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Abstract—Thus far, there have been a variety of methodologies
proposed on simulating the evolution of languages, each of
which belongs to a different level of abstraction. Our goal is
to provide a framework that represents the diachronic change
in language by the contact among language communities. We
propose an agent-based model with Kirby’s iterated learning
model and complex networks, putting learning agents on each
node in the social network. Our proposed model is examined
in three aspects: (i) the effectiveness of string-clipping, (ii) the
relation between generations for learning and the number of local
common languages, and (iii) the relation between network types
and local common languages. A series of experiments shows that
we have succeeded in modeling the actual situation of language
change.
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I. INTRODUCTION

Thus far, simulation studies have played an important role
in the field of language evolution [1] [2]. In particular, a
very important function of simulation is to prove whether a
prediction actually and consistently derives from a theory [3].
Thus far, there has been a variety of methodologies proposed
on simulating the evolution of languages, each of which
belongs to a different level of abstraction. Simulation studies
for population dynamics alone include an agent-based model
of language acquisition by Briscoe [4], which was developed
toward a formal model of a language acquisition device. On the
other hand, Nowak [5] proposed a mathematical theory of the
language dynamics equation that focuses on its evolutionary
aspect. The language dynamics equation is highly abstract,
while an agent-based model is considered to be concrete, or
less abstract.

Our goal is to provide a framework that represents the
diachronic change in language by the contact among language
communities. Examples are shown in the emergence of creoles
in conventional linguistics and in the rapid change in Internet
linguistics [6]. In fact, researchers on creoles have long known
that contact speeds up language change [7] [8], in which the
emergence of pidgins and creoles is one of the most interesting
phenomena. Pidgins are simplified tentative languages spoken
in multilingual communities. They come into being where
people need to communicate but do not have a language in
common. Creoles are full-fledged new languages that children

of the pidgin speakers acquire as their native languages [9].
A common view is that a pidgin or creole is a language
that takes its vocabulary from one language and its grammar
from another. One language, usually European landowners’ in
colonial situations, was the original target of language learners
[10], which is reflected by a social relation between a European
elite and an indigenous underclass.

The framework of language contact would be useful not
only for simulating typical language changes but also for novel
phenomena taking place in the cyber world. In recent decades,
the evolution of the Internet technology has made it possible
for users to transcend physical distance to participate in discus-
sions with anonymous people concerning their favorite topics.
They do not only exchange small bits of information, but rather
seem to establish a durable channel for communication among
people sharing common tastes on a bulletin board system,
Twitter and so on. They often employ colloquial, rather than
formal, language, and their utterances are characterized by
abbreviated words and reduced grammatical complexity [11].
This phenomenon is often seen in language contact, but the
time and size of the language change on the Internet are
extremely fast and large [6]. Using this framework, it would
be possible to deal with this rapid language change as a
phenomenon of language evolution.

Simulation of the change in languages has been studied
in consideration of social networks. Thus far, Nakamura et
al. [12] have proposed a mathematical framework for the emer-
gence of creoles based on the language dynamics equation.
Toward a more concrete analysis, they introduced a spatial
structure to the mathematical framework [13] [14], in which
learning agents come into contact with neighbors according
to the learning algorithm. Furthermore, the spatial structure
was expanded into complex networks [15]. Their studies are
based on a hypothesis about the emergence of creoles; that is,
language contact is likely to stimulate creolization. However,
their learning mechanisms are too simple to observe language
changes from a linguistic aspect because languages are defined
as similarity measures in a numeric matrix.

In this paper, we set forth two hypotheses: one is that
language contact leads to the emergence of local common
languages (LCLs); the other is that language divergence
depends on the type of network. We test the hypotheses
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Figure 1. Iterated learning model

with a simulation model parameterizing language contact
with network types. We propose an agent-based model to
deal with grammatical changes in the language community.
Therefore, our purpose in this paper is to show a relationship
between communication among learning agents and gram-
matical changes. We employ Kirby’s iterated learning model
(ILM) [16], which shows a process of grammatical evolution
through generations. This approach has often been used in
simulation models concerning language evolution [17]. One
important reason for this comes from its robustness against
input sentences in terms of syntactic learning. As long as
it is learning from a single parent, an infant agent receives
sentences derived from a consistent grammar; it is possible to
acquire a concise grammar. Currently, the learning situation
in ILM is extended to multiple families connecting with a
network. We can observe the language change, not only in a
diachronic situation, i.e., in a parent-child relation, but also in
a synchronic one.

