
128

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Semantic Support for Tables using RDF Record Table

Mari Wigham
1
, Hajo Rijgersberg

1
, Martine de Vos

2
, and Jan Top

1,2

1
 Wageningen UR, Food and Biobased Research

Wageningen, The Netherlands

{firstname.secondname@wur.nl}

2
 VU University Amsterdam

Amsterdam, The Netherlands

{firstname.prefix.secondname@vu.nl}

Abstract—Tabular datasets are common in many domains, for

example science and engineering. These are often not very well

specified, and are therefore hard to understand and use.

Semantic standards are available to express the meaning and

context of the data. However, present standards have their

limitations in expressing heterogeneous datasets with several

types of measurements, missing data, and irregular structures.

Such datasets are abundant in everyday life. We propose the

RDF (Resource Description Framework) Record Table

vocabulary for semantically modelling tabular data, as a

supplement to the existing RDF Data Cube standard. RDF

Record Table has a nested structure of records that contain

self-describing observations, and is able to cope with irregular,

missing and unexpected data. This allows it to escape the

constraints of RDF Data Cube and to model complex data,

such as that occurring in science and engineering. We

demonstrate our Excel add-in for transforming data into the

Record Table format. We propose a general approach to

integrating tabular data in RDF, and confirm this approach by

implementing integration support in the add-in and evaluating

this in industrial use cases. This semantic support for tables

helps researchers and data analysts to get the most out of

available quantitative data with a minimum of effort.

Keywords - semantics; table; spreadsheet; e-science,

integration.

I. INTRODUCTION

 Tabular data are common in many domains, for instance
science and engineering. Tools to handle such data, such as
spreadsheets, are extremely popular because of their
flexibility and ease of use. However, this flexibility often
leads to data being ambiguous or even incomprehensible,
and their provenance being unknown [1][2][3]. The
possibility to immediately proceed to the analysis and
visualization of the data can have a negative effect on the
quality of the actual data registration in terms of complete
and systematic recording. Our work on introducing
electronic lab notebooks in the multidisciplinary domain of
food science has revealed many issues in data recording in
the lab. Annotation of the data is often scarce and
ambiguous due to the focus of researchers on the research
itself rather than bookkeeping. In addition, large amounts of
data are produced by automated measurement equipment in
the lab. These devices tend to produce more systematic

metadata, but linking data from different sources is as yet
difficult and labor intensive. This makes finding,
understanding and reusing the data very difficult [4]. As the
amount of available data is exploding, it is essential to be
able to efficiently locate and reuse existing datasets.

The traditional way to present tabular data is in tables on
paper or on a screen. Rows and columns of cells make up
their structure, and these cells are filled with simple data
types such as numbers, strings or dates. In such a table, an
individual recording shows up as a single value in one of the
table cells. The associated header cell along the same
column or row explains the meaning of this value, for
example ‘m (kg)’ for mass measured in kilograms. In
datasets found in practice, this header information is often
ambiguous and incomplete. In fact, much of the
information about the actual observation is frequently left
out. This may even be done on purpose, in order to clean the
data for presentation or processing. Tables also become
more compact if all records contain the same quantities, the
same unit of measure and have the same interpretation. In
this way, the ‘bare’ numerical or string value in the table
cells is separated from the metadata, and is directly visible
for comparison and available for numerical computation.
Researchers are trained in reading such tables and can
usually interpret the meaning of the structure immediately.
However, ambiguities in the structure can still arise, for
example empty cells may be intended by the author to
convey that the content of the previous cell should be
repeated, but may cause confusion in a reader.

While the structure is usually easy to interpret, the
frequently ambiguous and incomplete content of the headers
gives readers more trouble. Abbreviations, ambiguous
indications of quantities and units, language differences,
jargon and typos all contribute to spreadsheets being
frequently incomprehensible to all but the author. After
time has passed, even the author may have trouble.

Interpreting such spreadsheets correctly is therefore hard
enough for human beings, but next to impossible for a
machine. This cuts off an enormous source of potential
support for users. With all the computing power at their
disposal, they are reduced to browsing through data files to
find the one they need, and cutting and pasting data to
combine it.

129

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fortunately, for the further exploitation of datasets, we
are not bound to this traditional representation of a table.
We can use richer representations to express more
contextual information by using semantic technology. Many
semantic methods have been developed over the last
decades to express tabular datasets in a richer, more flexible
manner. The W3C RDF (Resource Description Framework)
standard provides a general, graph-based language for
describing datasets [5]. RDF Data Cube is a prominent
example of an RDF-based standard for expressing tabular
datasets [6].

Representing datasets semantically has major
advantages. Firstly, the meaning of the measurements is
independent of the precise text in a spreadsheet, so that data
can be found and understood regardless of typos,
abbreviations, local terminology and even different
languages. Secondly, the use of semantic concepts makes
tables machine readable, meaning that they can be (semi-)
automatically processed, from simple unit conversion up to
complex computations. Finally, allowable numerical values
and units can be defined, making it possible to check or
clean the data. Moreover, semantic tables can be used as
templates for future observations and experiments.

Initially, we proposed spreadsheet templates to stimulate
systematic annotation of research data, but experience has
shown that this restricts the creative and essentially
unstructured character of scientific research. Therefore, a
standard is necessary that facilitates annotation in a way that
is flexible enough to accommodate researchers’ needs.

Which requirements should a semantic standard meet to
facilitate and stimulate structured annotation of tabular data?
Firstly, it should be able to annotate the individual data
elements, the content. For example, it should be possible to
state that ‘the mass of this sample is 2.95 grams’, ‘the city
considered is Amsterdam’, or ‘this event occurred 5 minutes
and 6.3 seconds later’. Good scientific recordings contain
extensive information about each observation, for example
on which object it has been measured, by which method and
by whom. The annotation (metadata) of the individual data
elements explains them and describes their provenance and
relations. The keystone of semantics is the idea of an
ontology, a sort of vocabulary that describes shared
concepts and the relationships between them. A standard has
to build on existing (domain) ontologies in order to facilitate
shared understanding of the individual observations.

Secondly, a semantic standard for tabular data should
make explicit the structure – the grouping together of
scientific observations that collectively form a ‘snapshot’ of
the world. The observations may be combined because they
are generated in one experiment, using the same
experimental protocol or by a single apparatus, or for a
multitude of other reasons. A collection of snapshots, or
records, is used to detect patterns, similarities or
correlations.

This grouping is essential for correct interpretation of
the data. Within one experiment, the structure of the records
is often quite similar. However, when comprehensive
recording of all possibly relevant effects is required, datasets
can be less homogeneous and well-formed. This holds for

datasets that combine observations from different origins, in
particular. Moreover, exact science typically deals with
quantities having diverse scales, units and other
specifications; values may be missing or occasionally
additional measurements are available. Consider for
example research that combines input from a number of labs
around the world. Some of them have recorded the
environmental temperature in degrees Fahrenheit and others
in degrees Celsius. One lab has not measured temperature at
all. Semantic standards should allow these variations and at
the same time provide enough structure to preserve the
meaning of the data.

Thirdly, a semantic standard for tabular data must make
it possible to link to provenance information, to indicate
where the data came from. Well-publicized cases of fraud
in scientific research make the traceability of data a central
concern to many research institutes. Fig.1 shows the three
components of a semantic standard for tabular data.

Finally, the semantic standard must be flexible enough
to accommodate the variations present in scientific data, and
be implemented in tools already in use by researchers, in
order to harmonize with their research work, rather than
distracting from it.

In this paper, we discuss RDF Record Table, a format
that is sufficiently rich and flexible to handle complex
datasets, such as those often found in science and
engineering. RDF Record Table was first introduced in [1].
In this paper, we will expand on the description of the
model and discuss its benefits in more detail. In Section II,
we first briefly describe existing approaches and tools for
modelling tabular data in RDF. In Section III, we go into
more detail on the RDF Data Cube vocabulary. This is a
recommended W3C standard for multidimensional tables.
To be able to handle more heterogeneous datasets, we
propose RDF Record Table in Section IV, as a supplement
to RDF Data Cube. RDF Record Table uses self-contained
observations and recursive records. In Section V, we
describe how we can reduce redundancy and include header
information in the model by allowing cells to refer to other,
similar cells. Section VI discusses the differences between
RDF Data Cube and RDF Record Table, in particular with
reference to specific challenges faced in scientific data.
This is followed by a description of a first implementation
for annotating and transforming spreadsheet data to RDF
Record Table in Microsoft Excel in Section VII. We then
discuss how RDF Record Table makes it easier to integrate

Figure 1: The three components of a semantic

standard for tabular data

130

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data in Section VIII. We describe our approach to data
integration, and explain how this approach is implemented
in the Rosanne add-in. The approach is validated in a
number of use cases in Section IX. Finally, we conclude in
Section X, also listing a number of open issues.

II. RELATED WORK

Many methods take the relational database approach
when they convert tables or databases into an RDF-based
representation [7]-[9]. They assume that a table consists of a
header row defining variables, and other rows that contain
strings or numbers representing the value of the variable in
the same column. In general, they do not support more
complex structures. All columns are translated into RDF
properties of a single object. At this point, no other metadata
is available than which is given in the header and data cells,
the information implied by the table structure is lost. For
simple data this may suffice, however, problems quickly
arise with more complex data. For example, repeated
measurements of the same property will simply produce
triples with two different values, without the context that
would allow an understanding of why the measurements are
different (different time, different apparatus, etc.). The
information contained in one column may also be necessary
to correctly interpret the information in other columns. For
example, based on the price information of two types of
cheese, you might conclude that the cheese with the lower
price is cheaper. However, the amount of cheese, recorded
in a different column, could be completely different. Tables
also frequently contain information that is not a property of
the same single object, for example, the temperature of the
room in which the density of the sample was measured.
Finally, removing all indication of table and cells by
converting only the data to triples, removes the ability to
convey provenance information about the data.

