
385

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Novel Chemistry-inspired Approach to Efficient

Coordination of Multi-mission Networked Objects

Mahmoud ElGammal

The Bradley Department of
Electrical and Computer Engineering

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
Email: gammal@vt.edu

Mohamed Eltoweissy∗

Department of Computer and Information Sciences
Virginia Military Institute
Lexington, Virginia 24450

Email: eltoweissymy@vmi.edu

Abstract—In this paper we present a chemistry-inspired
approach for coordinating networked objects in pervasive
computing environments built on the concept of chemical
affinity. Our thesis is that by paralleling the model of
interaction that takes place among atoms during a chemical
reaction, a form of collective intelligence emerges among the
objects in the network enabling them to achieve a common
global objective while relying solely on preferences expressed
on an individual basis. The main contribution of this paper is a
novel implementation of a highly-parallelized chemical reaction
execution engine that uses message passing to optimize reactant
selection for multiple reaction rules simultaneously. In our
method, objects in the chemical domain are represented using
a probabilistic factor graph, where inter-reactant affinities
are encoded in the factor nodes to guide bond formation
among reactants. The problem of associating reactants with
reaction rules is modeled as a Maximum-a-Posteriori (MAP)
assignment problem, which we solve using the Max-Product
Belief Propagation algorithm, allowing us to efficiently obtain
a reactant-to-reaction assignment that maximizes the number
of concurrent reactions. To evaluate our approach, we use
simulation to assess the performance of the reaction execution
engine in terms of execution speed and solution quality. Finally,
we use the problem of resource-constrained task assignment
among heterogeneous robots as a case study to present a
concrete application of our approach.

Keywords–Nature-inspired computing; Internet-of-Things;
Pervasive computing; Belief propagation; Computational
Chemistry.

I. INTRODUCTION

With the current surge in smart computing applications,
researches are increasingly turning to nature-inspired
computing models for ideas on how to deal with the highly
dynamic nature of this new computing paradigm. In [1]
we proposed a new approach to network configuration
and management in pervasive computing systems inspired
by the chemical affinity concept, which we coined
C2A2: Chemistry-inspired, Context-Aware, and Autonomic
Management System for Networked Objects. The concept
behind C2A2 is that physical and logical components of the
network are mapped to the chemical domain using a layered

∗Also Affiliate Professor, The Bradley Department of Electrical and
Computer Engineering, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, USA.

abstraction model. Once represented using the chemical
metaphor, reaction rules are then defined to specify how
reactants in the chemical domain are allowed to interact
with each other, which would eventually lead to implications
on the actual network. C2A2 relied on a reaction execution
engine that was responsible for deciding which reaction rules
may be fired and which reactants should be consumed by
them. The work presented herein serves as a more in-depth
discussion of a significantly improved implementation of the
reaction execution engine previously introduced in [1].

In our new approach, reactants and reaction rules in
the chemical domain are modeled using a probabilistic
factor graph, where factor nodes encode affinities between
each pair of reactants, affinities between reactants and
reaction rules, as well as the different constraints needed
to ensure that the resulting solution constitutes a valid
reactant-to-reaction assignment. The graph is constructed
such that the optimal assignment of reactants to reaction
rules can be obtained by solving the Maximum-a-Posteriori
assignment problem [2] on the graph, which we solve
by passing carefully designed messages over the graph
according to the Max-Product Belief Propagation algorithm
[3]. A key advantage of this approach is its ability to find
a solution that maximizes the number of reaction rules that
can be satisfied simultaneously, which makes it particularly
suited for multi-mission pervasive computing applications.

The remainder of the document is organized as follows.
In Section II, we survey some notable related works from
the literature and provide an overview of the probabilistic
graphical modeling techniques we rely on in later sections.
In Section III, we present the implementation of our reaction
execution engine. In Section IV, we analyze the performance
of our approach using simulation, and validate its efficacy by
applying it to a more concrete case study. Finally, in Section
V, we present our conclusion and discuss future work.

II. BACKGROUND AND RELATED WORK

In C2A2 we leverage ideas from the fields of bio-inspired
computing and machine learning. In particular, we build
our work upon some of the established concepts and
algorithms belonging to the subfields of chemistry-inspired

386

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computing and probabilistic graphical modeling1 in those
two research disciplines, respectively. In this section we
present a rudimentary overview of these topics and discuss
some important related work.

A. Chemistry-inspired Computing

A common feature among most, if not all, natural
computing models that draw their inspiration from the
chemical reaction metaphor, is that the system state is
represented as a fluid in which reactants of different types
move freely and interact with each other according to
predefined reaction rules. Developing concrete applications
based on this concept requires mature models of computation
that can be used to encode real-life problems using the
chemical formalism and describe programs to solve them,
as well as runtime systems that can actually execute these
programs. The former field of study has seen significant
research activity, ushered by the Γ language by Banâtre
et al. [4] and continued through various other works
such as the Chemical Abstract Machine by Berry et al.
[5], the Molecular Dynamics model by Bergstra et al.
[6], Membrane Computing (P Systems) by Păun [7], and
more recently in the Biochemical Tuple Spaces model
by Viroli et al. [8]. Some of these works contributed
incremental improvements over previous models while
others offered entirely new approaches, but all have served
to present the chemical metaphor as a mature and viable
option for modeling computational processes, especially for
applications where concurrency and self-organization are
two desirable characteristics. However, despite the progress
on this front, not as much attention has been given to the
runtime systems on which chemical computing models can
be executed [9].

