
57

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Easy and Efficient Grammar Authoring Tool for Understanding Spoken

Languages

A Novel Approach to Develop a Spoken Language Understanding Grammar for Inflective Languages

Antonio Rosario Intilisano, Salvatore Michele Biondi,

Raffaele Di Natale and Vincenzo Catania

Dipartimento di Ingegneria Elettrica Elettronica e

Informatica

University of Catania

Catania, Italy

aintilis@dieei.unict.it, salvo.biondi@dieei.unict.it,

raffaele.dinatale@dieei.unict.it,

vincenzo.catania@dieei.unict.it

Ylenia Cilano

A-Tono Technology s.r.l.

Catania, Italy

ylenia.cilano@a-tono.net

Abstract— In a Spoken Dialog System, the Spoken Language

Understanding component recognizes words that were

previously included in its grammar. The development of a

grammar is a time-consuming and error-prone process,

especially for the inflectional or Neo-Latin languages. In fact,

the developer must include manually all the existing inflected

forms of a word. Generally, a regular software developer does

not combine linguistic and engineering expertise in spoken

language understanding. For this reason, we developed a tool

that produces a grammar for different languages, in particular

for Romance languages, for which grammar definition is long

and hard to manage. This paper describes a solution to

facilitate the development of speech-enabled applications and

introduces a grammar authoring tool that enables regular

software developers with little speech/linguistic background to

rapidly create quality semantic grammars for spoken language

understanding.

Keywords- Spoken Language Understanding; Natural

Language Understanding; Spoken Dialog System; Grammar

Definition.

I. INTRODUCTION

To build a Spoken Language Application in a specific
user language, the developer has to design and develop a
knowledge base called grammar for Spoken Language
Understanding (SLU). The development of a grammar can
be greatly accelerated by using a corpus describing the
application or a tool that automatically extends grammar
coverage [1]. However, the development of such a corpus is
a slow and expensive process [2]. In SLU research domain-
specific semantic grammars are manually developed for
spoken language applications. Semantic grammars are used
by robust understanding technologies [3,4] to map input
utterances to the corresponding semantic representations.
Manual development of a domain-specific grammar is time-
consuming, error-prone and requires a significant amount of
expertise. It is difficult to write a rule-set that has a good
coverage of real data without making it intractable [5].

Writing domain-specific grammars is a major obstacle to a
typical application developer. This specialization often does
not cover any unspecified data and it often results in
ambiguities [6]. These difficulties are further accentuated if a
regular software developer does not know the desired user-
language that the spoken dialog system (SDS) uses. A
further level of abstraction, especially for the Latin
languages is necessary.

To facilitate the development of speech-enabled
applications, it is necessary to have a grammar authoring
editor that enables regular software developers with little
speech/linguistic background to rapidly create quality
semantic grammars for SLU [7]. More precisely, the purpose
of this paper is to ease the development of a CMU Phoenix
Grammar [8], a SLU parser of the Olympus Framework.
This is accomplished by introducing an intermediate
grammar that helps generating a simpler, reusable, and more
compact grammar. The development process allows
obtaining large amounts of grammar contents starting from a
few rows of the new grammar that we are introducing. The
grammar has a greater coverage than the standard grammar
developed by a regular software developer. In addition, it is
possible to write this grammar in the English language and
our tool creates the grammar in the SDS user language.
Therefore, we are developing a standard grammar that
produces a multiple-language support to an application SDS
in a simple way. The effort to build the corpus is reduced by
the ability of our tools to automatically extend the coverage
of the grammar. It currently supports the generation of a
grammar for the Italian language, but the method can be
applied to all the Romance or Neo-Latin languages.

In order to test the validity of our solution, a specified
grammar editor has been developed. It permits the automatic
conversion of the new grammar format to the CMU Phoenix
grammar [9]. The purpose of this tool is to increase
developer productivity; experimental results show that it also
improves the coverage of the final Phoenix grammar.

This paper is organized as follows: Section II describes
the behavior of SDSs. Section III explains the features of the

58

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Romance languages with particular regard to the Italian.
Section IV introduces Olympus, which is a framework for
implementing an SDS, and its grammar parser, Phoenix, that
use a particular grammar format. The proposed grammar
format method is presented in Section V. The two following
sections introduce the grammar generator that takes as input
the new grammar format; its components are a
Morphological Generator for the Italian language (Section
VI) and a grammar editor (Section VII). Section VIII shows
an example. Finally, in Section IX, we draw conclusions.