A richer format is defined by the RDF Data Cube
vocabulary [6], a recommended W3C standard. This
vocabulary has been developed in the context of statistical
data in social sciences and policy studies, but is also being
applied in other areas [10]. Information about the meaning of
the data is expressed by linking to concepts from other
ontologies, most typically the SDMX vocabulary [11].
These individual data observations are stored in a multi-
dimensional hypercube structure to preserve the relationship
between the measured values and the dimensions along
which they vary, such as time, location, gender, etc.
Metadata can be linked to individual observations, parts of
datasets, or whole datasets.

There are various tools that have been developed for
converting tabular data into RDF in general, or RDF Data
Cube in particular. The EU CODE project [12] developed
the CODE platform, which extracts tabular data from PDFs,
csv-based documents or existing RDF repositories and
converts it to RDF Data Cubes. These cubes can then be
visualized. The Tabels (sic) project [13] attempts to
discover the data structures in tabular data and transform
these to RDF Data Cube. TabLinker [14] and RightField
[15] assist the user in annotating their numerical data, which
is then converted to RDF Data Cube, in the case of

TabLinker. CSV2Data Cube [16] helps the user to
configure dimensions and attributes from their CSV file. It
then transforms the data to RDF Data Cube. The OpenCube
toolkit [17] [17]from the EU OpenCube project [18] allows
relational data and csv/tsv files to be converted to RDF Data
Cube. These cubes can then be visualized and also
submitted to statistical analysis. Tools for visualization,
slicing and validation of RDF Data Cube fall outside the
scope of this work.

The available tools are mostly directed at the domain of
statistical data and, with the exception of RightField (which
does not handle table structure), appear to be limited to
simple table structures. Statistical data is, as a rule, much
more uniform and regular than scientific or engineering
data, which can have quite complex table structures.

All of these tools are separate to the tools that are usually
used by researchers in the course of their work (with the
exception of RightField, which generates templates that are
used in Excel). This requires researchers to interrupt their
workflow in order to carry out data documentation. This can
be a barrier for researchers.

We have found one incidence of related work on
representing more complex, irregular data in RDF [19]
investigated linked Data Cubes for clinical data. Some of the
difficulties they experienced could be solved by augmenting
RDF Data Cube with constructs from other vocabularies,
others remained unsolved.

Whereas RDF Data Cube and other standards define the
structure and context of tabular data, they are not intended
for expressing provenance of data on the web. However, they
do provide identifiers for the data, which can be linked to a
description of the provenance of that data. For that purpose,
additional vocabularies have been developed. The W3C-
standard PROV is becoming increasingly popular for this
purpose [21]. It describes the origins of any type of data,
helping the user to evaluate how appropriate and trustworthy
the data is for a particular use. PROV basically says that a
prov:Agent performs a prov:Activity, in which he

uses or generates a prov:Entity. Tables, records, slices
and individual measurements can all be seen as subclasses
of prov:Entity. The previously defined Dublin Core
Terms [13] vocabulary complements the PROV model with
detailed concepts about publications and authorship.

We wish to develop a standard for tabular data that can
handle the sort of complex, irregular data that is found in
many practical situations. This standard will be able to be
linked to the PROV standard and will be implemented in
tools that researchers already use in their daily work.

III. RDF DATA CUBE

RDF Data Cube organizes observations as
multidimensional datasets. Each observation is a point in n-
dimensional space, defined by the associated values of the
dimensions. Typical dimensions in RDF Data Cube are
‘time’, ‘area’ and ‘gender’. Each observation contains one or
more measures, for example ‘life expectancy = 83.5’.

131

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I: Life expectancy data in different regions over time

 2004-2006 2005-2007 2006-2008

Male Female Male Female Male Female

Newport 76.7 80.7 77.1 80.9 77.0 81.5

Cardiff 78.7 83.3 78.6 83.7 78.7 83.4

Monmouthshire 76.6 81.3 76.5 81.5 76.6 81.7

Merthyr Tydfil 75.5 79.1 75.5 79.4 74.9 79.6

Observations, measures and dimensions can have

attributes that provide additional information about them, for
example the unit of measure used. A separate section of an
RDF Data Cube defines its structure; this section can be used
as a template for future observations. Another section gives
information for external reference to the entire dataset.

In its normalized form, each observation in a data cube
contains all its dimensional values. One way to reduce
redundancy is by moving shared attributes to the structure
definition section. Further reduction can be obtained by
introducing ‘slices’. A slice is a lower-dimensional
representation, which also serves as a proposed interpretation
of the dataset. Moreover, one can refer to a slice as an
independent entity. This allows easy access to predefined
views of the data.

In order to group together observations that do not fulfil
the requirements of a slice, the concept of ObservationGroup
is defined in RDF Data Cube. This allows any observations,
even from different datasets, to be grouped together.

Table I shows the example table that the RDF Data Cube
definition uses to explain the vocabulary [6]. The full RDF
Data Cube model of Table I is available for viewing at [6].

The RDF Data Cube vocabulary is very well suited for
modelling well-formed, complete datasets such as are
produced by statistics offices. Software tools are available
to provide useful views of the data. However, these
advantages are the result of some restrictions on the data.
RDF Data Cube is intended for describing ‘well-formed’
datasets. As a result, several constraints are placed on the
data, for example that each observation must have a value
for every measure. For example, if for one measurement in
the example it is not known whether this person is a man or
a woman, then this data point cannot be included in the
model. Another assumption is that the multidimensional
structure is a regular (hyper)cube, not permitting rows with
varying length for a single dimension. If we know the
standard deviation of the life expectancy value for Cardiff
and Newport, but not the other regions, we cannot add this
to the above Table I.

RDF Data Cube has two alternative ways to handle
datasets with more than one measure, which cannot be used
simultaneously. In the multiple measures approach one
observation can contain more than one measured quantity.
However, all quantities must have the same attributes, for
example, the same type and unit of measure. This rules out
this approach for many exact science applications. The
second approach restricts observations to having a single
measured value. It allows a dataset to carry multiple

measures by adding an extra dimension, a measure
dimension. This turns a measured value into a kind of semi-
dimension.

Another characteristic of RDF Data Cube is that it
makes extensive use of properties (rather than classes) as its
main organizing mechanism. The design introduces many
different types of properties. It is questionable whether these
different properties are needed to express the meaning of the
data. They make the design of a model rather complex.

As datasets, slices, ObservationGroups and observations
all have unique identifiers in RDF Data Cube, they can all
be referred to by a provenance model, enabling the
provenance of the data to be traced.

RDF Data Cube is the only semantic standard currently
available which explicitly and thoroughly models the
structure of tabular data.

IV. RDF RECORD TABLE

Experience with researchers over the past ten years has
confronted us with many different datasets. Many of them
are contained in spreadsheets and data analysis tools such as
Matlab [22], SPSS [23] and R[24]. Inspired by other
initiatives to annotate datasets using RDF, we have devised
an approach that can work in the tools commonly used by
researchers and at the same time support rich annotation.
This approach has at its heart a model for tabular data called
RDF Record Table.

The RDF Record Table vocabulary is intended for
recording original and processed data across all domains,
including science and engineering in particular. It is based
on the observation that the common two-dimensional table
in reports and spreadsheets is a restricted representation of a
more general graph-based table model. A human reader of a
table in a report or spreadsheet implicitly combines his or
her interpretation of the text in individual table cells with
the visual inspection of the table layout (topography,
coloring, typesetting, etc.). This forces authors of tables to
express two types of information in a two-dimensional
format that it is not ideally suited for, viz., (i) nesting of
records and (ii) describing metadata. In this section we show
how the RDF Record Table model deals with these issues
by supporting recursive nesting of records and by enriching
data elements with metadata. In the next section, we will
show how the model supports sharing of metadata between
multiple data elements. RDF Record Table models the
structure of tables in terms of cells and records (see Fig. 1,
using rec: as a prefix for the RDF Record Table namespace).
A cell contains a statement about an entity or the property of
an entity, such as ‘the temperature of this object measured
by a pt-sensor is 36.5C’ or ‘this milk sample is from batch
20140612YTU’. A record combines cells in a group, thus
conveying the assumption that in some way the observations
are related - in time, location, subject, conditions, or in
another way. This assumption can be made when setting up
a new experiment, but also when existing data are
combined. It is similar to the ObservationGroup concept in
RDF DataCube, but in RDF Record Table it is a core
element rather than an optional extra. Scientific and

132

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

rec:RecordTable

rec:containsRecord
rec:containsContent

rec:Cellrec:containsAsData

owl:Thing

Figure 2: Basic RDF Record Table schema

engineering data are grouped and regrouped continuously to
investigate hypothesized correlations and causalities. We
submit therefore that the structure of the data should be
flexible and based around the groupings chosen by the
researcher. To express composite structures, in RDF Record
Table any record can recursively contain sub-records, which
again are of the type rec:RecordTable. This means that
we do not make a distinction between the concept table and
the concept record. After all, both are simply groupings of
data. For example, an experiment may observe multiple
samples at one fixed temperature. For each sample its
viscosity, composition and mass are measured over time.
This means that the entire dataset consists of a Record Table
that at its highest level contains (i) the observed temperature
and (ii) a sub-record for each sample. Each sub-record in
turn contains the sample identifier and sub-records that
describe viscosity, composition and mass for that sample
measured at a point in time. In the most explicit form, all
sub-records are expanded into non-nested records. In this
example, the top level Record Table only contains sub-
records, each of them stating the observed temperature, time
point, sample id and the other measured properties.