The earliest runtime system for a chemical machine is
perhaps the one described in [4], where an implementation
of the Γ language on a massively parallel machine (aka the
Γ-machine) is proposed. In order to evaluate a Γ program,
the runtime system has to perform two tasks: (a) search for
reactants that satisfy reaction conditions (in other words,
determine which reactions to fire), and (b) applying the
actions associated with fired reactions on the system. It
can easily be shown that a roughly similar breakdown of
tasks would also apply to any other runtime, not just the
Γ-machine. The first task requires solving an NP-hard
optimization problem, and with C2A2, we attempt to put
forward a practical, efficient, and scalable solution to this
problem.

Existing runtime systems employ different approaches
to address this problem. One approach can be described
as the search-and-match approach, and it usually relies on
some data structure that stores information about reactants
and reaction rules where a search algorithm is then used to
determine which reactions to fire based on the satisfiability
of their premise. The implementation proposed for the
Γ-machine in [4] falls under this category. However, it can
be considered more of a proof of concept as it assumes
a number of processors equal to the number of reactants,
which would be faced by strict scalability limits in reality.

1For a thorough review of probabilistic graphical models, the reader is
referred to [3].

Additionally, it only considers one form of reactions (more
specifically, reactions that take exactly two input values
and produce two output values), which would impose
further constraints on the practicality of this approach. More
efficient methods belonging to this category have also been
proposed, such as The Chemical Machine by Rajcsányi
et al. [10], which relies on the more sophisticated RETE
pattern-matching algorithm [11].

Another approach that is mainly used for simulation but
is also used in some runtime systems is the computational
chemistry approach. Methods belonging to this category
rely on algorithms that have long been used by theoretical
chemists to solve many quantitative chemical problems using
simulation with acceptable accuracy. Several algorithms
have been developed under this category and which have
been improving in efficiency over time, such as Gillespie’s
First Reaction Method [12], the Next Reaction Method by
Gibson et al. [13], Slepoy et al.’s constant-time Monte Carlo
algorithm for simulating biochemical reaction networks [14],
ALCHEMIST [15], and others. These methods offer a
statistically correct depiction of the evolution of species
concentration in a chemical solution over time, which is
necessary in applications that rely on accurate simulation
of the laws of chemical kinetics.

These two approaches have different points of strength
and weakness. The search-and-match approach can be used
to model the behavior of a self-organizing system in terms of
microscopic interactions among its lowest-level components,
which makes it a more versatile tool for modeling a wide
range of applications. On the downside, it offers limited
control on the macroscopic behavior of the whole system
[16]. The computational chemistry approach on the other
hand offers greater control over the macroscopic behavior
of the system, which allows for better overall stability and
predictability, but only if the target application lends itself
easily to this approach, such as the case studies given in
[15], [16], [17], [18].

In C2A2 we utilize the concept of chemical affinity
to express the mutual attraction force between a reactant
and another reactant or reaction rule, and we present
an approach for reconciling the inevitably conflicting
preferences of reactants to form bonds among themselves.
By doing so, we aim to combine some of the advantages
of the two approaches mentioned above, where the
macroscopic behavior of the system is derived from the
individual inclinations of reactants at the microscopic
level. Furthermore, our approach maximizes the number of
reaction rules that can be satisfied simultaneously, making it
particularly efficient for applications requiring the execution
of concurrent processes.

B. Probabilistic Factor Graphs

Probabilistic graphical models [3] provide a framework
that enables us to encode our knowledge of how a real-world
system works in a compact, machine-readable format,
amenable to the application of various reasoning algorithms.
Being declarative by nature, such modeling method has
the advantage of separating the domain-specific knowledge
needed to construct the graph from the reasoning algorithms
that can be applied to it. This allows the development of

387

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a whole host of reasoning algorithms that can manipulate
the model and answer various queries about it despite
being agnostic of the semantics of the real-world system
it represents.

A probabilistic graphical model consists of a number of
nodes, each representing a random variable, which in turn
represents some aspect of the modeled system. The nodes
are connected using either directed or undirected edges (as in
Bayesian and Markov networks, respectively), which express
how a pair of random variables interact. Assuming that
we have prior knowledge of how the random variables in
the graph are probabilistically interdependent (or not, in
case of independent variables), our job is to reason about
the most likely values of one or more variables, possibly
after having observed the values of some others. In order
to do that, we are often interested in calculating the joint
distribution over the possible values of all random variables
in the graph or a subset thereof, which can quickly become
an intractable problem. For instance, in a graph containing N
binary random variables, the space of possible assignments
to these variables is of size 2N .