Thus far, we have demonstrated a pilot version [18], where
we found a problem reported by Smith and Hurford [19];
that is, in the case where learning agents potentially have
more than one teacher agent, the length of syntax rules tends
to increase rapidly over generations due to the addition of
meaningless terminal symbols. This problem causes unnatural
learning, which results in a fatal combinatorial explosion. To
solve this problem, we developed a module for acceleration in
ILM by string-clipping, which differs from the one for efficient
learning with cognitive bias [20] [21] in that we focus on the
multi-input environment.

This paper is organized as follows. In Section II, we
introduce Kirby’s ILM. In Section III, we propose an agent-
based model for language contact. We examine our proposed
method in Section IV, and conclude in Section V.

II. MODIFIED ITERATED LEARNING MODEL

In this section, we mention how to deal with ILM on social
networks. First, we briefly explain Kirby’s ILM. Next, we
introduce the modification for social networks by Matoba et
al. [24] in order to avoid the combinatorial explosion, which
enables the expansion of ILM.

A. Kirby’s Iterated Learning Model
Kirby [16] introduced the notions of compositionality and

recursion as fundamental features of grammar, and showed that
they make it possible for a human to acquire compositional
language. Figure 1 illustrates ILM. In each generation, an
infant can acquire grammar in his/her mind given sample
sentences from his/her mother. After growing up, the infant
becomes the next parent to speak to a newborn baby with
his/her grammar. As a result, infants can develop more compo-
sitional grammar through the generations. Note that the model

Verb: admire, detest, hate, like, love
Noun: john, mary, pete, heather, gavin

e.g.) love(mary, john)
(Identical arguments are prohibited.)

Figure 2. Words used in experiment

focuses on the grammar change in multiple generations, not
on that in one generation. Also, Kirby adopted the idea of two
different domains of language [25] [26] [27] [28], namely, I-
language and E-language; I-language is the internal language
corresponding to a speaker’s intention or meaning, while E-
language is the external language, that is, utterances. In his
model, a parent is a speaker agent and his/her infant is a
listener agent. The speaker agent gives the listener agent a
pair of a string of symbols as an utterance (E-language),
and a predicate-argument structure (PAS) as its meaning (I-
language). A number of utterances would form compositional
grammar rules in a listener’s mind, through the learning
process. This process is iterated generation by generation, and
converges to a compact, limited number of grammar rules.

According to Kirby’s ILM, the parent agent gives the infant
agent a pair of a string of symbols as an utterance, and PAS
as its meaning. The agent’s linguistic knowledge is a set of a
pair of a meaning and a string of symbols, as follows.

S/love(john,mary) → hjsbs, (1)

where the meaning, i.e., the speaker’s intention, is represented
by a PAS love(john, mary) and the string of symbols is the
utterance “hjsbs”; the symbol ‘S’ stands for the category
Sentence. The following rules can also generate the same
utterance.

S/love(x,mary) → h N/x sbs
N/john → j, (2)

where the variable x can be substituted for an arbitrary element
of category N.

The infant agent has the ability to generalize his/her
knowledge with learning. This generalizing process consists of
the following three operations [16]: chunk, merge, and replace.

Chunk This operation takes pairs of rules and looks for
the most-specific generalization.{

S/love(john, pete) → ivnre
S/love(mary, pete) → ivnho

⇒

{
S/love(x, pete) → ivn N/x

N/john → re
N/mary → ho.

(3)

Merge If two rules have the same meanings and strings,
replace their nonterminal symbols with one com-
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mon symbol.

S/love(x, pete) → ivn A/x
A/john → re
A/mary → ho

S/like(x, gavin) → apr B/x
B/john → re

B/heather → wqi

⇒


S/love(x, pete) → ivn A/x

A/john → re
A/mary → ho

S/like(x, gavin) → apr A/x
A/heather → wqi.

