled
from a normal distribution such that ~ai ∼ N (~̂ai, C

A
i ) and

~bi ∼ N (~̂bi, C
B
i ). The covariance matrices CA

i and CB
i are

unknown. If both point clouds would consist of deterministic
samples from known geometric models, then both covariance
matrices would be zero such that then A = Â and B = B̂.

In the following, let T be the affine transformation matrix
that defines the mapping from Â to B̂ such that ~̂bi = T~̂ai.
If T would be known, we could apply this transformation to
the observed source point cloud A, and define the error to
be minimized as dTi = ~bi − T~ai. Because both ~ai and ~bi are
assumed to be drawn from independent normal distributions
dTi , which is a linear combination of ~ai and ~bi, is also drawn
from a normal distribution:

dTi ∼ N (~̂bi − T~̂ai, CB
i + TCA

i T
ᵀ) (15)

= N (0, CB
i + TCA

i T
ᵀ) (16)

The optimal transformation matrix T̂ is then the trans-
formation that minimizes the negative log-likelihood of the
observed errors di:

T̂ = argmin
T

∑
i

log (p(dTi ))

= argmin
T

∑
i

dTi
ᵀ
(CB

i + TCA
i T

ᵀ)−1dTi (17)

Segal et al. showed that both point-to-point and point-to-
plane ICP are specific cases of (17), only differing in their
choice of covariance matrices CA

i and CB
i ; If the source point
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cloud is assumed to be obtained from a known geometric
surface, CA

i = 0. Furthermore, if points in the target point
cloud are allowed three degrees of freedom, then CB

i = I . In
this case, (18) reduces to:

T̂ = argmin
T

∑
i

dTi
ᵀ
dTi

= argmin
T

∑
i

‖dTi ‖2, (18)

which indeed is exactly the optimization problem that is solved
by the traditional point-to-point ICP algorithm. Similarly, CA

i
and CB

i can be chosen such that obtaining the maximum
likelihood estimator corresponds to minimizing the point-
to-plane or the plane-to-plane distances between both point
clouds.

V. RESULTS & DISCUSSION

In this section, we illustrate the performance of the different
registration methods that are based on an iteratively approach.
In order to illustrate the performance we tested the precision
and the robustness of the different methods. The robustness
factor of an algorithm will explain how well an algorithm
performs during a period of time on different input parameters.
Besides the robustness, the precision factor will clarify how
well an algorithm performs on the same input parameter. The
results for precision and robustness are based on a set of
3D point clouds that are included in a dataset. All results
are generated using the Robot Operating System (ROS) and
the Point cloud Library (PCL) [25], [26]. Furthermore, the
execution processes of the different methods are calculated by
an Asus Zenbook UX32VD, core i7-3517U in combination
with 10 GB of RAM-memory.

A. Dataset
The dataset that we used to benchmark the performance is

built by a Pioneer-3dx robot and consists of a laser scanner,
odometry hardware and 3D point cloud data. The Pioneer-3dx
robot is a commonly used robot for academic and research
purposes. See Figure 7 for the robot used to build this dataset.
To ensure that all sensor measurements have a time-stamp and
transformation with respect to the center of the robot, we have
used the ROS.

On one hand, ROS is used as a tool to record all sensor
measurement including the timestamps, while on the other
hand, ROS is used as a platform to schedule the different
3D point clouds based on their timestamps. To reduce the
size of the dataset, we decreased the number of point clouds
per second. Figure 8 visualizes the dataset by means of an
occupancy grid map and a travelled path.

The occupancy grid map is the result of a Rao-
Blackwellized particle filter SLAM algorithm with a Bayesian
probability distribution [27]. The implementation that we used
utilizes the laser range scanner and odometry data to generate
an occupancy grid map. However, the location updates are
performed by the algorithm are not used to recalculate the
travelled path, resulting in a periodically erratic trajectory.
To obtain a smooth trajectory, we used the occupancy grid
map calculated by the SLAM algorithm to perform adaptive
Monte Carlo localization [28]. Because we knew the initial
position of the robot, the algorithm did not have to perform

Figure 7. The mobile Pioneer-3dx robot with a mounted Microsoft Kinect
Camera, Laser scanner and Sonar sensor.

Figure 8. Occupancy grid map from SLAM approach and the smoothed
travelled path

global localization, but simply had to track the robot during
the complete run. This ensures that location corrections are
applied incrementally, resulting in the smooth trajectory. Thus,
after the SLAM method has calculated an occupancy grid map,
the trajectory was calculated by an Adaptive Monte Carlo
Localization approach.

B. Robustness
To measure the robustness of the rigid 3D point cloud

registration algorithms, we applied them at various times on
different corresponding point clouds and recorded their error
and computation time. By averaging over these data points, we
obtain information about the robustness of a specific algorithm.
We want to compute the robustness of the different rigid
registration algorithms so that we can analyze, which algorithm
performs best in a real world scenario. We focused on a
scenario of mapping an indoor environment to generate a 3D
model in which all spatial objects are visible and correctly
aligned. We could iterate over all point clouds in our database
thanks to the timestamps and playback mechanisms in ROS.
Figure 9 shows us a one dimensional axis with vertical marker.
Each of these markers represent a 3D point cloud, which was
taken at a certain time with respect to the start pose or the
beginning of the dataset.