However, since most complex distributions usually
contain independencies among many of their dimensions,
and since the graph is essentially a representation of these
independencies, we can exploit the structure inherent in
the distribution by breaking it up into smaller factors,
each having just a subset of interdependent variables in
its scope. A factor φi with scope Di is a function that
maps each possible assignment of the variables in Di to
a nonnegative value, essentially signifying the affinity of
the random variables toward each possible joint assignment.
The graph structure then becomes a factorization of the
overall joint distribution P over all variables in the domain
X = {X1, . . . , Xn}, which can now be expressed more
compactly as the product of these factors:

P (X) =
1

Z

∏
i

φi(Di) (1)

where Z is a normalization constant (also known as the
partition function), added in order to make P (X) a valid
probability distribution function.

We are specifically interested in factor graphs – a
special type of undirected probabilistic graphical models
that make the factorization explicit in the graph structure.
A factor graph is a bipartite graph consisting of one group
of nodes that represent factors, another that represents
random variables, and edges that exist only between a
factor node and nodes of variables that lie in its scope.
In the following sections, we discuss how we optimize
reaction selection in C2A2 by constructing a factor graph
for the system and transforming the problem into one of the
well-known inference problems applicable to probabilistic
graphical models, which we cover next.

C. The MAP Assignment Problem

In the MAP (Maximum a Posteriori) assignment problem
we try to answer the following question: given a set of
random variables X = {X1, . . . , Xn}, of which a subset
E (the evidence) is observed to have the value e, what is

the joint assignment for the remaining variables W = X−E
such that P (W |E = e) is maximized?

An important thing to note is that the correct answer to
this query is quite different from what could be obtained
by selecting the most likely assignment for the individual
members of W given the evidence, which could possibly
yield an invalid solution. For instance, while the most likely
independent assignments for a pair of variables X,Y ⊂ W
given evidence E = e may be x and y, respectively, it
is possible that these two assignments can never co-occur
given the same evidence. Expressed more formally, there
is no guarantee that {argmaxXP (X|e), argmaxY P (Y |e)}
and argmaxX,Y P (X,Y |e) are equivalent. This adds a
significant number of constraints that need to be satisfied by
the solution, making MAP assignment an NP-hard problem
[3].

MAP inference continues to be a useful tool for
solving problems in various domains, such as computer
vision, speech recognition, noisy-channel coding, medical
diagnosis, and many others. In all of these problems, we
rely on partially observed data in conjunction with some
predefined assumptions about the data model in order to
estimate an unobserved quantity. As will be explained in
more detail shortly, in C2A2 we encode the affinities between
the different objects in the network as well as the reaction
rules that dictate how objects interact with each other into the
factor graph devised for the system. The graph then becomes
the input to a MAP assignment problem whose output
determines which reactions are fired and which reactants
are consumed thereby.

Owing to its intractability in large graphs, MAP
inference is usually solved using one of several available
heuristic algorithms. The one we are concerned with here
is Belief Propagation [19], which we briefly discuss next
before moving on to our system implementation.

D. Belief Propagation

Belief Propagation [19] (BP) is a message-passing
algorithm for performing probabilistic inference on graphical
models. Given a set of factors Φ defined over a set of
random variables X , we start by constructing a cluster
graph, which is an undirected graph where each node (or
cluster) i is associated with a subset of variables Ci ⊆ X ,
and each pair of clusters Ci and Cj with shared variables
are connected by an edge associated with a sepset Si,j ⊆
Ci ∩ Cj . The algorithm then progresses through a number
of iterations, during which each cluster node transmits to
each of its direct neighbor clusters its beliefs about the
variables in their shared sepset. A message from Ci to Cj

incorporates evidence collected by Ci about the variables
in the sepset Si,j from all its direct neighbors except Cj

(which serves to avoid reinforcing a prior incorrect belief
by Cj). Provided that the graph satisfies certain properties
that will be discussed later, beliefs at neighboring clusters
concerning their shared sepset converge after a finite number
of iterations, at which point the graph is said to have become
calibrated. The final step consists of decoding the calibrated
beliefs at every cluster to obtain the solution to our inference
problem.

388

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

BP has different variants for solving different inference
problems. We focus our attention on Max-Product Belief
Propagation (MPBP), which can be used to solve the MAP
assignment problem. In MPBP, the belief computed at cluster
Ci is the max-marginal for the variables in its scope, which
is a function that maps each possible configuration of the
variables in Scope[Ci] to the unnormalized probability of
the most likely joint assignment consistent with it. If the
cluster graph is actually a tree, then the MAP problem can
be solved exactly and the max-marginals can be computed
in polynomial time. Moreover, if there is only one unique
optimal assignment to the unobserved nodes, then decoding
the max-marginals to obtain the solution is trivial and can be
performed in O(N) [3]. Under different circumstances, the
solution is only approximate, and certain measures have to
be taken to guarantee convergence and simplify the final
decoding step. We discuss the application of BP to our
problem in more detail as well as the exact format of the
messages passed on the graph in the next section where we
present our system implementation.