(4)

Replace If a rule can be embedded in another rule, replace
the terminal substrings with a compositional rule.{

S/love(heather, pete) → ivnwqi
B/heather → wqi

⇒
{

S/love(x, pete) → ivn B/x
B/heather → wqi.

(5)

In Kirby’s experiment [16], five predicates and five object
words shown in Figure 2 are employed. Also, two identical
arguments in a predicate like love(john, john) are prohibited.
Thus, there are 100 distinct meanings (5 predicates × 5
possible first arguments × 4 possible second arguments) in
a meaning space.

The key issue in ILM is to create a poverty of stimu-
lus, which explains the necessity of universal grammar [29].
Kirby [16] modeled it as learning through bottlenecks, which
are rather necessary for the learning. As long as an infant agent
is given all sentences in the meaning space during learning,
he/she does not need to make a compositional grammar;
he/she would just memorize all the meaning-sentence pairs.
Therefore, agents are given a part of sentences in the whole
meaning space. The total number of utterances the infant agent
receives during learning is parameterized. Since the number
of utterances is limited, the infant agent cannot learn the
whole meaning space, the size of which is 100; thus, to obtain
the whole meaning space, the infant agent has to generalize
his/her own knowledge by self-learning, i.e., chunk, merge, and
replace. The parent agent receives a meaning selected from the
meaning space, and utters it using his/her own grammar rules.
When the parent agent cannot make an utterance because of a
lack of grammar rules, he/she invents a new rule. This process
is called invention. Even if the invention does not work to
complement the parent agent’s grammar rules, he/she utters a
randomly composed sentence.

B. Process for String-Clipping
When an infant agent has a number of teacher agents

consisting of his/her parent and neighbors, as the teacher
agents have their own compositional grammar rules, they are
inconsistent with each other. Although the infant agent tries
to find a common chunk among utterances, it would be a
short string. Since there is little probability of making a chunk
from short strings, only long ones are likely to survive into
subsequent generations. As a result, learning agents tend to
have compositional rules with extremely long strings over
generations [19].

Matoba et al. [24] proposed a clipping process in their
model, which solves the above problem. This process is called

Figure 3. Image of clipping process

backclipping. After the learning process of the infant agent,
he/she curtails symbols in his/her grammar rules from the tail
of a string, unless it contains ambiguity. As a result, when
the infant agent becomes the new parent agent in the next
generation, the grammar set no longer contains extremely long
rules.

Figure 3 illustrates the clipping process in our model. The
infant agent tries to utter strings of like(john, mary) as shortly
as possible. First, he/she chooses a grammar rule from his/her
grammar set to generate an utterance of like(john, mary), and
deletes symbols one by one, i.e., “cba”, “ed”, “abef”. In the
case of “cba”, this string does not exist in the grammar rules of
the infant agent, so the infant agent executes backclipping, and
the string is shortened from “cba” to “cb”. The string “cb” does
not exist in the grammar rules of the infant agent, so the infant
agent executes backclipping, and the string is shortened from
“cb” to “c”. Since “c” exists in one of the infant’s grammar
rules, “S/detest(john,mary) → abc”, the infant agent does
not abridge it anymore, and adopts “cb” as the clipped word
of “cba”. The same process is also applied to the other words.
As a result, the sentence becomes shortened from “cbaabefed”
to “cbabeed”.

Of course, such phenomena occur in the real world. The
deletion of part of a word constructs a new and shorter word.

e.g.) Hamburger → burger, Influenza → flu,
Examination → exam

The position of clipping is dependent on a phonological
reason [30]. Since ILM does not deal with phonological
information, we need to find an alternative way to shorten
strings. Nonetheless, backclipping by cutting off the final part
of a word is the most common method of abbreviation in
English [31].

e.g.) advertisement, doctor, laboratory, professor,
demonstration, captain

III. AGENT-BASED MODEL FOR LANGUAGE CONTACT

In this section, we explain the agent-based model to-
ward the emergence of local common languages (LCLs).
Section III-A explains social networks for language commu-
nities. In Section III-B, we discuss the number of agents on
each node in the network. We introduce a language exposure
in Section III-C. Section III-D explains measuring language
distance and clustering LCLs.
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TABLE I. NETWORK CHARACTERISTICS