II. SPOKEN DIALOG SYSTEMS

A SDS is a computer agent that interacts with people by
understanding spoken language. Nowadays, the SDSs market
is a big slice of the human-computer interaction field. Many
projects, open source and not, have been developed by
several universities and companies. Many of these projects
have been integrated into commercial technology. The first
generation of SDSs was able only to recognize short dialogs
or sometimes only single words. Specifically, each single
word was bound to a specific functionality and there was no
such a thing as a complete dialogue between system and
user. The evolution of technologies and software
architectures makes it possible to dialogue with the spoken
systems and to perform actions that are the results of a dialog
composed by different consequent interactions. Now,
Spoken dialogue technology allows various interactive
applications to be built and used for practical purposes and
research focuses on issues that aim to increase the system's
communicative competence.

A. How SDS works

The user starts a dialog as a response to the opening of a
prompt from the system. The user utterance is automatically
transcribed by the Automatic Speech Recognition (ASR)
component. The ASR takes a speech signal as an input and
produces its transcription in textual format. The SLU module
takes the output of the ASR module and generates a meaning
representation. Based on the interpretation coming from the
SLU module, the Dialog Manager (DM) selects the next
dialog turn, this is converted into a natural language sentence
by the Natural Language Generation (NLG) module. Finally,
the Text-To-Speech (TTS) module synthesizes the generated
sentence as a speech signal, which is sent back to the user.
The loop depicted in Fig. 1 is repeated until the application
completes the modelled task.

Figure 1. SDS structure.

B. How SLU Works

SDS needs a sophisticated SLU module [9] in order to

implement dialog applications that go beyond solving simple
tasks like call routing or form filling [11]. SLU is performed
as a semantic parsing of spoken sentences. Current works in
language modelling focus on two main areas: formal and
stochastic approaches. Formal approaches to language
modelling come in many forms and serve many motivations.
This problem relates to the hand-coding of definitions of a
language. Stochastic approaches involve the compilation of a
finite-state machine in which the likelihood of a given word
occurring is calculated based on the corpus, possibly, having
the context of the preceding n words. All the stochastic
models for SLU proposed to so far, perform the translation
from a spoken sentence to a semantic constituent-based
representation using statistical learning models. These
systems are TINA [12], Chronus system from AT&T [13].

Development time, reusability and expertise required to
create the language model, play a role in determining an
appropriate solution in many cases [14]. Furthermore,
manually developed grammars require combined linguistic
and engineering expertise to construct a grammar with good
coverage and, therefore, performance. It takes multiple
rounds to fine tune a grammar, and it is difficult and
expensive to maintain it. The second research paradigm
adopts a data-driven, stochastic modelling approach. While it
alleviates the labor-intensive problem associated with the
first paradigm, it requires a huge amount of training data,
which is seldom available for industrial applications.

These are difficulties [15] and the research community
has potential areas of improvement focusing on these two
problems:

 Systems have to be developed with little or no
data. The manual grammar authoring is
necessary for initial system deployment. Tools
for fast grammar handcrafting make easier to
enlarge the coverage of a grammar and,
therefore, are crucial in this case.

 There are huge amounts of data available after
deployment. It is hard to manage and manually
analyze the data in order to find the problems in
the initial deployment.

In this article, we introduce a grammar-authoring tool
represents a solution for the first problem.

III. SLU IN NEO-LATIN LANGUAGES

All Romance languages have common features, so one
could imagine a SLU system that takes into account these
characteristics and shows the same behavior for such
languages. This section explains some features of the
Romance languages.

The Neo-Latin or Romance languages are the direct
continuation of Latin, a language with a very rich dictionary.
In fact, Latin has a high level of perfection as it was the
idiom of a population with an advanced degree of
civilization [16]. Today, many voices have disappeared;

59

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instead, others are present in the Romance languages [17].
The Latin lexicon had been always in continuous evolution
and at the time it had become wealthy of new elements, at
times taken from foreign languages, but mainly through the
addition of suffixes, for example to create diminutive forms.
The creation of new forms through the addiction of suffices
is also a characteristic of the Romance languages, in fact,
based on a word that has a particular suffix, infinite other
words can be formed.

Today, there are many Neo-Latin languages, the main
are: Italian, Portuguese, Spanish, French, Provenzal and
Romanian.

A characteristic of the Romance languages is, as in Latin,
the creation of inflections. The Romance languages are
highly inflectional, in which each inflection does not change
the part of speech category but the grammatical function. In
general, the inflected forms are obtained by adding to the
root of a canonical form a particular desinence (but there are
some irregular cases in which also the root changes, this
phenomenon is called apophony).