III. SYSTEM IMPLEMENTATION

As in other chemical computing models (e.g., [5], [20],
[7]), the state of the system in C2A2 is analogous to
a chemical solution in which reactants move freely and
interact with each other according to predefined reaction
rules. In an actual chemical solution, Brownian motion
is responsible for causing reactants to come in contact
with each other, where they form different bond types at
various rates that depend on their relative concentrations,
the presence of certain catalysts, among other factors. In
a chemical computing system, this is emulated via an
algorithm that decides which reactions are triggered at
what times and which reactants are consumed by them
(e.g., [12], [14], [15]). In this section, we put forward an
implementation of one such algorithm.

A. Overview

The reaction execution engine in C2A2 is an
implementation of a P System [7]. Reactions in the
forward direction take the form ca → cu, while reverse
directions take the form cu → ca. In both forms, a and u
are reactant multisets, and c is a catalyst that may optionally
be required in order for the reaction to be triggered.

The problem of assigning reactants to forward reactions
can be seen as a clustering problem in which reaction
rules play the role of exemplars while reactants (atoms
and molecules) play the role of cluster members. However,
one property of P Systems necessitates a slight departure
from traditional clustering, which is that reactions must
be performed in a maximally parallel way. Consequently,
reactants are assigned to rules until no further assignments
are possible, which imposes the consequence that a single
rule may assume exemplarity of multiple cluster instances,
all of identical structure, where the members of each instance
have a one-to-one correspondence to the elements in the
left-hand side multiset in the forward reaction form, a.
This reformulated clustering problem can be solved by
constructing a factor graph as the one shown in Figure 1,
where the final reactant/reaction assignments are decided

through the iterative exchange of affinity values according
to the BP algorithm.

Figure 1. Factor graph of reformulated clustering problem for the reaction
execution engine in C2A2.

B. Constructing the Factor Graph

In constructing the factor graph for our problem, we
have extended the binary variable model for the Affinity
Propagation (AP) clustering algorithm [21] presented in
[22]. We assume that the system contains N reactants and R
reaction rules, and the goal is to match different subsets of
these N reactants with reaction rules such that each subset
(henceforth called reactant group or just group for short) is
congruent with the left-hand side multiset of the reaction it
is matched with, and no single reactant is involved in more
than one reaction.

As illustrated in Figure 1, the factor graph is
2-dimensional and is constructed such that reaction rules
are organized horizontally and are indexed by the variable
j ∈ {1 . . . R}, while symbols representing reactant groups
are organized vertically and are indexed by the variable
i ∈ {1 . . . G}. Reactant groups represent the elements
of the power set over all reactants, which has a size of
2N . Obviously, this can be prohibitively large. In practice,
however, reactant groups that do not appear in any reaction
rules as well as those that do not satisfy a minimum affinity
threshold among its members can be eliminated, reducing
the size of the set by several orders of magnitude. The hij
nodes are binary variables, which if set to 1 at the end of
executing the message-passing algorithm indicate that group
i is to be consumed by reaction j.

Because a single reactant may belong to multiple groups,
if group i is assigned to rule j, we must guarantee that: (1)
group i is not simultaneously assigned to any other rule
k 6= j, and (2) none of the reactants in group i belong to
another group consumed by a reaction. These two constraints
are enforced by adding the Ii and Ek∈{1...N} factor nodes,
respectively. The Sij factor nodes provide the initial affinity

389

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

values between each group i and reaction j. By applying
equation (1) to the factor graph in Figure 1 (and ignoring
the Z constant), the objective function maximized by MPBP
becomes:

f({hij})
mpbp

=

G∏
i=1

R∏
j=1

Sij(hij) ·
G∏
i=1

Ii(hi:) ·
N∏

k=1

Ek(hk::)

where hk:: denotes all the hij variables in the scope of
the Ek factor. Because there are often several advantages
to optimizing log(fmpbp) instead [3], we use a different
version of MPBP that maximizes the summation of factors
in log-space instead of their product. The algorithm is called
Max-Sum Belief Propagation (MSBP) which is the one
we use in our implementation. The final objective function
hence becomes:

f({hij})
msbp

=

G∑
i=1

R∑
j=1

Sij(hij)+

G∑
i=1

Ii(hi:)+

N∑
k=1

Ek(hk::) (2)

The three factor types work together to produce a
solution that maximizes the sum of affinities over all possible
(group, reaction) pairs, but without violating any of the
stipulated constraints. Invalid solutions are eliminated by
assigning a value of −∞ to a factor when the constraint
it is associated with is violated, guaranteeing a sub-optimal
result for the objective function.

C. Message Updates

We now derive the messages passed between the different
nodes in the factor graph. In the max-sum algorithm, a
message passed from one node to another can have one of
the two forms shown in equations (3) and (4) depending on
whether it flowed from a variable node v to a factor node
f or in the opposite direction, respectively. In equation (3),
N (v) is the set of all factor nodes connected to v, while in
equation (4) Xf is the scope of factor f .