Network type Average Average
(Nagt = 100) Degree shortest path

Complete graph 99.00 1.00
Star 1.98 1.98

(a) Scale-free 3.96 2.74
Small-world 4.00 4.26

(b) 2D lattice 4.00 5.05
Ring 2.00 25.25

(a) Scale-free (b) 2D-lattice

Figure 4. Examples of networks (Nagt = 100)

A. Social Networks for Language Communities
Social networks play an important role in language change,

regardless of whether they are connected by an actual or vir-
tual relationship. Some simulation studies deal with complex
networks [15] [22] [23]. There are several types of networks,
each of which characterizes many real-world communities.

Table I shows network characteristics, in which each value
is calculated based on 100 nodes [23]. The average degree
denotes the average number of edges connected to a node. The
average shortest path length stands for the average smallest
number of edges, via which any two nodes in the network can
be connected to each other. In this paper, we examine scale-
free and 2D-lattice networks.

Figure 4 shows examples of networks, in which the former
network is regarded as a complex network and the latter is for
comparison. Agents are assigned to each node in the networks.

B. Iterated Learning Model on a Social Network
Here, we discuss how to deal with languages in the frame-

work of ILM on a social network. The population consists of
non-overlapping generations; that is, infants at each generation
are born at the same time, become parents at the same time,
and die at the same time. The network is fixed through
generations. The number of agents on each node depends on
the model.

A group of agents on a node proceeds with learning in the
following way.

1) In the group, there is a teacher agent, who makes
utterances to all the learning agents.

2) Every learning agent acquires the same grammar.
3) At the end of a generation, one of the learning agents

becomes the teacher agent in the next generation.
4) Repeat 1) to 3) for a certain number of generations.

Figure 5. Language input from neighbors connected in a network depending
on exposure rate α

As a result, all of the agents could acquire the same grammar.
In this paper, we simplify our network model so that only one
learning agent resides on each node, though we suppose the
network represents a much larger community.

C. Exposure Rate α

Nakamura et al. [12] introduced an exposure rate α, which
determines how often language learners are exposed to a
variety of language speakers other than their parents. They
modified the learning algorithm of Nowak et al. [5], taking
the exposure rate into account in order to model the emergence
of a creole community. They have shown that a certain range
of α is necessary for a creole to emerge. This parameter was
further employed for the following network studies [13] [14]
[15].

In some communities, a child learns language not only
from his/her parents but also from other adults, whose language
may be different from the parental one. In such a situation, the
child is exposed to other languages, and thus may learn the
most communicative language. To assess how often the child
is exposed to other languages, let us divide the language input
into two categories; one is from his/her parents, and the other is
from other language speakers. The ratio of the latter to the total
amount of language input is called an exposure rate α. This α
is subdivided into smaller rates corresponding to those other
languages, where each rate is in proportion to the population
of the language speakers.

Figure 5 illustrates a situation of language contact where
an agent receives language input from neighbors connected in
a network depending on the exposure rate α. The encircled
agent in Figure 4a corresponds to the group of agents in the
center. Here, we focus on the agent on each node due to
the simplification in Section III-B. Let Gi be the language
of Agent i. Suppose a child has parents who speak Gp;
he/she receives input sentences from Gp in the proportion of
αxp +(1−α), and from non-parental languages Gi(i ̸= p) in
the proportion of αxi, where xi denotes a population rate of
Gi speakers among the neighbors.

An infant receives a meaning-signal pair from his parent
and neighbors according to the exposure rate α. The number
of utterances an infant receives is fixed, and he/she receives
them in proportion to the language distribution for neighbors,
like the pie chart shown in Figure 5.
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Figure 6. Calculation of distance between languages

D. Distance between Local Common Languages
To compare between languages, we define the distance

in languages by the edit distance, known as the Levenshtein
distance [32]; we count the number of insertion/elimination
operations to change one word into another. For example,
the distance between “abc” and “bcd” becomes 2 (erase ‘a’
and insert ‘d’). Once the learning process is finished, each
agent has his/her own grammar rules. In other words, each
agent can enumerate all the sentences he/she can utter as E-
language derived from I-language. Figure 6 depicts an image
of enumeration. Note that all of the compositional grammar
rules are expanded into a set of holistic rules, which does
not include any variable, i.e., a rule consists of a sequence of
terminal symbols.