Conjugations are inflections of verbs; they provide
information about mood, tense, person, number (singular or
plural) and gender (masculine or feminine) in the past
participle. Declensions are inflections of nouns and
adjectives; they provide information about gender and
number.

The conjugations, which in Latin are four, in Romance
languages are three. According to the conjugations, different
declensions are applied: the first conjugation is for verbs that
end in “-are”, the second is for verbs that end in “-ere”, the
third is for verbs that end in “-ire” (in Latin, there is a
distinction between -ĒRE and -ĔRE).

In the transition from Latin to the Romance languages, in
some cases there have been passages of conjugation (called
“metaplasmi”). In general, in verbs moods and temps have
not changed, but there are disappeared or innovated forms
for function or meaning. The disappeared forms are:
deponent verbs (that are verbs with passive form and active
meaning), simple future (the simple future of the Romance
languages is not derived from Latin), perfect subjunctive,
future imperative, future infinitive, supine, and gerundive.

The alterations have occurred for various reasons, for
example, for phonetic problems, many “b” were turned into
“v”, because their pronunciation was very similar (e.g.,
“cantabit” in Italian becomes “cantavi”). In Latin verbs,
many tenses have similar declensions (e.g., the future perfect
and the perfect subjunctive, the subjunctive and the infinite
present). As a result, many verbal forms have disappeared
(e.g., “supine”, gerundive, declensions of infinitive, future
participle) and have been replaced by forms that are more
expressive. In this way, new verb forms were born.

To form the future, different periphrastic constructions
were created, for example, the most common is derived from
the union of the infinitive and the reduced forms of the
present indicative of “habere”, with the accent on the
auxiliary verb (e.g., the Latin form “cantābo” becomes
“canterò” in Italian, “chanterai” in French, “cantaré” in
Spanish).

The conditional does not exist in Latin and in the
Romance languages it is derived from the union of infinitive
and the reduced forms of perfect or imperfect of “habere”
(e.g., “canterei” in Italian, “chanterais” in French, “cantaria”
in Spanish).

Periphrastic forms with the past participle, as passive
forms and all the compound tenses, are typical of the
Romance languages (e.g., the Latin form “amor” becomes
“io sono amato” in Italian, “je suis aimé” in French).

There are Latin verb forms that have transformed their
function, for example the pluperfect subjunctive has the
meaning of imperfect subjunctive (e.g., the Latin
“cantavissem”, that meant “avessi cantato” in Italian, now
means “cantassi”, “chantasse” in French, “cantase” in
Spanish); this happened because the imperfect subjunctive in
Latin (“cantarem”) was too similar to the present infinitive.

Therefore, the Romance languages have a very similar
way to create inflections of verb, nouns and adjective and
suffixed forms. This allows creating, for these idioms,
similar algorithms for generation and morphological
analysis.

A. Italian Language

Like all the Romance languages, Italian is highly
inflectional. Italian has three conjugations for verbs, each
conjugation involves the application of specific suffixes: the
verbs that end in “-are” belongs to the first conjugation, the
verbs that end in “-ere” belongs to the second and the verbs
that end in “-ire” to the third. Each inflected form of a verb
gives information about mood, temp, number and person,
and gender and number in the case of the participle. In
Italian, there are many irregular verbs. Irregular verbs that
end in “-rre” belong to the second conjugation. Italian
irregular forms often originate from Latin irregular forms.

Latin had five declensions of nouns and adjectives, which
have undergone a significant rearrangement. In Italian nouns
and adjectives create inflections in various ways, for
example to form the plural some nouns remain the same,
others have many plural, sometimes with different meanings.
Many nouns are irregular when the gender changes. Nouns
and adjectives are subject to alteration that is the addition of
a suffix to change the meaning in evaluation, quantity or
quantity. Adverbs are not inflected and can be obtained by
adding a particular suffix to some adjectives.

Italian has many orthographic rules related to its
phonetic. Italian words can be reproduced by the
combination of 28 different sounds called phonemes. There
is not always a correspondence between phonemes and
letters, in fact, some letters represent different sounds
according to the following vowel [18]. For example, if “c”
and “g” are followed by the vowels “a”, “o” and “u”, they
produce a hard sound and if the vowels “e” and “i” follow
them they produce a soft sound. To obtain the corresponding
hard sound the letter “h” is inserted between these characters
and vowels “e” and “i”; to obtain the soft sound with the
vowels “a”, “o” and “u” the character “i” is inserted.