µv→f (valv) =
∑

g∈N (v)\f

µg→v(valv) (3)

µf→v(valv) = max
Xf\v
{f(Xf) +

∑
w∈Xf\v

µw→f (valw)} (4)

For each variable node, a message has to be exchanged to
and from all neighbor nodes for each possible assignment
of the variable. Since all variables in the factor graph in
Figure 1 are binary, [22] shows that we could compute the
difference between the two messages associated with the
two possible assignments (e.g., µv→f (v1)−µv→f (v0)) such
that only one message need be sent per neighbor in each
direction. Figure 2 shows a fragment of the full factor graph
that illustrates all the messages involved in computing the
final value of a single hij variable. We now discuss the role
played by each of these messages in our application as well
as the full derivation for the max-sum BP algorithm.

1) Message from Sij factor: The Sij factor represents
the reward gained by the system when reactant group i is
assigned to reaction j. The sij message, which is sent from
the Sij factor node to its associated hij variable node, has a
constant value that represents the affinity between reactant
group i and reaction j. If group i matches the input multiset

Figure 2. Factor graph fragment for computing the affiliation of reactant
group i with reaction rule j.

of rule j and the group is actually assigned to the reaction,
then Sij(hij) is set to the average affinity between the
reaction and the reactants in the group. Otherwise, the pair
is not candidate for matching and the factor yields a value
of −∞. In equation (6), the average is used to normalize
the resulting affinity value, since reactant groups can be of
different sizes.

Sij(hij) =

{
sijhij if groupi ≡ rulej
−∞ otherwise

(5)

sij = avgk{aff (ik, j)} (6)

2) Messages from/to Ii factor: The Ii factor guarantees
that reactant group i is assigned to at most one reaction.
Note that in equation (7), we use 0 instead of 1 when the
constraint is satisfied since we are operating in log-space.

Ii(hi:) =

{
0 if

∑R
j=1 hij ≤ 1

−∞ otherwise
(7)

This is achieved by exchanging the ηij and βij messages
between the factor node and the hij node for each reaction.
The derivation provided below for these two messages is
similar to the original derivation for the binary model for
AP in [21], but it accounts for the different structure of the
factor graph in our problem, where each hij node could be
connected to a varying number of Ek factors. Due to this,
we use the average of the incoming αij messages in the
equations below instead of the summation.

• βij message (using equation (3)):
βij(hij = 1) = µhij→Ii(1)

= µSij→hij (1) + avgk{µEi
k→hij

(1)}
= sij(1) + avgk{αk

ij(1)}
Similarly:

βij(hij = 0) = sij(0) + avgk{αk
ij(0)}

Given that each message is computed as the difference
between its formulae for the two possible assignments of
hij , we get:

βij = βij(1)− βij(0) = sij + avgk{αk
ij} (8)

390

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• ηij message (using equation (4)):
ηij(hij = 1) = µIi→hij

(1)

= max
j′ 6=j
{Ii(hi1, . . . , hij = 1, . . . , hiR)

+
∑

hij′∈N (Ii)\hij

µhij′→Ii(hij′)}

= max
j′ 6=j
{Ii(hi1, .., hij = 1, .., hiR) +

∑
j′ 6=j

βhij′ (hij′)}

Since we are assuming that hij = 1, the only
configuration that would maximize ηij(1) is if every other
hij′,j′ 6=j was set to 0, otherwise the group would be
assigned to more than one reaction and Ii would yield
−∞ (equation (7)). ηij(1) then becomes:

ηij(hij = 1) =
∑
j′ 6=j

βhij′ (0)

For hij = 0, the configuration is only valid when a unique
hij′,j′ 6=j = 1, in which case the Ii(hi:) term becomes 0,
and the formula for ηij(hij = 0) becomes a maximization
over all such configurations:

ηij(hij = 0) = max
j′ 6=j
{βij′(1) +

∑
l/∈{j,j′}

βil(0)}

Finally, ηij is obtained by subtracting ηij(0) from ηij(1):
ηij = −max

j′ 6=j
{βij′} (9)

3) Messages from/to Ek factor: The Ek factor implicitly
guarantees that if a reactant group is assigned to a reaction,
then no other group with any shared reactants is assigned to
a reaction. This is achieved by ensuring that at most one of
the hij variables attached to each Ek factor is set to 1:

Ek(h::) =

0 if
∑

(i,j)k
hkij ≤ 1

−∞ otherwise
(10)

where (i, j)k are the (group, reaction) indices of all the
hij variables attached to Ek (k ∈ {1 . . . N}). The Ek factor
exchanges two messages with each variable it is connected
to: the αk

ij message represents the accumulated evidence of
how appropriate it would be for the kth reactant in group
i to partake in reaction j, while the ρkij message represents
the accumulated evidence for the willingness of reaction j to
consume the reactant, which has to take into consideration
the availability of all other reactants involved in the group.
In the following equations, the notation Eik denotes the E
factor associated with the kth reactant in group i.