RDF Record Table is shown in Fig. 2. In Turtle format,
it is defined as follows.

rec:RecordTable a rdfs:Class ;

 rdfs:subClassOf prov:Entity .

rec:Cell a rdfs:Class ;

 rdfs:subClassOf prov:Entity .

rec:containsAsData a owl:ObjectProperty ;

 rdfs:domain rec:RecordTable ;

 rdfs:range rec:Cell .

rec:containsContent a owl:ObjectProperty ;

 rdfs:domain rec:Cell ;

 rdfs:range owl:Thing .

The next question is how the cells in the nested records

can contain the actual observed values in such a way that

they can be properly understood both by human users and

machines. From the inspection of many tables used in

practice, we see that two types of observations frequently

occur: (i) identified entities and (ii) properties measured on

a scale. Examples of identified entities are ‘sample

XY876b’, ‘Newport’ and ‘Peter’. Quantities such as

‘length’, ‘mass’, and ‘temperature’ are examples of

prov:Entity

rec:RecordTable

rec:containsRecord
rec:containsContent

rec:Cellrec:containsAsData

owl:Thing

om:Quantity
identified entity:

object, event, material...
Figure 3: RDF Record Table expressing domain and provenance

information

properties measured on a scale. These two types are not

formally part of the RDF Record Table model, which allows

any ‘Thing’ to be in a cell. However, we propose this

distinction as a best practice that works in many cases. Fig.

3 shows how quantities and identified entities fit into the

RDF Record Table model.

In traditional tables, identified entities are typically

represented by a human readable identifier, and an

explanation of the entity type in the associated header cell.

For example, ‘Peter’ is a unique name for an entity of type

‘Author’. RDF Record Table uses externally available

domain ontologies to express all that is needed to know

about such an entity by pointing to the respective instance in

an RDFS/OWL schema. For modelling Table I we have

chosen to view instances of ‘Area’ and ‘Period’, such as

2004-2006, as identified entities since they are not supposed

to be read as nominal or even numerical values.
For the other type of observation, a property measured

on a scale, RDF Record Table uses ontologies that define
quantitative or qualitative values defined on a scale,
possibly with units of measure. In Table I, ‘Sex’ and ‘Life
Expectancy’ are typical measured properties, one on a
nominal scale and the other on a rational scale with unit
‘Year’. In our work we use OM (Ontology of units of
Measure and related concepts) [25] for expressing
quantitative measurements. OM contains a large number of
quantities and units of measure suited to scientific and
engineering datasets. It also provides the necessary
properties for linking the quantities, domain concepts and
units. However, other ontologies such as QUDT [26] and
SDMX [11] can be used equally well. The measured
quantities can be properties of the observed entities in the
table, but do not need to be related to anything specific. For
example, in Table I, the life expectancy measured is that of
people in the associated geographical region. On the other
hand, ‘the time of day’ is usually not connected to a specific
entity (except for example to a ‘time zone’ that relates to a
geographical area).

This division into identified entities and properties

measured on a scale is highly useful, as it relates to the type

of data handling that is typically applied to data from each

category. Measured properties are usually subject to

numerical processing, and require units of measure.

Identified entities on the other hand may be used as

identifiers on which, for example, different tables can be

133

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

joined. While this distinction can assist processing, it does

not limit it – for example, tables may also be joined on

numerical values, if the user wishes.

Finally, by making rec:RecordTable and rec:Cell

subclasses of prov:Entity we ensure that all provenance
information can be expressed for individual measurements,
records and tables. For example, the relation
prov:wasDerivedFrom between two cells tells us that the
quantity in one cell depends on the value of the quantity in
the other cell.

To illustrate the use of the RDF Record Table format,
we show how the cells with values 76.7 and 83.3 in Table I
are contained in the table. We see that the first level of
nesting defines four records (:o1, :o2, :o3, :o4), one for each
region. We use the ontology for geographic areas (as
identified entities) that was also used in the RDF Data Cube
example [6]. The next level specifies the three time periods,
again using instances that were also used in the data cube
example. At the third level of sub-records, we register two
properties measured on a scale, viz., ‘sex’ and ‘life
expectancy’. For indicating the variable ‘sex’, we use an
sdmx-code, as in the data cube; to illustrate the use of OM
[25], we use the concept om:Duration from that ontology
to describe ‘life expectancy’. The value of a quantity in OM
is of the type om:Measure, which is a combination of a
numerical value and a unit (or scale).

:dataset1 a rec:RecordTable ;

rec:containsRecord :o1 , :o2 , :o3 , :o4 .

:o1 a rec:RecordTable ;

 rec:containsAsData :cell_newport ;

 rec:containsRecord :o11 , :o12 , :o13 .

:cell_newport a rec:Cell ;

 rec:containsContent ex-geo:newport_00pr .

:o11 a rec:RecordTable ;

 rec:containsAsData :cell_period_2004_2006 ;

 rec:containsRecord :o111 , :o112 .

:o111 a rec:RecordTable ;

rec:containsAsData :cell_sex-M ,

:cell_lifeExpectancy_76_7YR .

:cell_sex-M a rec:Cell ;

 rec:containsContent sdmx-code:sex-M .

:cell_lifeExpectancy_76_7YR a rec:Cell ;

 rec:containsContent :lifeExpectancy_76_7YR ;

:lifeExpectancy_76_7YR a om:Duration ;

 om:value :_76_7YR .

:_76_7YR a om:Measure ;

 om:numerical_value “76.7”^^xsd:string ;

 om:unit_of_measure_or_measurement_scale om:year

.

...

:o2 a rec:RecordTable ;

 rec:containsAsData :cell_cardiff ;

 rec:containsRecord :o21 , :o22 , :o23 .

:cell_cardiff a rec:Cell ;

 rec:containsContent ex-geo:cardiff_00pt.

:o21 a rec:RecordTable ;

 rec:containsAsData :cell_period_2004_2006 ;

 rec:containsRecord :o211 , :o212 .

...

:o212 a rec:RecordTable ;

rec:containsAsData :cell_sex-F ,

:lifeExpectancy_83_3YR .

:cell_sex-F a :Cell ;

 rec:containsContent sdmx-code:sex-F .

:cell_lifeExpectancy_83_3YR a rec:Cell ;

rec:containsContent :lifeExpectancy_83_3YR .

:lifeExpectancy_83_3YR a om:Duration ;

 om:value :_83_3YR .

:_83_3YR a om:Measure ;

 om:numerical_value “83.3”^^xsd:string ;

 om:unit_of_measure_or_measurement_scale om:year

.

To show the flexibility of the RDF Record Table model,

we now show how a completely different type of

measurement can be added to the above definitions, without

changing anything in the previously modelled records and

cells. In Table I, we add ‘the measured average weight of

the inhabitants of this region’ to an existing record (:o341)

using the OM quantity om:mass. In addition, we can switch

to a value for ‘life expectancy’ measured in months rather

than years for one single observation (74.9 years). The result

is as follows:

:o431 a :RecordTable ;

 rec:containsAsData :cell_sex-M ,

:cell_lifeExpectancy_898MONTH ,

:cell_mass_71kg .

:cell_lifeExpectancy_898MONTH a rec:Cell ;

 rec:containsContent :lifeExpectancy_898MONTH .

:lifeExpectancy_898MONTH a m:Duration ;

 om:value :_898MONTH .

:_898MONTH a om:Measure ;

 om:numerical_value "898"^^xsd:string ;

 om:unit_of_measure_or_measurement_scale

 om:Month .

:cell_mass_71kg a rec:Cell ;

 rec:containsContent :mass_71_kg .

:mass_71_kg a om:Mass ; om:value :_71_kg .

:_71_kg a om:Measure ;

 om:numerical_value "71"^^xsd:string ;

134

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 om:unit_of_measure_or_measurement_scale

 om:kilogram .

Note that so far we assume that each cell is entirely self-

describing; it contains all the necessary information to know

what kind of data it represents. Where data cells are similar,

it is possible to use one description for many cells. We will

discuss this in the next section.

V. HANDLING SIMILAR DATA ELEMENTS IN RDF RECORD

TABLE

As stated before, traditional two-dimensional

representations of tables express descriptive information

about the data in the table headers. In their most basic form

they form a single row at the top of a table, but much more

complicated header structures occur commonly. Each

header cell covers a range of data cells, typically shown in

the column under the respective header.

In practice the distinction between header items and data

items is not always clear. For example, in Table II, it is

possible to view the top three rows and the left column as

headers. In fact, only “Life Expectancy”, “Period”, “Area”

and “Sex” are true headers, as they only supply descriptive

information about the data. The other ‘header’ cells, such as

“Male”, and “2004-2006”, actually supply different data

values for one data type. This style of table, where the

‘header’ contains data values, is often called a ‘pivoted

table’, as it can be produced by pivoting a ‘flat table’, where

the header only contains descriptions of the data. Pivoted

tables can give extra insight into data by grouping together

data for which one field always has the same value, for

example all data relating to “Cardiff”. Any RDF Data Cube

with more than one dimension is in the style of a pivoted

table, the effect of choosing between a dimension and a

measure is to select the measurements on which the data

will be pivoted. A pivoted table can be ‘unpivoted’ by

adding the data elements from the header to each record.

The RDF Record Table model defined in the previous

section assumes that all data in the table cells are entirely

self-descriptive. Each data element describes what kind of

data it represents. For example, ‘tfinal = 42 sec’ expressed

using OM concepts says that an activity has ended after 42

seconds. Traditional tables in reports and spreadsheets

usually summarize this explaining information ‘tfinal (sec)’ in

a table header, separately from the numerical ‘42’, to make

the table readable for humans and fit for numerical analysis.