Now, the comparison between a parent agent and an infant
agent takes the following procedure.

1) Pick a grammar rule (gc) that is constructed by a
pair of a PAS (pc) and an utterance (uc) from the
child’s grammar rules (gc). Choose a grammar rule
(gpc

p ) in which PAS (ppc
p ) is the most similar to pc

from the parent’s grammar rules (Gp), in terms of the
Levenshtein distance. If there are multiple candidates,
all of them are kept for the next process.

2) Focus on an utterance (upc
p ) of gpc

p and uc, and
measure a distance (d(uc, u

pc
p )) between upc

p and uc

using the Levenshtein distance. If there are multiple
candidates, choose the smallest one.

3) Normalize d from 0 to 1. Carry out 1) to 3) for
all grammar rules of Gc. Calculate the sum of all
the distances and regard the average of them as the
distance of two sets of linguistic knowledge. Thus,
in this case, the distance between Gc and Gp is
calculated as below:

Dist(Gc, Gp) =
1

|Gc|

|Gc|∑
i=0

d(uci , u
pci
p )

|uci |+ |upci
p |

 . (6)

Since agents independently invent languages, their acquired
languages are different from each other. To classify agents
into local communities by language similarity, we introduce
a clustering method, recognizing a cluster as a local language
community. The relationship among languages is represented
by a dendrogram shown in Figure 7. The vertical axis denotes
the height of the tree, which represents the language distance
between two merged clusters. We employed the complete
linkage method throughout the experiments. Therefore, the
number of languages depends on the cutting point of the tree.

0
.0

0
.4

0
.8

Language Cluster Dendrogram

Agent

L
a
n
g
u
a
g
e
 C

lu
s
te

r 
D

is
ta

n
c
e

4
1
0

1
9 5 8 6 7

1
5

1
6

1
4

2
4

1
8 3

2
1 2

2
3

1
1

1
2

2
2 1

1
3 9

1
7

2
0

2
5

Figure 7. Clustering languages (Nagt = 25)

In this case, the community is regarded as having seven LCLs
at the height of θ = 0.7.

IV. EXPERIMENTS

A. Experimental Settings
Our purpose in the experiments is to examine how the

configuration of networks affects the language change. We
evaluate the method of string-clipping for high-speed pro-
cessing, comparing between ILMs with and without string-
clipping. In addition, we show that the more generations
the simulation takes for learning, the more compositional the
grammars. Likewise, the greater the number of nodes, the more
network characteristics appear.

We expect LCLs to emerge depending on the types of
networks and other conditions. Therefore, we examine two
types of networks: Scale-free and 2D-lattice networks. Scale-
free networks are drawn with BA [33] models, where the
number of edges to add in each step is 2, and the power
is set to 1. The generation of multiple edges is allowed. In
this paper, experiments on small-world networks drawn with
WS [34] models were omitted due to a lack of outstanding
results.

Table II shows the list of experiments. Exp-1 is to confirm
the effectiveness of string-clipping, comparing two models in
the same environment without string-clipping. Since the model
without string-clipping in the network becomes memory- and
time-consuming through generations, the number of gener-
ations is set to 30, which is substantially lower than the
former experiment [24]. To eliminate the network effect, we
examine models only in the 2D-lattice network in Exp-1.
Exp-2 is to observe behaviors of the model with different
generations, which are set to 30, 100 and 200. Exp-3 is to
observe the relation between the configuration of networks and
the language change in the large scale of networks. Therefore,
the number of agents is set to Nagt = 100, while the preceding
experiments employ Nagt = 25.