• ρkij message (using equation (3)):

ρkij(hij = 1) = µhij→E
ik

(1)

= µSij→hij
(1) + µIi→hij

(1) + avg
k′ 6=k
{µE

ik
′→hij

(1)}

= sij(1) + ηij(1) + avg
k′ 6=k
{αk′

ij (1)}

and it can easily be shown that ρkij(hij = 0) would have
a similar formula to ρkij(hij = 1), yielding the following
for ρkij :

ρkij = sij + ηij + avg
k′ 6=k
{αk′

ij } (11)

• αk
ij message (using equation (4)):

Let H be the set of h variables connected to Eik except
hij : H = N (Eik) \ hij . Since hij = 1, the only
configuration that ensures that the reactant is not assigned
to multiple reactions is when h = 0∀h ∈ H:
αk
ij(hij = 1) = µE

ik
→hij

(1)

= max
h∈H
{Eik(hij = 1, H) +

∑
h∈H

µh→E
ik

(h)}

= max
h∈H
{Eik(hij = 1, H = {0}) +

∑
h∈H

ρh→E
ik

(0)}

= max
h∈H
{0 +

∑
h∈H

ρh→E
ik

(0)} =
∑
h∈H

ρh→E
ik

(0)

For hij = 0, the configuration is valid when all variables
in H are set to 0 as in the previous case, or when exactly
one variable in H is set to 1:
αk
ij(hij = 0) = µE

ik
→hij

(0)

= max
h∈H
{Eik(hij = 0, H) +

∑
h∈H

µh→E
ik

(h), }

= max
h∈H
{Eik(hij = 0, h1 = 0, . . . , h|H| = 0)

+
∑
h∈H

ρh→E
ik

(0),

Eik(hij = 0, h1 = 1, h2 = 0, . . . , h|H| = 0)

+ ρh1→E
ik

(1) +
∑

h∈H\h1

ρh→E
ik

(0), . . . ,

Eik(hij = 0, h1 = 0, h2 = 0, . . . , h|H| = 1)

+ ρh|H|→E
ik

(1) +
∑

h∈H\h|H|

ρh→E
ik

(0)}

In the equation above, Eik(h::) is 0 for any valid
configuration. By using the fact that a − max(b, c) =
min(a − b, a − c), the formula for αk

ij obtained by
subtracting αij(0) from αij(1) becomes:

αk
ij = min{0, min

(g,r)∈(i,j)k\(i,j)
{−ρkgr}} (12)

Figure 3. Messages used to compute the affiliation of reactant group i
with reaction j using max-sum belief propagation.

This concludes the derivation of all messages passed
over the factor graph, which are summarized in Figure 3.
An important remark regarding the formulae for the ηij
and αk

ij messages (equations (9) and (12)) produced by
the Ii and Eik factors, respectively, is that they have a

391

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

complexity of O(N) in the number of possible values for
the input messages that must be processed by the factor.
Typically, this step would be of exponential complexity in
the number of possible assignments of the variables in the
scope of the factor, but due to the constraints employed
in our problem, the global solution search space could be
pruned significantly via early elimination of invalid solutions
locally at each factor. This should work to our advantage in
terms of the overall execution cost for this implementation.

D. Constructing the Cluster Graph

As mentioned in Section II-D, message passing in belief
propagation takes place over a cluster graph derived from
the factor graph representation rather than directly on the
latter. Different cluster graphs can be generated for the same
factor graph, but for a cluster graph to be valid, it must
satisfy two properties [3]:

• The family-preservation property, which stipulates that for
each factor φ in the original factor graph there must exist
a cluster C in the cluster graph such that Scope[φ] ⊆
Scope[C], and

• The running-intersection property, which requires that for
any two clusters containing a variable v, there is exactly
one path between the two clusters over which information
about v can be propagated.

A certain class of cluster graphs knows as Bethe cluster
graphs is guaranteed to satisfy these two properties [3]. A
Bethe cluster graph is a bipartite graph where a univariate
cluster is added for each variable in the factor graph, and
factors are represented by multivariate clusters whose scopes
include all variables in their respective factors. Edges are
added only between a univariate cluster and the multivariate
clusters whose scopes include the variable in question.
Generating such cluster graph from the factor graph in
Figure 1 is straightforward. The result is shown in Figure 4,
which can be used to verify that both the family-preservation
and running-intersection properties are satisfied.

Figure 4. Cluster graph used for passing messages according to max-sum
belief propagation. Univariate clusters representing each Sij factor appear
in the bottom row, while multivariate clusters for the Ii and Ek factors

appear in the top row. Edge labels indicate the variable about which
information is passed along the edge.