There are other orthographic rules that concern the
behavior of groups of two or three characters as “sc”, “gn”
and “gl”.

60

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. OLYMPUS

This work was designed and tested within the framework
Olympus [19]. Olympus is a complete framework for
implementing SDSs created at Carnegie Mellon University
(CMU) during the late 2000's. Olympus includes a dialog
manager called RavenClaw [20], which supports mixed-
initiative interaction, as well as NLU components that handle
speech recognition (Sphinx) and understanding (Phoenix).
Olympus uses a Galaxy [21] message-passing layer
architecture to integrate its components and supports multi-
modal interaction. The Galaxy architecture is a set of Galaxy
Servers, which communicate to each other through a central
Galaxy module called Hub. Olympus provides the
infrastructure upon which it is possible to build Spoken
Dialog Applications. Specific application functions such as
instance dialog planning, input processing, output processing
and error handling are encapsulated in subcomponents with
well-defined interfaces that are decoupled from domain-
specific dialog control logic. Each application needs the
following domain specific components: a specific grammar,
a dialog manager, a back-end server and a language
generator module. These modules are strictly domain
dependent and represent the core of the spoken interaction.
The Phoenix parser represents the NLU module in the
Olympus framework. The Phoenix parser [8] was developed
by the University of Colorado in 2002 to develop easy and
robust Natural Language Processing systems. It was then
adopted by the CMU and used in the Olympus framework.
The parser performs the human language syntactic analysis
according to the rules that are defined in its grammar. For
each user input sentence, the Sphinx module of the Olympus
framework produces n text output. Each of them is
associated with a probability. The higher is the probability,
the more likely is the association between a text and a user
sentence. Each of these n texts is parsed by Phoenix. The
meaning extracted from the input sentence will then direct
the Dialog Manager in deciding the corresponding action.
Subsequently, the Natural Language Generation module will
produce the output sentence.

A. SLU grammar in Olympus Framework

To build a specific Spoken Language Application in the
Olympus Framework the developer has to design and
develop specific grammar definition. The Phoenix parser
uses a formal method and a hand crafted CFG Grammar. It
requires combined linguistic and engineering expertise to
construct a grammar with good coverage and optimized
performance. First of all, the developer has to determine the
main set of jobs that the application will handle. Each
concept or action defined in the dialog manager is mapped in
one or more grammar slots. Therefore, the design of the
grammar is strictly bound to the design of the dialog tree.
Grammar rules are specified in the source grammar file. The
manual development of Phoenix grammars is a time-
consuming and tedious process that requires human
expertise, posing an obstacle to the rapid porting of SDS to
new domains and languages. A semantically coherent
workflow for SDS grammar development starts from the
definition of low-level rules and proceeds to high-level ones.

The Olympus framework provides English generic grammar
files, which contains some standard forms such as greetings,
social expressions and yes/no, as well as discourse entities
such as help, repeat, etc. This grammar has to be extended by
introducing domain-specific phrases.

B. Phoenix Grammar

Since spontaneous speech is often ill formed and the
recognizer makes errors, it is necessary that the parser is
robust to recognition errors, grammar and fluency. This
parser is designed to enable robust parsing of these types of
input. The Phoenix parser uses a specific CFG grammar that
is organized in a grammar file. Names of grammar files end
with a “.gra” extension. This contains context-free rules that
specify the word patterns corresponding to the token. The
syntax for a grammar for a token is in Fig. 2. In Fig. 3 there
is an example.

Figure 2. Generic Phoenix grammar syntax.

Figure 3. Example of a Phoenix token.

A token can also contain other tokens, for example (Fig.
4):

Figure 4. Example of a Phoenix token containing other tokens.

This format allows recognizing several sentences with
the combination of different slots and words; furthermore,
each token can be reused in many tokens.

In the inflective languages, as Italian or Romance
languages in general, words can occur in several forms,
verbs can change its form depending on conjugations and
nouns and adjectives depending on declensions. Their forms
can change also applying different suffixes or prefixes. This
means that the Phoenix grammar must contain all the
possible inflected forms. For this reason, the grammar can
become long and hard to write, because the developer must
manually write it and he might forget some inflected forms:
the result can be a not complete grammar. This increases the
development time.

61

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Thus, inflected forms add complexity to the Phoenix
grammar, since they generate multiple different rules with
similar patterns.