There are some parameters for parental and infant agents
in ILM. Each infant agent receives 50 sentences, while the
meaning space is 100 (5 predicates × 5 possible first arguments
× 4 possible second arguments). Therefore, agents need to
acquire a compositional grammar for high expressivity. When
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TABLE II. LIST OF EXPERIMENTS

Experiment Nagt Generation Network String-Clipping

Exp-1 25 30 2D Lattice
No
Yes

Exp-2 25 30 / 100 / 200
2D Lattice

Yes
Scale Free

Exp-3 100 100
2D Lattice

Yes
Scale Free

a parent agent fails to derive a sentence from his/her own
grammatical rules, he/she invents a holistic rule with a random
string, the maximum length of which is set to 10. In the
process of generating a sentence with his/her grammatical
rules, parental agents randomly choose one of the candidate
rules when facing a syntactic ambiguity. The agents are set to
keep choosing the same rule through the generation, although
on the other option agents could randomly choose a rule again.

B. Evaluation Methods

We measure (a) the number of local common languages
(LCLs), (b) the number of grammar rules and (c) expressivity
of the grammar. (a) is calculated by setting the threshold
to distinguish languages in the dendrogram to θ = 0.7. (b)
denotes the average number of grammar rules created in an
agent at the final generation. (c) is defined as the ratio of the
number of utterable meanings derived from the grammar rules
to the whole meaning space.

Since the exposure rate α activates communication with
neighbors, we also expect local dialects to emerge through
communication. We parameterize 0 ≤ α ≤ 1, where the larger
the value α is, the more frequently the neighbors speak to the
infant agent. Note that, even at α = 1, infants receive sentences
from their parents as frequently as from one of the neighbors.

The notation of labels in Figures 8 to 13 are defined as
follows:

{
sc
lat

}
/a

{
25

100

}
/g

{
30
100
200

}
/

{
w
wo

}
-lcl
-exp
-cmp
-lex

 ,

(7)
where the first part distinguishes a network type (scale-free /
2D-lattice), the second and third numerals denote the numbers
of agents and generations, respectively, and ‘w’ and ‘wo’ stand
for the learning methods ‘with’ and ‘without’ string-clipping.
The suffixes, which are shown in Table III, denote a type of
experimental result; that is, ‘-lcl’ and ‘-exp’ correspond to the
number of LCLs and the degree of expressivity, respectively.
The other suffixes ‘-cmp’ and ‘-lex’ show the number of
grammatical rules; the former is the number of rules where the
non-terminal symbol ‘S’ is put on the left-hand side, which
means a compositional or holistic rule, while the latter denotes
the number of lexical rules.

All the data are plotted as an average of 50 trials with 95%
confidence intervals. Since scale-free networks are randomly
drawn for each trial, no phenomenon peculiar to a specific
network appears in the results.

TABLE III. LABEL SUFFIXES

Suffix Definition

-lcl Number of local common languages
-exp Degree of expressivity (%)
-cmp Number of rules where non-terminal symbol ‘S’ is put on

left-hand side
-lex Number of lexical rules
-prev Language distance from previous generation

C. Experiment 1
Figure 8 shows the experimental result of Exp-1. We first

explain the characteristics of whole behaviors, focusing on
‘lat/a25/g30/wo’, the black lines, in which 25 agents in the
2D-lattice network learn languages without string-clipping in
30 generations. Figure 8a shows the number of LCLs. At
α = 0, every agent is isolated without connection, speaking
an independent language different from each other. Therefore,
the number of LCLs is almost the same as that of agents.
With increasing communication with neighbors at the range
0.1 ≤ α ≤ 0.5, agents are likely to acquire common languages.
As a result, the average number of LCLs decreased to 13.2 at
α = 0.5. However, after the low peak, LCLs increased to 19.7
at α = 1. The experimental result may suggest that excessive
communication at α > 0.5 causes language divergence. The
results of LCLs form a ‘V’-shape overall.

We also investigate acquired grammars. The number of
grammar rules and expressivity are shown in Figures 8b and
8c, respectively. Figure 8b shows that grammars become non-
compositional according to the increase of α. In general,
compositional rules decrease as the whole grammar gets com-
positional, while lexical rules increase. Although both types of
rules increase, the number of compositional rules eventually
exceeds the other at α = 0.3, which implies that holistic
rules occupy agents’ knowledge, while an ideal compositional
grammar consists of one compositional rule and ten lexical
rules. Figure 8c is inevitably reflected by the compositionality.
The excessive language exposure negatively affects common
languages.