1) Dealing with non-convergence: As can be seen in
Figure 4, the graph is not loop-free (e.g., the loop S11 −
I1 − S12 −E1 − S11), which means that belief propagation
is not guaranteed to converge, or to obtain the optimal
variable assignment when it does converge. Obviously, the

problem of non-optimality cannot be completely eliminated.
However, by ensuring that the cluster graph satisfies the
running-intersection property, the quality of the approximate
solution is improved as we verify in detail in Section IV.
The problem of non-convergence, on the other hand, is dealt
with by employing the following techniques:

• message damping, where the value of a message in
any given iteration of the algorithm is computed as the
weighted average of the new message value and its value
from the previous iteration:

µt+1 ← d · µt + (1− d) · µt−1, 0 < d < 1

This helps reduce the chances of the message passing
algorithm to oscillate indefinitely between two possible
configurations.

• Terminating the message passing algorithm after having
observed no improvement in the objective function
(equation (2)) for a finite number of iterations. Doing
so guarantees halting, but it also means that in some
cases the algorithm may never find a solution. However,
experimental results have shown that this only happened
with an acceptably low probability, and can be remedied
satisfactorily as we show in Section IV.

2) Optimizing performance: A significant reduction in
the number of messages passed over the graph can be
achieved by considering the fact that, typically, each reaction
rule is compatible only with a small subset of the available
reaction groups. This means that a large percentage of the
hij variables in Figure 1 could never be set to 1 in a valid
solution. Consequently, the beliefs about such variables in
the cluster graph should remain constant throughout the
execution of the algorithm, with the likelihood of hi,j = 0
being 1 and that of hij = 1 being 0 (or 0 and −∞ in
log-domain, respectively). An optimization that we applied
to our implementation in order to eliminate unnecessary
message exchange with such variables is to initialize the
beliefs about them in the multivariate clusters that include
them in their scopes to belief(hij) = {0 → 0, 1 → −∞}
while removing the univariate clusters that represent them.
This resulted in significantly faster execution times without
affecting the quality of the obtained solution.

Another potentially time-consuming operation is the
generation of candidate reaction groups that may be assigned
to a reaction. In the case where there is a large number of
instances of one or more reactants, a combinatorial explosion
in the number of candidate reactant groups may occur, which
can add a considerable time penalty. In order to circumvent
this problem, we have used the following strategies:

• Amortizing the cost of generating candidate reactant
groups by caching previous candidates and updating them
upon creating or destroying reactant instances, and

• Considering only the top n reactants with the highest
affinity values toward a reaction rule when updating the
reactant groups candidate for consumption by the rule.

E. Updating the Cluster Graph

Because of the dynamic nature of applications modeled
using the chemical metaphor, it is necessary to modify the

392

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

structure of the cluster graph when certain events take place,
such as:

• a reactant is added or removed from the system.
• a reaction is rule is activated or deactivated due to its

inputs being satisfied or unsatisfied, respectively.
• a new reaction rule is defined in the system or an existing

rule removed.
• inter-reactant or reactant-reaction affinities change.

Even when no external changes are exerted on the system
(such as the introduction of new reactants or reaction rules)
most of these events take place by merely executing a
reaction rule. Instead of reconstructing the cluster graph
from scratch when one of these events occur, the graph
structure is only amended accordingly. The system is said
to have reached equilibrium when no more reactions can be
executed. The pseudocode for our reaction execution engine
is shown below.

1: procedure main()
2: rules ← findRulesWithSatisfiedInputs()
3: reactantGroups ← φ
4: for each rule in rules do
5: reactantGroups ← reactantGroups ∪

computeReactantGroupsForRule(rule)
6: end for
7: graph ← constructBetheClusterGraph

(rules, reactantGroups)
8: while true do
9: rules← selectReactionRulesToExecute(graph)

10: if rules = φ then
11: // System reached equilibrium
12: return
13: end if
14: for each rule in rules do
15: rule.execute()
16: end for
17: updateAffinitites()
18: graph← amendGraph(graph)
19: end while
20: end procedure
21: procedure selectReactionRulesToExecute(graph)
22: // Initialize messages
23: for each cluster in graph.multivarClusters() do
24: for each varhij in cluster.scope() do
25: if isCompatible(groupi, rulej) then
26: µSij→cluster ← 0
27: µcluster→Sij

← 0
28: else
29: µSij→cluster ← −∞
30: end if
31: end for
32: end for
33: // Execute message passing algorithm
34: currentIteration ← 0
35: bestObjective ← −∞
36: solution ← null
37: repeat
38: for each edge(i− j) in graph.edges() do
39: edge.passMessage(computeMessage(i → j))

40: objective ← computeObjective(graph)
41: if objective > bestObjective then
42: bestObjective ← objective
43: solution ← decodeSolution(graph)
44: end if
45: end for
46: currentIteration ← currentIteration+ 1
47: until (calibrationError(graph) ≤ MIN_ERROR

or currentIteration ≥ MAX_ITERATIONS
or objective has been decreasing for

MAX_DIVERGENT_ITERATIONS)
48: return solution
49: end procedure
50: procedure decodeSolution(graph)
51: for each clusterSij in graph.univarClusters() do
52: valij ← clusterSij .valueWithMaxBelief()
53: end for
54: return {valij}
55: end procedure

IV. EVALUATION

In this section, we analyze the performance of our
reaction execution engine and demonstrate how our proposed
approach can be applied to a real-life problem, where we
use the multi-agent constrained task assignment problem as
a case study.