For each set of two point clouds, the fitness score, the
averaged and normalized error after registration and alignment
between the two point clouds, and the computation time of
each algorithm is computed to measure the robustness of the
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Figure 9. The benchmark robustness scheme includes a set of two 3D point
clouds. Each set contains a source point cloud Si, a target point cloud ti,

and a transformation. Every point cloud is indicated as an individual marker
on the time line t.

different algorithms. In this case, there were 165 sets of point
cloud pairs or 330 single point clouds.

Figure 10 compares the number of iterations to the aver-
aged fitness score after geometric alignment for each iterative
registration process. The result of this correlation can be seen
on the green curves, which all converge towards a minimum at
40 iterations. Within this dataset the average of the ICP point-
to-point algorithm reaches the lowest minimum in comparison
to the other ICP variants. As already stated in the introduction
an ICP approach is often used after a coarse registration that
can lead to lower minimum. As can be seen in Figure 10,
the lowest error value at 40 iterations is SVD ICP. This
means that a coarse SVD registration has been applied onto the
point cloud pair after which an ICP point-to-point is applied.
Secondly, the figure shows the computation time for each
algorithm at a specific number of iterations. GICP has the
worst computation time while ICP point-to-point has the fastest
computation time. The reason why ICP point-to-surface is
slower than ICP point-to-point is mainly due to the surface
normal vector computation. This normal vector computation
time could be decreased if the number of nearest neighbour
points that should be included onto the surface, is lower. This
will change the behaviour, so it will gradually perform more
like an ICP point-to-point approach.

Figure 10. This figure show the comparison between the number of
registration iteration and the time logarithmic in red and the comparison
between the number of iterations and the fitness score in green for the

average of ICP point-to-point (ICP), SVD applied before ICP (SVD ICP),
ICP point-to-surface (ICP pts), ICP non-linear (ICP nl) and Generalized

ICP (GICP)

The previous paragraph stated the robustness as the average
fitness score after alignment while this paraghraph will define
the robustness by the sum of the average and the distance

of one variance. Thus, the robustness factor is not only the
average of each registration method, measured on a set of
different 3D point clouds, but it also depending on the variance
of the averaged fitness score or how far the fitness score will
change over time. This result are visualized in Figure 11. On
this graph, the number of iterations is shown on the x-axis and
the sum of the average with the distance of one variance onto
the y-axis. The robustness of the ICP point-to-surface method
is very good due to the constant behavior during the entire
dataset. This behavior is normal because the number of new
surfaces will not decrease over time whilst two point clouds
are being registered. In contrast to the previous method, the
robustness of the other ICP approaches will go from worst in
the beginning to better at the end due to the many changes
in correspondences while registering two point clouds. When
applying a coarse registration before an ICP approach the
robustness will be much better at convergence than using all
other stated methods.

Figure 11. The x-axis represents the number of registration iterations and the
y-axis represents the sum of the average and the variance for ICP

point-to-point (ICP), SVD applied before ICP (SVD ICP), ICP
point-to-surface (ICP pts), ICP non-linear (ICP nl) and Generalized ICP

(GICP)

C. Precision
To illustrate the behaviour of the results of the different

stated registration algorithms during a certain period of time,
the robustness was computed. In order to analyze the precision
of the different registration algorithms, the rotation and trans-
lation part of the transformation matrix after alignment will be
discussed separately. The precision of the different algorithms
will illustrate how well they perform on the same two point
clouds but with different correspondences. Figure 12 expands
the flow that is used to compute the precision of the stated
registration algorithms. Depending on the number of precision
iterations, more or less subsamples will be computed. Thus,
each subsample of the source point cloud will be registered
with the target point cloud, which results in a series of align-
ment transformations that are compliant with the lowest fitness
score at 40 iterations. Furthermore, the list of transformations
will be divided into a list of rotation matrices and a list of
translation matrices. In order to compare the different rotations
independently, the 3× 3 rotation matrices had to be converted
into Euler angles. This means that each rotation around the
x, y, and z axes can be represented by yaw, pitch and roll.
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The different subsamples of the source point cloud has less
points than the initial source point cloud and they are created
on set of random indices, which are based on the indices of
the source point cloud.

Figure 12. The benchmark precision scheme

To illustrate the precision of the translation part, we com-
puted the average translation of the x, y, and z direction. Since
the points in the source point cloud are randomly selected
on each precision iteration, different correspondences between
the source and target point cloud are observed, leading to a
slightly different transformation. The standard deviation of this
translation that is calculated for each x, y and z element in the
transformation matrix, gives us the precision and is shown in
the following three figures, 13, 14, and 15.