In RDF Record Table, in principle, we can do without such

headers, as all this information is available in the data cells;

in the above example the data cell would be linked to the

concepts ‘time’ and ‘seconds’. In the case of a pivoted

table, the ‘header’ information is simply another data value

rec:RecordTable

rec:containsRecord

rec:hasLiteralValue

rec:explainsData

rec:containsContent

rec:Cell

rec:containsAsExplanation

rec:containsAsData

owl:Thing

Figure 4: RDF Record Table with ‘header’ cells.

in the Record Table, with a nested Record Table containing

the information that falls under the ‘header’.

In practice, many data items in a single experiment are

similar in some way – they refer to the same type of

parameter, or play the same role in an experiment. We

submit that the way that traditional tables express this, is

inherently limited due their two-dimensional character. In

RDF Record Table we look at table header cells in a

generalized manner, independent of their usual two-

dimensional representations. We assume that a ‘header’ cell

explains a set of similar data items. It provides metadata that

is not expressed by the individual data items.

There can be four reasons to put this information in

header cells rather than in self-contained data cells. First,

header cells can specify the type of measurement without

giving actually observed values; they act as a prescriptive

template for an experiment or for data analysis. Second,

using header items for metadata is a way to remove

redundancy and to achieve a significant reduction in the

physical size of a dataset. For example, suppose that the

temperature of an object has been measured over time. We

can state in a header item that we have measured

temperature, measured in kelvin, on a given object. In the

corresponding data items we only have to state the

numerical values. This takes much less space, but still

allows us to regenerate the self-contained values for all data

elements (if we know how to link the numbers to the

reconstructed instances). Third, cells of different types may

play the same role in a table. For example, a column

containing numerical measurements may also include the

entry ‘measurement failed’. This cell clearly has a different

type, but should still be grouped under the column – it plays

the same role as the other measurements. Finally, the

header cell itself may contain additional, informal

information. For example, the header cell ‘Area’ may have

contained the string ‘Area, as per 2001 boundaries”, or “Life

Expectancy” may have been written using the Dutch word

“Levensverwachting”. While ideally this sort of

information would also be modelled semantically, in

practice this is not the case. If the header cell is modelled

separately to the data cells, then its text content can be

preserved exactly as it was, keeping any informal

information and also making the table representation more

familiar to the user.

135

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II: Example extended with headers

Life Expectancy (years)

Period 2004-2006 2005-2007 2006-2008

Area Sex Male Female Male - Male Female

Newport 76.7 80.7 77.1 80.9 77.0 81.5

Cardiff 78.7 83.3 - 83.7 78.7 83.4

Monmouthshire 76.6 81.3 76.5 - 76.6 81.7

Merthyr Tydfil 75.5 79.1 75.5 79.4 74.9 79.6

In RDF Record Table we do not define different types of

cells for data and metadata since their internal structure is

the same. Instead, we use the property rec:explainsData

to have some cells act as metadata cells (see Fig. 4). Such an

explaining cell contains an instance (or class) of a

phenomenon or a quantity, acting as a template for other

cells. The associated data cell in that case only needs to

provide a numerical or string value (through

rec:hasLiteralValue), all other information is derived

from the explaining cell.

For example, in Table II, one header field states that we

have observed ‘Life Expectancy’ in ‘years’. We construct a

cell in the RDF Record Table translation that contains an

instance of om:Duration with unit ‘year’ but no numerical

value assigned to it. The cell also preserves the string in the

original table header by storing ‘Life Expectancy (years)’ as

a literal value. The associated cells only have to provide a

numerical value for each measurement and a reference to

this header item. Or in another case, the header item ‘Area’

states that we have observed entities of type

admingeo:UnitaryAuthority, and the data items

express specific areas such as ‘Monmouthshire’, only using

a literal string. When unpacking this compacted version to a

fully self-describing model, the software has to match the

string ‘Monmouthshire’ with instances of

admingeo:UnitaryAuthority to find the proper

instance ex-geo:Monmouthshire.

Suppose that no interpretation whatsoever is possible

given a specific traditional table, except for its structure. In

that case, we can translate this table directly into an RDF

Record Table with only literal values, using only the

property rec:hasLiteralValue for both header items

and data items. If we can also map the rows and columns

directly to records, data cells and explaining cells, this

would be the least semantically rich representation possible.

Once translated to RDF Record Table, we can process this

information and possibly add more semantics to it. RDF

Record Table allows each data cell to have its own

specification, overruling the information in the header item.

In the previous section we have shown an example in

which a single cell measured ‘life expectancy’ in ‘months’,

whereas all others were measured in ‘years’. In that case, we

could have used an RDF Record Table model with an

explaining cell that states that in principle all values are in

years. The single cell that uses ‘months’ as a unit overrules

this general statement for that specific cell.

 Regenerating an RDF Record Table with semantically

self-contained data items is possible if we know how to

relate the information in partially specified data cells to the

associated explaining items. When using for example the

OM quantity om:Duration with unit om:year in a header

cell, we know that a numerical value in an associated data

cell specifies the ‘numerical value’ property of the Measure

of this quantity. This is the type of interpretation that readers

of tables on paper make all the time, but is not obvious for

automatic processing. This knowledge has to be

incorporated in the software that unpacks a model.

Fig. 4 shows the extended schema for RDF Record

Table, including header information using the property

rec:explainsData. It shows that the class rec:Cell can

play the role of either header cell or data cell. As a matter of

fact, it is possible to use a data cell as a header item. This

means that other data items use this particular item to

provide their type and other information, while the data

items simply provide a numerical or string value.

In Fig. 4, we can see that records can directly indicate

which cells play a role as header cells using the property

rec:containsAsExplanation. For Table II such a

listing of explanatory cells would be modelled as follows:

:dataset1 a rec:RecordTable ;

rec:containsRecord :o1 , :o2 , :o3 , :o4 ;

rec:containsAsExplanation :cell_sex ,

:cell_lifeExpectancy_YR ,

:cell_period_from_yr_to_yr

:cell_geographicalArea .

The cell explaining the Life Expectancy measurements then

refers to the data cells containing those measurements:

:cell_lifeExpectancy_YR a rec:Cell ;

 rec:explainsData

:cell_lifeExpectancy_83_3YR ,

:cell_lifeExpectancy_76_7YR ,

:cell_lifeExpectancy_898MONTH ;

:hasLiteralValue "Life expectancy

(years)"^^xsd:string .

Although for reasons of clarity it is attractive to write the

explaining cells as a ‘header’ at the first level of nesting,

there is no formal need to do so. Such cells can be placed

anywhere in an RDF Record Table model. This is useful

when merging data from different sources, where the top

level table is not known upfront.

Finally, we note that the property

rec:explainsAsData is redundant if the respective cells

are already used to explain data cells through the property

rec:explainsData. However, this property can be used

136

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to express the structure of an otherwise empty table, which

then can serve as a template for new observations or

analyses.

VI. DIFFERENCES BETWEEN RDF DATA CUBE AND RDF

RECORD TABLE

The most salient difference between RDF Data Cube
and OQR Record Table is the fact that RDF Data Cube sees
complex datasets as n-dimensional hypercubes, whereas
RDF Record Tables are defined recursively via nesting.
This use of n-dimensional hypercubes in RDF Data Cube
has a profound impact on the type of data it can be used to
model. RDF Data Cube expects a certain kind of dataset:

“At the heart of a statistical dataset is a set of observed

values organized along a group of dimensions, together
with associated metadata” [6]

RDF Data Cube also requires that cubes be well-formed,

which requires, among other things, that there be no missing
data, and that all measures and dimensions are required for
all observations. In short, Data Cube expects a uniformly
formed and filled cube, with no extra granularity in some
areas that is missing in others, and no extra observations.
This is often not the case, particularly when data from
different sources is integrated together. In these situations,
the integrity constraints can cause problems:

“Some specialised data cubes do not satisfy the integrity

constraints, specifying that every
qb:DataStructureDefinition must include at least one
declared measure (IC-3), that only attributes may be
optional (IC-6) and that each individual qb:Observation
must have a value for every declared measure (IC-14).
These constraints are too restrictive for our Nutrition data
cube where the presence or ab-sence of a value for a
particular category of food varies according to the subject’s
diet. This is a concern for survey questionnaires using
previously entered values to determine if a field on a form
should be mandatory filled.” [19]

The authors of the above-mentioned paper specifically
note the difference in their data from that commonly used in
RDF Data Cube.

“The LCDC (Linked Clinical Data Cubes) use of the

RDF Data Cube vocabulary is different from the more
common use cases [10] primarily because of the unreliable,
disparate and longitudinal nature of clinical data” [19]

RDF Record Table, on the other hand, has been

specifically developed for researchers and their quantitative
data, with extensive input from real-life research data. This

data, like the data used by [19], is often far more irregular
than most statistical data. In RDF Record Table any record
can contain an arbitrary set of measurements, with different
types and sub-records. Missing values or varying units of
measure or other attributes within a single dataset are no
problem. We do not demand completeness or regularity of
the data, in the sense that a record can contain any set of
entities and properties. This better reflects the reality of
datasets in science and engineering, in particular, when
datasets from different sources are combined. It can be
argued that such datasets can be modelled in RDF Data
Cube simply by violating the integrity constraints.
However, this is a bad approach to using a standard, and can
lead to interoperability problems between tools developed
for the standard.

The second major distinction between the two
approaches is that RDF Data Cube distinguishes between
dimensions and measures, whereas OQR Record Table does
not make a priori assumptions about the roles of individual
observations. We consider making such decisions to be the
task of the data analyst.