V. A NEW GRAMMAR FORMAT

The development of a new domain application needs a
new Context Free Grammar (CFG) that is able to define the
concepts and their relations of such domain.

Alternative approaches learn structures from a set of
corpora. However, this process appears too expensive and
potentially not exhaustive [22].

Our approach consists of creating a new intermediate
grammar that focuses on the meaning of a grammar token
rather than on its content.

The legal combination of individual words into
constituents and constituents into sentences represents a
semantic context free grammar (CFG).

When a regular software developer develops a new
application for a new domain, he must define a new grammar
by a CFG that is able to define the concepts and their
relations of such domain.

Even if other approaches suggest learning structures from
a set of corpora, this process appears too expensive and
probably not exhaustive [23], our solution can facilitate
grammar development by supporting the flow of information
from a manually written source to language contents
automatically generated.

The goal is to make sure that the programmer needs only
to think about the meaning of a grammar token and not about
their content. This new schema, thanks to a Morphological
Generator [24], generates a file that can be reused and edited
like a standard phoenix grammar.

The new format description is in Fig. 5.

Figure 5. New grammar syntax.

A set of slots, that represent information that is relevant
to the action or object (in this case “NAME_ACTION”), are
defined by the “Function” keyword that defines the tag name
(Function = NAME_ACTION).

The content between curly brackets is described by a new
grammar tag definition mode. The number and the order of
tokens and terms can change. Each token is written in square
brackets.

In such a way, it is no longer necessary to write the word
pattern of the token, but only the “keyword name” like
[word, characteristic].

The new schema creates a grammar file containing a
token and its generated word patterns and it can be reused
and edited like a standard Phoenix grammar. Fig. 6 depicts
the new format description.

Figure 6. New grammar format description.

The grammar slots are defined by the “Function”
keyword that defines the slot name (Function =
SLOT_NAME). In this way, a tag is defined as a couple
“[word, characteristic]” and it is used by the editor to
generate the appropriate word patterns according to the
characteristic.

The couple [word, characteristic] is defined as below:

 If “word” is a verb, “characteristic” can be replaced
with:

 “presente” if the Italian present forms are
desired;

 “passato” if the Italian past forms are
desired;

 “futuro” if the Italian future forms are
desired.

 If “word” is a noun or an adjective, “characteristic”
can be replaced with:

 “singolare” if the Italian singular forms are
desired;

 “plurale” if the Italian plural forms are
desired;

Our version of the Morphological Generator generates all
new forms specified by the characteristic.

Figure 7. New grammar generation.

Our editor generates an extended standard Phoenix
grammar with increased coverage of the new grammar, by
performing the following actions:

 Creation of a token named SLOT_NAME in which
new tokens and terms are included;

 Creation of a token for each new defined token, in
which terms generated by the Morphological
Generator are included.

Fig. 7 shows the full process.
Our tool consists of the Editor component, which takes

the new grammar as an input and, with the aid of the

62

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Morphological Generator, generates the grammar format for
Phoenix. The following paragraphs explain in detail the other
components.

VI. MORPHOLOGICAL GENERATOR FOR THE ITALIAN

LANGUAGE

The Morphological Generator allows you to generate
specific inflected and altered forms of nouns, adjectives and
verbs. It is a fundamental tool as it allows generating the
inflected forms of the language supported.

Since each lemma follows different rules for the creation

of the inflections, the Morphological Generator uses a word-

list in which a grammatical category is associated to each

lemma, according to the following format:
lemma,grammatical_category;

The grammatical category is a string that contains
information about the part of speech of the lemma and its
way of creating inflections.

For the verbs, there are four grammatical categories:

 one for the intransitive verbs (VI);

 one for transitive verbs (VT);

 one for auxiliary verbs (VA);

 one for modal verbs(VS).
Suffixes for the different conjugation are chosen by

analyzing the last three characters with which the verbal
lemma ends: these determine the verbal group code. In this
way, if the verbal lemma ends in “-are”, the suffixes of the
first conjugation are applied; if it ends in “-ere” or “-rre”, the
suffixes of the second conjugation are applied; if it ends in “-
ire” suffixes of the third conjugation are applied. If the verb
is irregular, the grammatical category contains also an

inflectional code that is a number that allows deriving
irregular inflections.

There are many grammatical categories of nouns and
adjectives. For example, there is a grammatical category of
neuter nouns that can generate four different inflectional
forms (one of the masculine singular, one of the feminine
singular, one of the masculine plural, one of the feminine
plural), another of feminine nouns, another of masculine
forms, another of neuter nouns that have invariable feminine
forms, and so on; similarly for the adjectives. Inflections are
chosen because of the grammatical category and the last
characters with which the lemma ends, which determines the
noun group code (for nouns) or the adjectival group code
(for adjectives). In fact, to each grammatical category of
nouns and adjectives some rules are associated.