The variance of the x-translation can be observed in Figure
13. As can be seen, the value of the variance of PCA is
zero. This is because of the different steps PCA undergoes to
achieve an affine transformation. The variance on the centroid
position of the source point cloud will not change a lot if
a few points a missing. ICP point-to-surface has a lower
variance in x-translation than ICP point-to-point due to surface
normal estimation. The advantage of the surface estimation
makes the ICP point-to-surface approach more precise due
to low changes of surfaces. In comparison to the results of
the robustness is the variance of applying an SVD approach
before an ICP point-to-point method worse than without a
coarse registration approach. Solving the problem by a non-
linear cost-function, such as a Huber-Loss function, will result
in the worst precision. These benchmark results are only
applicable for indoor environmental data, that is retrieved with
a Microsoft Kinect Camera.

Figure 13. The x-axis represents the different methods and the y-axis
represents the variance of the precision test in the x direction

When observing the variance of the translation in the y
direction, a remarkable result for the non-linear approach can

be seen in Figure 14. These results are much worse than in
the x direction. This could be the result of setting the number
of ICP iterations too low. As for the non-linear approach it is
important to choose this number of iterations correctly because
of the different minimization cost-function. In order to ensure
a fair competition between the different algorithms we set
the number of ICP iteration fixed to 40. As can be seen in
Figure 11, each algorithm has reached a global minimum at
40 iterations. The other approaches have a similar result for
the y direction as for the x direction.

Figure 14. The x-axis represents the different methods and the y-axis
represents the variance of the precision test in the y direction

The precision benchmark for the z direction gives better
results than the x and y direction. Unlike the x and y directions
we expected that the z direction, which represents the depth
measurement, will give worse result due to noisy point clouds.
The result of the variance of the z direction conclude that the
precision of PCA is zero in all directions. This is because PCA
translates the centered source point cloud against the centroid
of the target point cloud and secondly, because PCA will not
optimize the result. Thus, we can conclude that ICP point-to-
surface has the best precision for the translation part.

Figure 15. The x-axis represents the different methods and the y-axis
represents the variance of the precision test in the z direction

The following figures shows the results of the precision for
rotational part of the transformation. The 3×3 rotation matrix
has been converted to Euler angles, in which each rotation
is represented independently from each other by yaw, pitch
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and roll. First, Figure 16 gives more insight to the variance
of the different registration methods for the yaw rotation. The
figure shows a remarkable difference for the PCA approach.
This is because PCA observe the whole point cloud through the
correlation between the different points by using the covariance
matrix, while the ICP and SVD approaches will look for point
correspondences. The variance in yaw direction is large due to
the different subsamples, which will create point clouds where
the density can change a lot in the direction of the smallest
eigenvalue. This means that the probability of changing the
direction of the largest eigenvector is large and thus the yaw
rotation has a lower precision than the correspondence based
approaches.

Figure 16. The x-axis represents the different methods and the y-axis
represents the variance of the precision test in the yaw direction

To illustrate the precision of the transformation matrices
after aligning with the different registration methods in the
pitch direction. This result can be seen in Figure 17. The PCA
method will perform more precisely in the pitch direction then
the yaw direction. Secondly, the ICP point-to-surface approach
will give the best results due to normal vector extension,
which is a good parameter that is not changing a lot in the
different subsamples of the source point cloud. Additionally,
the variance of the method where the ICP approach is applied
after a SVD is worse than the ICP point-to-point and the ICP
point-to-surface methods.

Figure 17. The x-axis represents the different methods and the y-axis
represents the variance of the precision test in the pitch direction

The variances of the roll rotations are visualized in Fig-
ure 18. The algorithm that performs best is the ICP point-to-
surface approach. Additionally, GICP performs better than ICP
point-to-point method, the difference between these algorithm
are negligible.

Figure 18. The x-axis represents the different methods and the y-axis
represents the variance of the precision test in the roll direction

The different visualizations show that the result of the ICP
point-to-surface method is the most rotation precise registration
method. Followed by the GICP that has the best precision
in yaw direction and the third in pitch. Due to the fact that
the yaw direction is more valuable than the pitch, GICP is
the second most precise algorithm based on rotational part
of the transformation. The reason why yaw is more valuable
than pitch is specific for this case where we want the most
precise algorithm for a mobile robot SLAM application where
the yaw rotation can change a lot in comparison with the pitch
rotation. The ICP point-to-point algorithm results in the third
most precise algorithm. This result is based on the rotational
part of the transformation.

VI. CONCLUSION

This survey paper provides an overview of six different
rigid 3D registration methods commonly used in robotics and
computer vision. We discussed the mathematical foundations
that are common to each of these algorithms and showed
that each of them represents different approaches to solve a
common least-squares optimization problem.

Finally, we compared the different methods with a critical
view on their performance on a dataset, that was created
with a Pioneer-3DX robot and a Microsoft Kinect Camera. To
illustrate the performance, we quantified the robustness and the
precision of the different registration methods. As result for the
robustness we can conclude for this dataset that a combination
of applying a ICP point-to-point method after an SVD method
gives the minimum error based on 165 different point cloud
pairs. On the other hand, the ICP point-to-surface is the most
precise algorithm based on the rotational and translational part
of the transformation after applying the precision benchmark
test of this paper.
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