We will now further discuss the differences between
RDF Data Cube and RDF Record Table in the context of
specific challenges that are faced in annotating and
integrating real-life data.

1) Missing data

According to the integrity constraints for RDF Data
Cube, all data must be present. Naturally, even in the well-
planned world of statistics bureaus, data is sometimes
missing. There is no solution in the RDF Data Cube
standard for this. However, the ‘attribute’ concept, which
allows metadata to be attached to an observation, is a natural
way to indicate missing data. In [10], a simple Boolean
attribute is used to indicate when data is missing. It is of
course then necessary that tools using the data are aware of
this solution and can process it correctly.

When two tables are integrated together, there can be
missing data even though both original tables were
complete. For example, if one file contains the mass
measurements for all dairy products, and another file
contains viscosity measurements for all liquid dairy
products, then when the two files are integrated together,
there will be missing data for the solid dairy products. In
order to cope with this in Data Cube, observations would
have to be generated for these products, and then marked as
‘missing data’.

In Record Table, there is no constraint requiring data to
be present. Therefore, in the event of missing data, the cell
can simply be omitted from the record. This fits better with
the ethos of RDF.

137

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III: Example of an irregularly nested table

 Installed Capacity (in 10 MW) Operating Water Level (meter)

Hydropower Stations
Budget (in hundred

millions of CNY)
Completion Year

Realisation level Realisation level
2003 Plan Upon Completion 2003 Plan Upon Completion

Twenty-Second 37.76 60 60 519 519

Twenty-First 15 15.5 533 533
Twentieth 79.37 2009 150 175 602 602

2) Unexpected data

In a table, a column can often contain an unexpected

value. For example, a column of numerical measurements

would be expected to contain values such as “1.34, 22452E-

10”. However, it is perfectly reasonable that a researcher

may note down unexpected values: “<20, negligible, ~5”.

These are results that a human reader will be perfectly

capable of processing when they appear in a table, but that

can confuse a software tool.

 In RDF Data Cube the ranges of the dimensions and

measures are set. A column that expects to contain

decimals, cannot therefore contain exceptions such as we

name here. An option would be to store the value in an

attribute, however, we regard the storing of data in a

metadata field as highly inadvisable.

In RDF Record Table, the role of a cell is separate to its

type. A cell containing content with type string, for

example, ‘negligible’, can therefore be linked via the

relationship rec:explainsData to a header containing

content with type Mass. This allows the information that

the mass is negligible to be stored with the correct data type,

so it can be excluded from numerical processing such as

aggregation. At the same time the role of the information is

clear, which allows the value to be displayed along with the

other mass measurements.

3) “Irregular” nesting

RDF Data Cube demands that every observation has a

value for each dimension:

“Every qb:Observation has a value for each

dimension declared in its associated qb:DataStructure-
Definition.”[6]

This means that RDF Data Cube cannot model any

tables that do not fulfil this requirement. Regularly nested
tables, in which for each observation there is a value for
each dimension, can be modelled without problems.
However, tables are often partially or irregularly nested.
The observations in these tables then do not have a value for
each dimension. These data values are not missing as such,
the dimension is simply not applicable for part of the data.
Table III is a real-life example of such a table.

It is perfectly logical that this information about the
constructed dams is stored in one table. However, this table
cannot be modelled as one Data Cube, as the Completion
Year and Budget observations do not have values for each
value of the Realisation Level dimension, because their
value is not affected by the Realisation Level. It would
have to be split into two Data Cubes, one with Dam name as
Dimension, and Completion Year and Budget as Measures
(Table IV); and one with Dam name and Realisation Level
as Dimensions, and Installed Capacity and Operating Water
Level as Measures (Table V). Alternatively, the Budget and
Completion Year data could be repeated for each
Realisation Level, but this creates the misleading impression
that there is a relationship between these data and the
Realisation Level.

Either approach requires either a fairly advanced level of
understanding from the user, or quite intelligent processing
from the data input tool. Breaking up the table into two
Data Cubes also loses the implicit relationship between the
data, which must then be indicated in metadata or by
grouping the Data Cubes in an ObservationGroup. An
alternative solution, namely using the void:subset
relationship to indicate a link between Data Cubes, was used
by [19]. This underlines the need for this sort of nesting in
real-life data.

In RDF Record Table, the concepts of Dimension and
Measure do not exist. The table can simply be annotated as
it stands, and the nesting of Record Tables allows the extra
information on Realisation Level to be added in to only the
relevant portions of the table. The data is kept together, and
the original structure (with all its implicit information) is
retained, without need for additional constructs such as
ObservationGroup.

4) Multiple measures

In the above example, one table had two Measures –

Installed Capacity and Operating Water Level. As

explained in the section on RDF Data Cube, in such a

situation the user must choose between modelling these with

multiple measures, or with a measure dimension. For many

situations the choice made may not matter in practice;

however, the choice must always be made. For novice users

138

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Table IV: The first of the two tables into which Table III must be

split when modelled in Data Cube

Hydropower

Stations

Budget (in hundred

millions of CNY)
Completion Year

Twenty-Second 37.76

Twenty-First

Twentieth 79.37 2009

this can be confusing. When integrating two tables, one of

which uses multiple measures, and the other a measure

dimension, a conversion will also have to take place before

the integration, as the two types may not be mixed in the

same dataset, according to the RDF Data Cube

specification.

RDF Record Table requires no choice for how to handle

multiple measures, as no distinction is made between

measures and dimensions. Each record simply has a

number of cells, each cell with a single value. Where

measured values belong together, such as in the case of a

multi-spectral measurement, they can be grouped together in

their own Record Table, which can be nested within the

larger Record Table.

5) Ease of annotation

Setting up an RDF Data Cube requires a certain level of

technical knowledge of the model. While a data entry tool

can of course hide away all the complexities of the RDF

itself, the user must, at the very least, specify their

Dimensions and Measures. For nice, regular examples, such

as those given on the RDF Data Cube website, learning how

to do this is perhaps not so hard. But for more complex

examples, it is asking quite a lot of the user to be able to do

this correctly. It is of course possible to choose the

approach of having an expert design a template for users to

fill in (as in RightField [15]). The users themselves are then

not required to understand the model. However, this limits

the spontaneity and creativity of the users, they cannot make

a simple change such as adding a new data column without

needing to apply for a template change.

For RDF Record Table, on the other hand, the user does

not need to make the distinction between Measures and

Dimensions. All they need to do is to annotate headers with

quantities, phenomena or units of measure. As the

difference between a quantity and a phenomenon is not

dependent on their role in the table, it is quite easy to learn.

In the Rosanne tool, which implements RDF Record Table,

and which we will discuss in Section VII, even this

knowledge is not necessary, as the user simply looks up the

annotation they want to apply, based on the name of their

item.

6) Ease of integration

In RDF Data Cube, ‘tables’ and ‘records’ don’t exist, the

data is all merged into the hypercube. To integrate data

Table V: The second of the two tables into which Table III

must be split when modelled in Data Cube

Installed Capacity (in 10 MW)
Operating Water

Level (meter)

Hydropower

Stations

Realisation level Realisation level

2003
Upon

Completion
2003

Upon

Completion

Twenty-First 60 60 519 519

Twenty-

Second
15 15.5 533 533

Twentieth 150 175 602 602

from two different data cubes together on a given JOIN

field, first the dimension to be used as the JOIN field must

be chosen, optionally values of additional dimensions must

be specified to select a section of the data, and finally the

desired measures must be selected. For example, for the life

expectancy table, we could specify Region as the JOIN

field, the dimension value 2004-2006 to select that time

frame, and then for the measure the only option is Life

Expectancy. Given a table of average weight for the same

time frame and region, we could then select the measure

Average Weight, and so produce a table showing the

average weight and life expectancy for all regions in the

time period 2004-2006. Inherent to the integrity constraints

of Data Cube is that we could not have done this if the

average weight was only available for half the regions,

without an extra step to generate empty ‘missing data’

observations for the other regions. Similarly, if the data we

had available on average weight was not split into male and

female, the integration could not occur, as the gender

dimension would be missing in part of the integrated table.

The available options are limited by the constraints placed

on the data.

RDF Record Table is built around tables and records.

We integrate using SPARQL [27], a semantic web querying

language. To carry out the same integration as above, we

select all records containing Region from the desired tables,

and select the Life Expectancy and Average Weight cells.

To define the time period, we set the value of that entity to

2004-2006 (remember, we have assumed that these time

periods are identified entities). Missing data can be

accounted for using the SPARQL OPTIONAL keyword (see

Section VIII), and we can still integrate average weight

information even if it is not split into male and female (the

weight information is organized per region and time period,

with additional nested tables containing the life expectancy

per gender group). In addition to this, if desired we could

join tables based on a numerical value, such as the value of

the life expectancy, instead of an identifier, such as region.

The distinction between Phenomenon and Quantity can

guide in the selection of a join variable, but it is not required

that the join variable be a Phenomenon. A table may consist

solely of numerical values, if desired, and for scientific

analysis such as finding correlations between variables, such

a table is perfectly reasonable. RDF Data Cubes, on the

other hand, must contain a dimension, and if the measured

139

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

value is turned into a dimension, then it may only take

predefined values. There is much more freedom in how to

integrate the data when using RDF Record Table.

7) Ease of searching and viewing

RDF Data Cube includes a data structure definition.

This immediately supplies information about the expected

elements in the data and its structure, making search very

easy. The concept of slices allows for a particular view on

the data to be quickly obtained, and the concept of

dimensions makes the definition and selection of a

particular slice very simple. The regularity of the data also

aids search, if all integrity constraints are fulfilled then the

search does not need to handle missing or optional data.