There is also a grammatical category of irregular nouns
and one for irregular adjectives; these do not follow rules to
create the inflections, so the inflections are obtained from a
specific list that contains all irregular forms.

For the other parts of speech, there are the following
grammatical categories:

 E for prepositions;

 C for conjunctions;

 B for adverbs;

 R for articles;

 P for pronouns;
For these lemmas, inflections are not applied.
Fig. 8 shows the algorithm; the lemma is the input and

the list of all obtained inflected forms is the output. If the
lemma is not declinable, the output is the same lemma in
input.

Figure 8. Morphological Generator.

63

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In Italian, nouns and adjectives can be altered by adding
particular suffixes. The alteration modifies the meaning of a
word in quantity or quality. The Morphological Generator
applies 9 adjectival suffixes for the alteration, each of which
can be inflected in gender and number, so in total there are
36 (9x4) possible altered adjectives. There are also 8
substantival suffixes for the alteration, each of which can be
inflected, so in total there are 32 (8x2) possible altered
nouns. Furthermore, 7 prefixes can be applied to all forms of
nouns and adjectives.

When inflectional suffixes are applied, orthographic rules
for Italian are respected. The Italian words can be uttered by
the combination of many sounds, but sometimes there are
not correspondence between the sound and the characters, in
fact, some letters have different sounds according to the
vowel that follows them. When the suffix of the lemma is
removed, the root is obtained and in general, the following
rules are applied:

 if the root ends in “-c” or “-g”:

 if the desinence of the canonical form is “-

a”, “-o” or “-u” (forming with the root an

hard sound) and the suffix to be applied

starts in “e” or “i”, the character “h” is

inserted before the suffix.

 if the desinence of the canonical form is “-

e” or “-i” (forming with the root a soft

sound) and the suffix to be applied starts

in “a”, “o” or “u”, the character “i” is

inserted before the suffix.

 the vowel “i” is removed from the root if:

 the root ends in “-ci” or “-gi” and the

suffix starts in “e”;

 the root ends in “-i” and the suffix starts in

“i”.
There are also particular words that not follow these

rules. In these cases, the words belong to a particular
grammatical category that nullifies the rules above.
Furthermore, there are particular orthographic rules for
verbs.

Each generated word is stored in a structure that saves
information about the inflection: part of speech, mood, temp,
gender, number, suffix applied and prefix applied. Therefore,
the algorithm is able to give in output only the inflections of
a lemma required by the user (for example, all the past tenses
of a verb or the singular forms of a noun or an adjective).
This characteristic is used for the generation of the new
grammar.

This method can apply not only to the Romance
languages. It can be applied to others inflective languages.
For example, many Morphological Generators [26][27][28],
one for a given language, can be utilized and the editor can
generate many Phoenix grammar files, one for each
language. In this way, the developer writes the grammar in a
single language and obtains a multilingual result.

VII. GRAMMAR EDITOR

The grammar editor (Fig. 9) consists of a text editor
modified for our purposes. This editor supports the new
grammar format and the user produces the corresponding
.gra file, by clicking on the "generate" button.

Figure 9. GUI of the editor.

This component reads and processes the grammar files

(new format) and, using the Morphological Generator,
obtains a Phoenix grammar file (Fig. 10).

Figure 10. New grammar generation process.

If the programmer does not know the SDS domain
language, he enables the "translator" module (Fig. 11)
between the Morphological Generator and the Editor.

For example, an English language grammar, as shown in
Fig. 12, is translated by a component of the Editor into the
target language and then is used by the Morphological
Generator to generate the grammar of the target language in
the Phoenix grammar format.

64

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. New grammar generation process with translator.

In this way, we have a grammar written in a universal

language (English) with a high level of abstraction that can
generate more coverage of a grammar written by a
programmer in the same time. In addition, Phoenix
grammars in different languages that are not initially known
by the regular software developer.

Each grammar that is produced requires a different
morphological generator.

Figure 12. New grammar written in English language.

The complexity of the grammar of Italian and Neo-Latin
languages, in general, increases the effort in developing an
efficient SLU grammar for a SDS.