Next, we explain the comparison between learning models
with and without string-clipping. At α = 0, the number of
LCLs of the model with string-clipping is less than that without
it. This is because the length of utterances shortens due to
string-clipping, which leads to agents’ languages getting closer
in language distance based on the Levenshtein distance. On the
other hand, with increase of α, the number of LCLs gets close
to that of the model without string-clipping, and eventually
the positions are reversed at α ≥ 0.5. The string-clipping
method may become unstable in the excessive communication
environment; at α = 0.9, the expressivity suddenly drops to
79.1% in the model with string-clipping. Moreover, at α = 1,
the number of LCLs decreases from 19.0 to 18.0. At α = 1,
every infant agent listens to utterances equally from his/her
parent and each neighbor. This uniform language sourcing may
facilitate common language acquisition with string-clipping. In
fact, the results are less than or insignificantly different from
that of α = 0.9.

With regard to 95% confidence intervals, the difference
between with/without string-clipping is significant. However,
the macro-scopic behaviors seem to be similar to each other
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Figure 8. Experimental results of Exp-1 with 95% confidence intervals
(n=50)

as both form ‘V’-shaped lines, except for the large values
of α. We have introduced string-clipping for computational
efficiency; otherwise, a combinatorial explosion takes place in
their composition of utterances after many generations. This
method also supports our human behavior; that is, we do not
speak sentences that are too long and beyond our presumed
competency. Therefore, considering that word abbreviation

actually occurs in the real linguistic utterances, we would like
to justify employing this string-clipping even for the following
experiments.

D. Complement of Experiment 1
We examine characteristics of LCLs with Figure 9, which

shows language distance from neighbors and parents for
each α. Our first expectation was simple: the more frequent
the communication with neighbors, the larger the common
language communities. If so, the experimental result should
show that the greater the exposure rate α is, the smaller the
number of LCLs. However, as shown in Figure 8a, the relation
between the exposure rate α and the number of LCLs forms
a ‘V’-shape, where the number of LCLs reaches the lowest at
α = 0.5.

Figure 9a shows the average height of each branch in the
dendrogram, which corresponds to clustering languages shown
in Figure 7. Note that the height of the dendrogram represents
the language distance between two merged clusters in the
complete linkage method, meaning that a cluster consisting
of 25 agents draws 24 lines of language distance. The red
dashed line at 0.7 on the Y -axis denotes the threshold to
distinguish languages, which means the number of lines above
it corresponds to the number of LCLs. Therefore, every point
of height would be below the threshold when everyone comes
to speak a common language.

At α = 0, since every agent learns a language only from
his/her parent, all the languages spoken in the community are
independent. Therefore, according to the number of grammat-
ical rules and expressivity shown in Figures 8b and 8c, each
language is sophisticated. Nevertheless, from the viewpoint of
language similarity, they are far from each other.

At 0.3 ≤ α ≤ 0.5, we can find some agents within a very
close distance. This is because the agents learn a language
mainly from their parents and a part from neighbors. We
consider that these appropriate ranges of contact frequency
succeed in producing some local common languages.

At α ≥ 0.9, although the formation in height is similar
to that at α = 0, the languages spoken in the community are
quite different. Figure 9b shows the average language distance
of agents’ languages from their parental ones. While agents
at α = 0 learn a language similar to that of their parents, the
languages at large values of α are far from that of the previous
generation. We can regard them as diffusion due to learning
from multipronged language sources. This is a reason for the
‘V’-shape in Figure 8a.

E. Experiment 2
The purpose in this experiment is to show an appropriate

generation for grammar acquisition, taking effectiveness and
computational time into account. We examined the model with
a generation parameter at the range between 30, 100 and 200.
Figure 10 shows the experimental results of Exp-2.

As far as the confidence intervals in Figure 10a, at the
range of 0 ≤ α < 0.4, these three results form three lines
with significant difference. On the contrary, these significant
differences among generation settings disappear at the range
of α ≥ 0.4. This observation shows that the more genera-
tions there are for learning, the easier the observation of the
emergence of LCLs at small values of α. In other words, we
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Figure 9. Language distance from neighbors and parents for each α

should take as much time as possible in the 2D-lattice network.
However, Figures 10b and 10c show the lines are split into 30-
th generation and the others.