RDF Record Table does not require a data structure

definition. This increases flexibility, but means that the data

must first be searched to discover what types of

observations are available. The use of

rec:ContainsAsExplanation to indicate headers at

the top level of the table can help make this search quicker.

As there is no slice concept, pre-prepared views cannot be

provided, and the absence of a Dimension concept means

that selection of a given ‘slice’ is more complex, requiring

constraints in the query. As the data is not constrained to be

regular, the search query must also handle missing data and

nested Record Tables. This adds to the complexity and

probably reduces the speed of search.

8) Flexibility of data analysis

The requirement to choose a-priori between dimensions

and measures is useful in fields such as standard statistics,

where it is very clear what data is to be gathered. Defining

dimensions and measures makes it easier to gather the data,

and easier to define particular views. This requirement is,

however, often problematic, particularly in research, where

it is often not clear in advance what is going to be measured.

Rather than having a specific measure that is influenced by

certain dimensions (time, place, gender), it is often the task

of a scientific study to determine what the relationship is

between various measurements. Depending on the purpose

of the study, the same measurement may assume the role of

a cause or a consequence. Rather than assuming some

causal order between quantities, therefore, it is more

appropriate to simply state that they have been observed

together. This is particularly the case for in-vivo studies,

where it is much more common to observe various variables

and try to discover their relationship, than to vary one

particular variable to discover its effect, as it is often

impossible to set the values of certain variables to fixed

points (as is the requirement for dimensions).

We conclude that RDF Record Table can be viewed as a

generalized RDF Data Cube, making fewer assumptions

about the regularity and completeness of the data. If a

dataset that was originally drafted as an RDF Record Table

meets certain requirements, it is in principle possible to

automatically transform it into an RDF Data Cube. Any

dataset expressed in RDF Data Cube, on the other hand, can

be modeled as RDF Record Table. This has the great

advantage of allowing data in the Record Table format to

still take advantage of all the tools available for Data Cube,

where the data meets the Data Cube requirements. It is

quite conceivable that both models could be used in the

course of the same study. RDF Record Table is appropriate

during the research process when data can be incomplete,

the researchers are still building their understanding of the

data and the role of the different factors, and diverse

datasets are being integrated together. RDF Record Table

then gives the researchers maximum flexibility to carry out

their work without worrying about constraints, dimensions

and measures. RDF Data Cube is appropriate when the data

has been processed and cleaned up, and the roles of

dimensions and measures are clear. RDF Data Cube then

allows the researchers to take advantage of the available

Data Cube tools for visualization, and to define slices of

their data to make consumption and publication easier.

VII. ANNOTATION IMPLEMENTATION

In the following sections, we discuss two tasks that
benefit from the definition from a formal model of tables
and RDF Record Table in particular. In this section, we
discuss how annotation of two-dimensional tables can be
done in practice. This annotation is a necessary precursor
for the transformation of the two-dimensional table to the
RDF Record Table model. In the next section, we discuss
practical support for the data integration task.

A good model of tabular data is useless if the data
cannot easily be input. Given the popularity of the classic
table format in tools such as spreadsheets, it should be
possible to use these for data entry and then construct
semantic datasets from there. In order to make this process
as easy as possible, it should fit into existing work
procedures and tools, and minimize additional effort by the
user. Since Microsoft Excel is extremely popular, we have
implemented the RDF Record Table model as an add-in for
Excel, called Rosanne [25]. Rosanne supports engineers and
scientists in creating semantic tables (as yet simple, non-
nested, non-pivoted tables, i.e., rectangular with one header
row or column, with no data values in the header). Similar
functionality for the RDF Data Cube has been implemented
in TabLinker [14]; however, this is a standalone tool which
cannot be accessed from within Excel. Rosanne allows users
to enter their data in a simple table format. Rosanne then
uses OM (Ontology of units of Measure and related
concepts) [14] to assist users in adding relevant quantities
and units of measure to the table. In addition, other domain-
specific ontologies are available for annotating identified
entities in the table, such as samples, objects, locations, etc.

140

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Support for table annotation takes two slightly different
forms. In the first case, when creating and filling new,
initially empty tables, the user must be assisted in selecting
and assigning the right concepts and constructing the right
layout. Rosanne supports this task of creating and
semantically enriching tables from scratch. It does not
confront the user with the Record Table model, nor does the
user have to have any knowledge of ontologies. The user
sets up a table by simply drawing areas in the spreadsheet.
Next, the user selects the concepts they want from
dropdown lists showing the user-friendly labels from the
ontologies. The URIs (Uniform Resource Identifiers) for
the ontology concepts are then stored in the Record Table
model.

 The second form of annotation is when existing datasets
have to be semantically enriched. Rosanne can
automatically annotate existing data with units and
quantities from OM, based on heuristics [28]. This does not
always produce accurate results, but saves time for the user
by creating an initial annotation that can be corrected where
necessary.

 In addition to annotating the content of the cells in

tables, a tool that handles spreadsheet tables also has to

make an interpretation of the structure of a table. It needs to

translate the two-dimensional form into the graph-based

RDF Record Table model. Human readers can usually

quickly combine layout and text in tables to make the proper

interpretation. However, this is not a trivial task to

automate since it depends on implicit knowledge. For the

current, simple form which we support in Rosanne, an

indication of the table and header areas by the user,

combined with some basic assumptions in the software,

suffice for the majority of tables. However, for more

complex structures, more advanced processing is required.

We now discuss some heuristics that could potentially be

applied to make this translation.

 Automatic interpretation of two dimensional tables

could be facilitated by making a number of choices and

assumptions on the interpretation of the table layout [29].

An important assumption, for example, is that two

dimensional tables consist of rectangular blocks with cells

that belong to the same semantic category, for example, they

are of the same type or they can all be related to a single

concept. The measured values of observations, i.e., usually

numerical values of type 'float', are often grouped together

in one or more blocks. In the example table on hydropower,

this is the block in the lower right corner. The blocks

adjacent to these float blocks, are usually of type 'string' and

provide contextual information on the cells in the float

blocks. In the example table, these are the two upper rows,

and the column on the left side. These string blocks either

represent the quantity that is measured, or the

phenomenon of which that quantitative property is

measured.

Another assumption is that every observation in a table

can be related to a quantity and a phenomenon in the nearest

string block. The string cells describing quantities can

usually be recognized by the associated units of measure.

Automatic recognition of quantities and units of measure

can be supported by using an ontology like OM [25], and

heuristics such as those used in [28], for example that units

are often placed between brackets ‘Mass (kg)’. The string

cells describing phenomena are usually located across from

the quantity cells.

In the example table, the measure '37.76' can be related

to the quantity 'Budget' and to the phenomenon 'Twenty-

Second in the Lancang River Cascade'. If an observation can

be associated to multiple quantities or phenomena, this

could indicate that the corresponding table has a nested

structure. In the example table, the measure '60' can be

related to the quantity 'Installed Capacity' and to the

phenomenon 'Twenty-Second in the Lancang

River Cascade', but also to the phenomenon 'Realisation

level', indicating nesting.

 The string blocks in two dimensional tables are often

called table headers, based on their position in the table.

However, in RDF Record Table header cells are defined

based on their role as descriptive item. Translation from a

header cell in a two dimensional table to a header cell in

RDF Record Table is therefore not straightforward.

Headers in two dimensional tables often contain a series

of instances of phenomena or quantities. These are in fact

data values (see section V) and the corresponding cells

should therefore be modeled as data items in RDF Record

Table. The actual header, i.e., descriptive, item in RDF

Record Table is the parent class of these

instances. Automatic recognition of these parent classes can

be supported by using selected ontologies, for example OM

for quantities and a domain vocabulary for phenomena.

The abovementioned assumptions can be used as

indication of the composition of records, and properties and

roles of observations when translating a two dimensional

table into an RDF Record Table. However, science and

engineering tables can have complex structures that are

difficult to interpret in a fully automated way. A possible

solution would be to develop an interactive tool. With such

a tool, the majority of the interpretation would still be

performed automatically, but user input is required for

checking and refining the results.

VIII. INTEGRATION OF ANNOTATED DATA

Having discussed the annotation task in some detail, we
now move to another important task for data handling,
namely integration of data. Scientific research regularly
requires data to be combined from different sources. This
may be as simple as merging two different tables from the
same experiment, or as complex as integrating multiple
tables, each from a different research group at a different
time. Integrating these data allows researchers to discover
new relationships and to increase their knowledge.

Annotated data is easier to integrate than unannotated
data. It is far easier to select the correct data through the

141

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concepts they describe and context information, than
selecting them using obscure cell coordinates and strings,
which are often ambiguous and incomplete. To demonstrate
the use of the RDF Record Table model for data integration,
we have implemented support for this task as part of the
Rosanne add-in for MS Excel.

In Rosanne, the user indicates which field is used to
match records together (usually called the ‘JOIN field’ or
sometimes the ‘key’) and which measurements they wish to
select. Once this is done, the relevant records can be found
automatically based on the annotated cells, and combined
automatically using the information about the table structure.

The main challenge in integrating the annotated data is to
combine the data stored in the different RDF Record Tables.
SPARQL was the natural choice to perform this combination
as it has the necessary functionality for searching, filtering
and combining data expressed in RDFS/OWL.

In SQL, the relational equivalent to SPARQL, there is a
standard functionality – the JOIN concept – which allows
tables to be quickly combined. SPARQL does not have an
equivalent concept, as SPARQL is based around the concept
of triples, not of n-ary relations. It is standard in SPARQL to
retrieve triples that share a subject, predicate or object, and in
this way to combine the triples. However, integration of two
records requires the integration not of two triples, but of two
collections of triples. Most of these triples do not contain the
common identifier, the JOIN field, on the basis of which the
records are to be combined. The integration of tables is
therefore more complex than the combination of isolated
triples.