With this system, the regular software developer can
generate a Phoenix grammar without worrying about all the
possible variations, conjugations and alterations of words
that are characteristics of the Romance languages

VIII. EXPERIMENTAL RESULTS

An example is reported to show the advantages brought
by this approach. It shows a Phoenix grammar of a real SDS
for a room-reservation application, based on the Olympus
Framework. In a typical interaction, the user can express the
same concept using a specific word, but in different tenses.
For example, “I want a room” in Italian can be expressed like
“Voglio una camera”, but also “Vorrei una camera” (“I'd like
to have a room”) or “Vorrei una cameretta” (“I'd like to have
a small room”, in Italian it is a term of endearment). Fig. 11
shows an example of grammar.

Figure 13. Example of Italian grammar.

The new grammar consists of two parts. The first one,
shown in Fig. 12, represents the definition of a grammar slot.

Figure 14. Generated grammar slots.

The second part, shown in Fig. 13, defines each token,
including their word patterns. A more detailed explanation is
along with the source code (output.gra file) [25].

The initial grammar, consisting of 21 rows, generates a
140-row-long Phoenix grammar that allows the SLU module
to recognize a large set of utterances.

This way, the developer focuses his attention on the
meaning of an intermediate-grammar token and not on its
content.

65

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Generated tokens.

Furthermore, the developer does not need to write all
possible forms (mood, tense, person, etc.), some of which
could be difficult to predict. The advantage of the generated
grammar is the ability to easily simulate and predict the large
variety of interactions that can occur.

The same grammar can also be obtained starting from an
initial grammar written in another language, for example, in
English, and enabling the translator module, as shown in Fig.
14.

Figure 16. Example of English grammar.

The generated grammar slots are shown in Fig. 15 and
the associated tokens in Fig. 16.

Figure 17. Generated grammar slots from English.

Figure 18. Generated tokens from English.

IX. CONCLUSION AND FUTURE WORK

This paper investigates the problem of grammar
authoring for initial system deployment when little data is
available.

In this work, we propose a solution to simplify and
reduce the amount of writing of the SDS grammar of
inflectional language. This method reduces the effort to
produce a grammar for a SDS especially for a regular
software developer. The SDS used for our tests is the
Olympus framework.

An editor has been developed for the translation of the
new simple grammar format in the Phoenix grammar
format. The editor uses a new Morphological Generator to
obtain all possible inflected words that are used to create
grammar tokens.

66

International Journal on Advances in Intelligent Systems, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The proposed solution will be integrated in a major
project called Olympus P2P [29], which is concerned with
the upgrading and updating of an SDS grammar by means a
peer-to-peer network to share new grammar tokens generated
from the new grammar format.

ACKNOWLEDGMENT

The authors were supported by the Sicilian Region grant
PROGETTO POR 4.1.1.1: "Rammar Sistema Cibernetico
programmabile d’interfacce a interazione verbale".

REFERENCES

[1] S. M. Biondi, V. Catania, Y. Cilano, R. Di Natale and A.R.

Intilisano, “An Easy and Efficient Grammar Generator for
Spoken Language Understanding,” The Sixth International
Conference on Creative Content Technologies (CONTENT)
pp 13-16, Venice, May 2014.

[2] I. Klasinas, A. Potamianos, E. Iosif, S. Georgiladakis, and G.
Mameli, "Web data harvesting for speech understanding
grammar induction," in Proc. Interspeech, Lyon, France, Aug.
2013.

[3] J. F. Allen, B. W. Miller, E. K. Ringger, T. Sikorshi, “Robust
understanding in a dialogue system,” 34th Annual Meeting of
the Association for Computational Linguistics. Santa Cruz,
California, USA, pp. 62–70, 1996.

[4] S. Bangalore, M. Johnston, “Balancing data-driven and rule-
based approaches in the context of a multimodal
conversational system,” Human Language
Technology/Conference of the North American Chapter of the
Association for Computational Linguistics. Boston, MA,
USA, 2004.

[5] H. M. Meng and K-C. Siu, “SemtiautomaticAcquition of
Semantic Structures for Understanding Domain-Specific
Natural Language Queries,” IEEE Tran. Knowledge & Data
Eng., pp. 172–181, vol. 14(1), 2002.

[6] Y. Wang and A. Acero, "Grammar learning for spoken
language understanding," Automatic Speech Recognition and
Understanding, ASRU '01. IEEE Workshop, pp. 292-295,
2001.

[7] Y.-Y. Wang and A. Acero, “Rapid development of spoken
language understanding grammars,” Speech Communication,
vol. 48, no. 3-4, p. 390416, 2008.