Figure 11 shows another experimental result of Exp-2 with
scale-free networks. The number of LCLs in the result of the
30-th generation is significantly greater than the others at the
range of 0 ≤ α ≤ 0.5. Rather, it is clear that the results of
100-th and 200-th generations are closer to each other. The
results of grammar rules and expressivity, which are omitted,
showed similar characteristics as Figures 10b and 10c. Despite
a little difference between the model of the 30-th generation
and the others, they are significantly different from each other
at the smaller values of α. Taking computational time into
account, the number of generations should be set to 100 in the
following experiments.

F. Experiment 3

Figure 12 shows the experimental results of Exp-3 with
100 agents in 100 generations. Looking at the result of scale-
free networks (black lines), we can see a large ‘S’-shape in
which the number of LCLs at α = 0.8 is greater than that at
α = 0. As far as Figures 12b and 12c, agents’ grammars have
almost the same characteristics as that of 25 agents. This may
come from the characteristics of scale-free networks.
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Figure 10. Experimental results of Exp-2 with 95% confidence intervals
(n=50)

Figure 13 shows language distance from neighbors (Fig-
ure 13a) and parents (Figure 13b) for each α. As was shown in
Section IV-D, those large values of α cause language diffusion
supposedly due to too many sources of language. According to
the above observation, the number of lines above the threshold
(θ = 0.7) at α = 0.8 must be the greatest, since the number
of LCLs at α = 0.8 is significantly different from those at
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Figure 11. Local common languages (θ = 0.7)

α = 0.7 and 0.9.

We focus on the result of the 2D-lattice network (red
lines). At large values of α, since every agent in the 2D-
lattice network is surrounded by four neighbors and his/her
parent, everyone can be an influencer in the whole network.
For example, an utterance by any agent can equally affect the
learning of two steps away in two generations. Note that a
neighbor of two steps away is far from the other in the opposite
direction, which is different from Exp-1 in that the neighbors
are connected in the 2D-lattice network consisting of 5 × 5
vertices. As a result, the agents in such a situation may acquire
not well-organized grammars, which interferes the emergence
of language communities.

As for Figure 12a, agents in scale-free networks are likely
to make local language communities at a certain range of α.
Although two different types of networks drew similar curves,
the one by scale-free networks reached the least number of
LCLs.

Therefore, we conclude confidently that the emergence of
local language communities depends on network types and an
appropriate communication with neighbors.

V. CONCLUSION

In this paper, we proposed an agent-based model for lan-
guage contact. We employed Kirby’s iterated learning model
and complex networks. Languages were measured based on
the Levenshtein distance of utterances, which enabled us to
show the language divergence by the clustering. Language
exposure is expected to cause neighbors to communicate with
each other. Overall, we succeeded in implementing a linguistic
community with learning agents connected by a social net-
work. The network model makes it possible to observe not
only diachronic but also synchronic changes in grammar. We
achieved implementation of a large-scale, agent-based model
where 100 processes of ILM run in parallel, which contributes
to the simulation study on language evolution.

Our proposed model was examined in three aspects: (i) the
effectiveness of string-clipping, (ii) the relation between gener-
ations for learning and the number of local common languages,
and (iii) the relation between network types and the local
common languages. Through the experiments, the language
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Figure 12. Experimental results of Exp-3 with 95% confidence intervals

exposure was parameterized. We confirmed that the string-
clipping method works effectively for grammatical learning,
but it seems unstable in the multi-input environment. The
complement experiment showed that excessive communication
causes language divergence, which suggests that there is an ap-
propriate degree of exposure to other languages during learning
toward the emergence of a common language. We observed
that local languages are likely to emerge after generations
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Figure 13. Language distance from neighbors and parents for each α

for learning. In addition, we confirmed that the network type
affects the number of local common languages. We conclude
that we succeeded in modeling the actual situation of language
change through the series of experiments.

In the near future, we plan to run different types of
simulations toward the framework of the diachronic change in
languages by language contact. Although we employed indirect
graphs for simplicity in the experiments, direct graphs with
weighted edges could reflect more real-world social structures.
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