It was necessary for us to implement the JOIN
functionality ourselves using building blocks from SPARQL,
which was not a simple task. This is an important exercise
for the Semantic Web, as it is becoming more and more
common that tabular data is stored in RDF. We have
developed a generic approach that is independent of the
specific details of the tabular model, and therefore, which
can work for both RDF Record Table and RDF Data Cube.

When integrating, there can be multiple records that have
the same value for the JOIN field. For example, repeated
measurements on the same sample. These multiple records
must then be grouped together. For example, if we are
joining records on the basis of the name “Jan”, then the
records “Jan, Wageningen, Tuesday” and “Jan, China,
Tuesday” would be grouped together. To turn these records
into one record, all fields except the JOIN field (which is by
definition the same) must be aggregated.

Our approach follows these simple steps:

1. Select all relevant records (records containing the

JOIN field)

2. Retrieve the desired information from the records

3. Group the records based on the JOIN values

4. Aggregate the other values

5. Structure all retrieved information into an

integrated table

6. Retrieve the results

Steps 1 to 5 can be carried out within a single SPARQL
integration query. This is a CONSTRUCT query, which
creates a new RDF graph. The CONSTRUCT query nests
three SELECT subqueries, which retrieve sets of variables
from the existing RDF data. The innermost subquery selects
the relevant records by looking for records containing an
annotation that references the JOIN field (step 1).
Optionally, the data to be included can be filtered in this step
by using the SPARQL FILTER function, for example, we
may only wish to integrate samples with a mass greater than
10g.

The second subquery selects the desired fields from the
original records by looking for annotations with these fields
(step 2) in the selected records, and groups the information
based on the JOIN field (step 3). The outer subquery
aggregates the data (step 4). Finally, the CONSTRUCT
query forms the new records and creates the integrated table
(step 5).

At this point, the integration is complete. However, the
table is still in RDF, and is stored in the repository. To
retrieve the results for recreating the two-dimensional table
we use a second SPARQL SELECT query (step 6).

Note that, if wished, we could build the integrated table
by simply collecting the data without aggregating them. The
aggregation method, needed to construct a simplified, two-
dimensional view, could then be specified when retrieving
results, allowing different users to choose different views on
the data. Either approach can be used depending on the
situation.

It is possible that we may wish to join on more than one
field. In the example above, we may not want the records
about “Jan” to be merged if “Jan” is in different places. In
that case, we need to identify the entities to join using both
name and location.

The queries we have designed work with any number of
tables. Naturally, there can be performance issues with
large amounts of data.

As previously mentioned, a common challenge in
scientific data is that of handling missing data. When
collecting records from different tables, we expect to find all
available records in the result, even when data (in RDF
Record Table values of rec:containsContent) is
missing. By default, however, SPARQL expects all
requested information asked for in the query to be present,
otherwise no result will be returned. We solved this by use
of OPTIONAL clauses in SPARQL. OPTIONAL allows a
section of the requested data to be missing without
preventing other results from being returned. A
disadvantage of OPTIONAL is that it is slower, a known
performance problem of this construct [30].

A specific case of missing data is when the JOIN field
mentioned in a query is missing in the data. This is more
likely to occur when there are multiple join fields – in our
example the name “Jan” may always be filled in, but not
always the location (“Wageningen” or “China”). In this
situation, the way one merges different records depends on
how he or she wishes to interpret the data. One option is that
the user only wants to integrate records with the same name
if the location is also the same, or if the location is missing in

142

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

both. Alternatively, the user may wish to interpret the
absence of location information as meaning ‘any location’,
so that records with the same name will be integrated if both
locations are the same, or if one or both locations are
missing. Either choice can be catered for in the query. Our
default is that records will only be matched if locations are
identical. In addition, we implement the ‘any location’
interpretation by combining records with empty fields with
all possible values of those fields, thus allowing integration
with any value of that field. This is done within the
integration query by means of an additional subquery.

We are currently investigating how we can support more
complex queries, meeting the requirements that some users
have specified for their practical cases. For example, in one
situation, a scientist needs to ‘integrate a measurement on a
sample with the first record in time for that same sample,
after the temperature of the sample has first exceeded 90
degrees Celsius’. For this purpose, we use the subquery
facility in SPARQL to add further layers of nesting to the
query. We have implemented such queries in a separate
experimental tool and are now working on improving their
performance and incorporating them into our main
integration query. Supporting this type of queries will
provide a significant benefit to researchers, as currently these
integrations require a great deal of work and often
specialized software or databases. How to provide a clear,
intuitive user interface for such complex queries is an
important issue.

All above-mentioned queries are independent of the
precise tabular format. We have tested our basic integration
approach developed for RDF Record Table on data in the
RDF Data Cube format. The steps and the structure of the
queries remain the same. The selection of the data fields is
simply changed to use Data Cube syntax instead of RDF
Record Table. The queries then work as designed.

For practical application of semantic integration
functionality to be widely accepted, it has to be part of
familiar, existing tools. Therefore we have incorporated it
into our Excel add-in, Rosanne, extending the annotation
functions presented before. Fig. 5 shows an example from
food science. In this experiment, the researcher wishes to
combine rheological measurements on protein samples with
sample composition data. Without semantic support, this
task would require her to find the relevant files somehow,
then to copy and paste different data by hand, with plenty of
scope for error. With semantically annotated tables, the
necessary information is available to allow her to find the
files via a search function (implemented in a demonstration
tool but not yet incorporated into Rosanne). The tables have
been annotated using OM and a domain ontology. The
Integration Pane provides a list of all the concepts available
in the files. The researcher selects ‘Protein’ as the
identifier, and ‘Storage Modulus’ and ‘Composition’ as the
variables of interest. Rosanne writes the RDF Record Table
representations of the tables to a Sesame [31] repository,
creates a SPARQL [27] CONSTRUCT query to find the
relevant data, and generates the integrated table in the RDF
Record Table format. A SPARQL SELECT query retrieves
the data from the integrated table and writes it into a new

Figure 5: Rosanne using RDF Record Table.

Excel spreadsheet. The integrated table contains all the
original annotations, and can itself again be integrated with
other tables.

The process for the user is quite simple. She defines the
integration they want with a series of simple dropdowns, and
does not need to be aware of RDF Record Table, Sesame or
SPARQL.

IX. EVALUATION OF ANNOTATION AND INTEGRATION ON

INDUSTRIAL USE CASES

We tested annotation and integration via Rosanne on ten

real-life use cases collected from four different academic
research institutes, and the R&D departments of three
commercial firms. These cases did not involve nested tables,
but did include integration of more than two files, missing
data and missing JOIN fields.

Regarding annotation, our key finding was that the
provided data required some manual cleaning prior to
annotation in Rosanne. Issues included JOIN variables being
indirectly specified, for example, in the spreadsheet name,
rather than being included in the table, tables being split over
multiple locations in the spreadsheet, empty cells that were
intended to be interpreted as including repetitions of previous
cells, etc. Such issues can be addressed by adding data
cleaning facilities to Rosanne, but are also related to
compliance to good data notation by users. If information is
completely missing or obscured, no tool will be able to
recover it.

The integration function offered by Rosanne worked as
desired for the majority of use cases once the data had been
cleaned and annotated. The need for the more advanced
integration queries as discussed in the previous section was
confirmed by some of the other cases. These cases show
how complex integration functionality, which would
normally require researchers to turn to specialist solutions

143

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such as databases, can in future be offered in Excel in a
simple, user-friendly manner.

One case involved a pivoted table, a table where the
header contains data elements. As Rosanne does not yet
support annotating the data elements within the header of a
pivoted table, this table had to be unpivoted before it could
be annotated. For the integration step itself, a wider range of
data aggregation would be welcome. Some use cases,
however, required advanced statistical analysis methods,
such as regression, which fall outside the scope of
aggregation. We are looking at a possible combination of
Rosanne and a statistical package like R, rather than
attempting to support this sort of analysis in SPARQL
queries.

We conclude from these tests that RDF Record Table and
our SPARQL approach for integration were successful in
carrying out integrations on real-life data. While additional
functionality is necessary to achieve the full results desired
in some use cases, the core integration functionality was
shown to be sound for a variety of data.

Due to the manual cleaning required, it was not possible
to fully validate the performance and practicality of Rosanne
in these use cases. Once the issues discovered in these use
cases have been addressed, we will conduct a full validation
of our approach.

X. CONCLUSION AND FUTURE WORK

We have proposed RDF Record Table as a way to model
heterogeneous tabular data semantically. The model
complements the RDF Data Cube vocabulary. RDF Data
Cube offers the benefits of semantic modelling to domains
such as statistics, with regular, standardized datasets, and
provides good support for data visualization. RDF Record
Table offers more flexibility in storing heterogeneous or
incomplete data, and therefore extends the benefits of
semantic modelling to the more complex situations for
which RDF Data Cube is too restrictive. RDF Record Table
addresses all four aspects identified in Section I as being
essential for a good tabular model; the content can be
annotated, the table structure is modelled, there is a link to
the PROV model for provenance data, and it is flexible,
allowing complex structures.

A first implementation of the RDF Record Table model
as an extension of Microsoft Excel, called Rosanne,
demonstrates that the format is capable of accurately
representing tabular data, and can be applied by offering
users simple choices from drop-downs, without the users
needing to be aware of the RDF Record Table itself.