[8] W. Ward, "Understanding spontaneous speech: the Phoenix
system," Acoustics, Speech, and Signal Processing, ICASSP-
91, 1991 International Conference, pp. 365-367 vol. 1, 14-17
Apr 1991.

[9] Phoenix Parser User Manual,
http://www.ontolinux.com/community/phoenix/Phoenix_Man
ual.pdf (last visited: 22 November 2013).

[10] Phd Thesis, International Doctorate School in Information and
Communication Technologies DISI - From Spoken
Utterances to Semantic Structures Marco Dinarelli.

[11] A. L. Gorin, G. Riccardi, and J. H. Wright, “How may i help
you?,” Speech Commun., 23(1-2): 113–127, 1997.

[12] S. Seneff. Tina, “A natural language system for spoken
language applications,” Comput. Linguist., 18(1): 61–86,
1992.

[13] N. Cancedda, E. Gaussier, C. Goutte, and J. M. Renders,
“Word sequence kernels,” J. Mach. Learn. Res., 3, 2003.

[14] Language Modelling for Spoken Dialogue Systems;
Grammar-Based and Robust Approaches Compared and
Contrasted Genevieve Gorrell, December 22, 2003

[15] R. Pieraccini, “Spoken language understanding, the
research/industry chasm,” HLT-NAACL 2004 Workshop:
Spoken Language Understanding for Conversational Systems
and Higher Level Linguistic Information for Speech
Processing, pp 47-47, Boston, May 2004

[16] Lingue Neolatine in Treccani.it - Enciclopedie on line. Istituto
dell’Enciclopedia Italiana.

[17] Grammatica Storica in Treccani.it - Enciclopedie on line.
Istituto dell’Enciclopedia Italiana.

[18] F. Musso, N. Prandi, “Per dirla giusta. Fonologia, ortografia,
morfologia”, S. Lattes & C. Editori SpA, 2012.

[19] D. Bohus, A. Raux, T. K. Harris, M. Eskenazi, and A. I.
Rudnicky, “Olympus: an open-source framework for
conversational spoken language interface research,” NAACL-
HLT ’07: Proceedings of the Workshop on Bridging the Gap:
Academic and Industrial Research in Dialog Technologies,
2007

[20] D. Bohus, A. I. Rudnicky, “The RavenClaw dialog
management framework: Architecture and systems,”
Computer Speech and Language, vol. 23, no. 3, 2009

[21] J. Polifroni, and S. Seneff, “Galaxy-II as an Architecture for
Spoken Dialogue Evaluation,” Proc. LREC, 725-730, Athens,
2000.

[22] S. Knight, G. Gorrell, M. Rayner, D. Milward, R. Koeling and
I. Lewin, “Comparing grammar-based and robust approaches
to speech understanding: a case study,” EUROSPEECH 2001
Scandinavia.

[23] M. Haspelmath and A. D. Sims, Understanding Morphology
2nd edition. London: Hodder Education, 2010.

[24] V. Catania, Y. Cilano, R. Di Natale, V. Mirabella and D.
Panno, "A morphological engine for Italian language",
ICIEET 2013: 2nd International Conference on Internet, E-
Learning & Education Technologies, 2013, pp. 36-43, vol.
12(1).

[25] Source code,
http://opensource.diit.unict.it/vctsds/GrammarEditor.zip
(last visited: 22 November 2013).

[26] Anandan, P., Ranjani Parthasarathy & Geetha, T.V.,
“Morphological Generator for Tamil,” Tamil Internet
Conference, Kuala Lumpur, Malaysia, 2001.

[27] George Petasis, Vangelis Karkaletsis, Dimitra Farmakiotou,
George Samaritakis, Ion Androutsopoulos, Constantine D.
Spyropoulos , “A Greek Morphological Lexicon And Its
Exploitation By A Greek Controlled Language Checker,” In
Proceedings of the 8th Panhellenic Conference on
Informatics, pp. 8 – 10, 2001.

[28] Habash, N., Ower, R., and George, “Morphological analysis
and generation for Arabic dialects,” Proceedings of the ACL
Workshop on Computational Approaches to Semitic
Languages, pages 17–24, Ann Arbor, June 2005.

[29] V. Catania, R. Di Natale, A. Longo and A. Intilisano, "A
distributed Multi-Session Dialog Manager with a Dynamic
Grammar Parser," 2nd International Conference on Human
Computer Interaction & Learning Technologies, 2013, pp. 1-
9, vol. 8(2).