Rosanne also provides semi-automatic integration of
datasets. SPARQL queries are used to integrate data from
different RDF Record Tables. This integration approach is
defined in a generic way, making it applicable to other RDF
tabular models, such as RDF Data Cube. The user can
specify their integration using simple drop-downs, and again
does not need to be aware of the complexity of the model or
the queries. This integration functionality has been
evaluated in use cases from a number of research institutes
and R&D organizations of multinationals in food

production, cooperating in TI Food and Nutrition [32].
While a number of issues were identified that must be
addressed to make Rosanne a practical tool for industry, the
core integration principles were shown to be sound.

In Section I, we discussed the various problems that
arise from how spreadsheet data is currently handled. RDF
Record Table and its implementation in Excel provide a
means to effectively tackle these problems. Ambiguity and
incomprehensibility are addressed by linking data to defined
concepts in shared vocabularies. The link between RDF
Record Table and the PROV model allows the provenance
of the data to be recorded. The annotations can be searched,
making it easier to locate relevant data. The integration
facility of Rosanne, built on top of the RDF Record Table
model, enables data from different spreadsheets to be linked
and combined together, assisting reuse. Finally, this support
is available in the commonly used Excel tool, allowing
researchers to incorporate good data bookkeeping into their
research workflow, thus enabling good data documentation
with minimal effort.

For full implementation of the RDF Record Table
model, several issues must still be solved. While the model
itself supports nesting, the Rosanne add-in does not. This
support must be added, preferably by offering heuristics that
assist the user. To handle the overhead of explicit
annotations, RDF Record Table allows repeated information
to be presented in cells that provide metadata for similar
cells. However, methods for automatic (local) expansion
and compression of datasets should be considered as well.
In order to realize the benefits of both RDF Record Table
and RDF Data Cube on the same data at different stages in
the scientific or engineering process, mapping between the
two formats is required. This necessitates support for
implementing the constraints of Data Cube when converting
Record Table to Data Cube.

As discussed, the integration functionality of the
Rosanne add-in can be improved by allowing more complex
queries, handling nested tables and offering a link to a
statistical package for advanced data analysis.

Rosanne has not yet been optimized for performance on
large datasets. This optimization will be a necessary step in
producing an add-in that can be used in industry.

In addition to these issues on the annotation and
processing of new data, the recovery of legacy data needs
attention. There is a wealth of data stored in existing
spreadsheets, which have, in general, an informal structure
and no annotations. Current results for fully automatic
annotation are still of insufficient quality [28], so more
research is needed to find how to unlock this legacy data.

Semantic tables also offer the potential to support
cleaning of the data, for example by defining allowed units
and ranges for measurements so that errors can be detected
and possibly (semi-)automatically corrected. This is an
aspect that we will look at in the future.

A format for tabular data is of little use if it is not
adopted by the community. We plan to submit RDF Record
Table to the CSV on the Web Working Group [33] for
consideration and inspiration in their work to provide better
interoperability for tabular data.

144

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Describing the content and structure of tabular data
semantically makes it possible to easily find data even in
disparate sources, to understand and clean the data and to
combine it semi-automatically. This way, much richer
datasets will be published in the future, so that others can
fully understand them and build further on them.

ACKNOWLEDGMENT

This publication was supported by the Dutch national
program COMMIT.

REFERENCES

[1] J. Top, H. Rijgersberg, and M. Wigham, “Semantically

enriched spreadsheet tables in science and engineering,” in
Proc. Eighth International Conference on Advances in
Semantic Processing (SEMAPRO), pp. 17-23, Rome, Italy,
2014.

[2] Y. L. Simmhan, B. Plale, and D. Gannon. “A survey of data
provenance in e-science,” ACM SIGMOD Record, 2005.
doi:10.1145/1084805.1084812.

[3] A. Garcia, O. Giraldo, and J. Garcia, “Annotating
Experimental Records Using Ontologies,” Int. Conference on
Biomedical Ontology, Buffalo, NY, USA, 2011. Available
from: http://ceur-ws.org/Vol-833/paper12.pdf. Retrieved
June, 2014.

[4] J. Gray, “Jim Gray on eScience: a transformed scientific
method,” in T. Hey, S. Tansley, K. Tolle (Eds.), The Fourth
Paradigm: Data-Intensive Scientific Discovery, Microsoft
Research, 2009, pp. xvii–xxxi.

[5] RDF Semantic Web Standards, W3C. Available from:
http://www.w3.org/RDF/. Retrieved: May, 2015.

[6] R. Cyganiak, D. Reynolds, (eds). RDF Data Cube
Vocabulary, W3C, 2012. Available from:
http://www.w3.org/TR/vocab-data-cube/. Retrieved June,
2014.

[7] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi, “RDF123:
From spreadsheets to RDF,” Lecture Notes in Computer
Science, Vol. 5318 LNCS, 2008, pp. 451–466.
doi:10.1007/978-3-540-88564-1-29.

[8] J. Cunha, J. Saraiva, and J. Visser, “From spreadsheets to
relational databases and back,” In Proceedings of the 2009
ACM SIGPLAN workshop on Partial evaluation and program
manipulation - PEPM “09 (p. 179), 2009.

[9] C. Bizer, and R. Cyganiak, “D2R Server – Publishing
Relational Databases on the Semantic Web,” World, p. 26,
2006.

[10] L. Lefort, J. Bobruk, A. Haller, K. Taylor, and A. Woolf, “A
Linked Sensor Data Cube for a 100 year homogenised daily
temperature dataset,” In Proceedings of the 2012 5th
International workshop on Semantic Sensor Networks – SSN
2012 (p. 1), 2012.

[11] S. Capadisli, S. Auer and A.-C. Ngonga Ngomo, “Linked
SDMX Data,” Semantic Web, 2013. doi:10.3233/SW-
130123.

[12] Commercially Empowered Linked Open Data Ecosystems in
Research project. Available from: http://code-research.eu/.
Retrieved March, 2015.

[13] Tabels Project, Available from:
http://idi.fundacionctic.org/tabels/. Retrieved March, 2015.

[14] TabLinker, 2012. Available from:
http://www.data2semantics.org/2012/02/19/tablinker/.
Retrieved June, 2014.

[15] RightField. Available from: https://www.sysmo-
db.org/rightfield. Retrieved March, 2015.

[16] P. Rivera Salas, F. Maia Da Mota, M. Martin, S. Auer, K.
Breitman, and M. A. Casanova, “Publishing Statistical Data
on the Web,” 2012 IEEE Sixth International Conference on
Semantic Computing, Palermo, 2012. doi:
10.1109/ICSC.2012.16.

[17] OpenCube Toolkit. Available from: http://opencube-
toolkit.eu/. Retrieved March, 2015.

[18] OpenCube Project. Available from: http://opencube-
project.eu/ . Retrieved March, 2015.

[19] L. Lefort, H. Leroux, “Design and generation of Linked
Clinical Data Cubes,” First Internatianal Workshop on
Semantic Statististics, Sydney, Australia, 2013.

[20] P. Groth, L. Moreau. (eds), PROV Overview, W3C, 2013.
Available from: http://www.w3.org/TR/2013/NOTE-prov-
overview-20130430/. Retrieved June, 2014.

[21] M. Nilsson, A. Powell, P. Johnston, and A. Naeve.
“Expressing Dublin Core metadata using the Resource
Description Framework (RDF),” 2008. Available from:
http://dublincore.org/documents/dc-rdf . Retrieved June,
2014.

[22] Matlab, The Language of Technical Computing. Available
from: http://www.mathworks.nl/products/matlab/. Retrieved
July, 2014.

[23] SPSS Statistics. Available from:
http://en.wikipedia.org/wiki/SPSS. Retrieved July, 2014.

[24] The R Project for Statistical Computing. Available from:
http://www.r-project.org/. Retrieved March, 2015.

[25] H. Rijgersberg, M. Wigham, and J. L. Top, “How semantics
can improve engineering processes: A case of units of
measure and quantities,” Advanced Engineering Informatics,
25(2), 2010, pp. 276–287.
doi:http://dx.doi.org/10.1016/j.aei.2010.07.008.

[26] R. Hodgson, P. J. Keller, J. Hodges, and J. Spivak, “QUDT -
Quantities, Units, Dimensions and Data Types Ontologies,”
Available from: http://qudt.org/. Retrieved June, 2014.

[27] W3C, SPARQL Query Language for RDF. Available from:
http://www.w3.org/TR/rdf-sparql-query/. Retrieved July,
2014.

[28] M. van Assem, H. Rijgersberg, M. Wigham, and J.L Top,
“Converting and annotating quantitative data tables,” The
Semantic Web - ISWC 2010, vol. 6496/2010, 2010, pp. 16–
31. doi:10.1007/978-3-642-17746-0_2.

[29] M.G. De Vos, W. R Van Hage, J. Ros, A.T. Schreiber, 2012.
“Reconstructing Semantics of Scientific Models
: a Case Study,” In Proceedings of the OEDW workshop on
Ontology engineering in a data driven world, EKAW 2012.
Galway, Ireland.

[30] A. Loizou, R. Angles, and P. Groth. “On the Formulation of
Performant SPARQL Queries,” Web Semantics: Science,
Services and Agents on the World Wide Web. Vol. 29, 2014
doi:10.1016/j.websem.2014.11.003.

[31] Sesame framework for RDF data. Available from:
http://rdf4j.org/. Retrieved March, 2015.

[32] TI Food and Nutrition. Available from: http://www.tifn.nl.
Retrieved July, 2014.

[33] CSV on the Web Working Group Charter, 2013. Available
from: http://www.w3.org/2013/05/lcsv-charter.html.
Retrieved June, 2014.