A. Performance Analysis

To evaluate the performance of the message-passing
algorithm, we have performed over 2, 500 runs using the
input parameters shown in Table I, whose values were
selected randomly within the indicated ranges.

TABLE I. Minimum and maximum limits used for generating random
input parameters for each experiment.

Parameter Min Max
Num. unique reactant types 100 1,000
Num. instances of each
reactant type 1 5

Num. reaction rules 1 30
Num. unique reactant types
in each reaction input multiset 1 5

Reactant type multiplicity in
reaction input multiset 1 # reactant

instances

Depending on the parameter values generated for
each run, a different number of assignable hij variables
(henceforth referred to as matches) end up in the cluster
graph. As mentioned in Section III-D2, this number is
often much smaller than the total number of variables in
the graph, and is a better estimate of the true size of the
optimization problem. Therefore, it is used as a key metric
in this analysis. The algorithm was implemented in Java,
and all experiments were executed on the Java HotSpotTM

64-bit JVM v1.8.0_25-b17 running on a 2.4 GHz Intel Core
i5 computer with 8 GB 1067 MHz DDR3 RAM.

Figure 5 shows a scatter plot comparing the actual
objective and number of matches obtained using our

393

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Scatter plot for Actual vs. Target objective (top), and number of
matches (bottom).

algorithm to the same metrics when computed using a
brute-force algorithm that finds the best solution using
exhaustive search. The objective is computed using equation
(2), and it represents the total reward gained by the system
given a particular set of matches. Due to the intractability
of computing the optimal solution, we have restricted
comparisons with the brute-force algorithm to problems with
30 or less possible matches (which would require evaluating
over 1 billion different combinations). The results in Figure
5 were obtained from over 600 runs, and they show that
our algorithm matches or closely approaches the optimal
solution in the majority of cases.

Figure 6 displays a break-down of the results in Figure
5. The histogram shows that our algorithm achieved 90% or
more of the quality of the optimal objective in almost 77%
of runs. The second largest group represents just 8% of runs,
where the obtained objective lied between 50% and 70% of
the optimal. In almost 2% of runs, our algorithm did not
converge to any valid solution. Those runs are represented
by the data points lying on the Y-axis in Figure 5. One
possible circumvention in this case is to greedily select the
non-conflicting matches that maximize the objective. This
would usually yield an inferior solution, especially in the
presence of many conflicts, but would still be preferable to

selecting no reactions at all.

Figure 6. A break-down of the percentage of runs vs. actual/optimal
solution ratio.

We now turn our attention to time performance. Figure 7
shows the number of message-passing iterations as well as
the average number of messages/cluster that were needed to
arrive at the solution. By combining the largest two groups
in the histogram, we find that in more than 80% of runs,
the best solution was found in less than 10 message-passing
iterations and less than 30 message exchanges with every
cluster in the graph.

Figure 7. A break-down of the percentage of runs vs. the number of
iterations and messages per cluster required to find the solution.

Figure 8 shows a comparison between the execution
times of three different algorithms versus the number of
possible matches in the cluster graph. In addition to the
brute-force algorithm mentioned earlier, we have also added
a greedy algorithm to act as a baseline for time performance.
The greedy algorithm sorts all matches descendingly by
reward then iterates over the sorted matches attempting the
two possible assignments of each match and keeping the one
that maximizes the sum of rewards.

Unsurprisingly, the message-passing algorithm is slower
than the O(N) greedy algorithm, but as can be seen in
Figure 8, the execution times of both algorithms remain to
be within a constant factor of each other, even when the
number of possible matches exceeds 500. Figure 9 focuses
on the message-passing algorithm, where each data point
represents the average execution time of all runs that share
the same number of matches.

394

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Logarithmic execution time vs. number of possible matches.

Figure 9. Execution time of message-passing algorithm vs. number of
matches, showing the trend line of data points across all runs.

Finally, as validation of the quality of the solution
obtained using the message-passing algorithm, we have
compared it to the greedy solution as more reaction rules
contend over the same reactant. In order to do this, we have
generated sets of 1, 000 runs each. In every set, each reactant

Figure 10. Reactant contention vs. improvement over greedy objective.

has an average number of reaction rules contending over it
that falls within a predefined range. Figure 10 shows that
the objective obtained using the message-passing algorithm
improves exponentially relative to the greedy algorithm as
the contention rate increases.

B. Case Study: Resource-Constrained Task Assignment

We now demonstrate how C2A2 can be applied to a
concrete problem in a pervasive computing setting. The case
study we have chosen is the problem of resource-constrained
task assignment in a multi-agent system. Different versions
of this problem have been studied in the literature, each
with a slightly different problem statement (e.g., [23], [24],
[25], [26]). The version we are interested in here has the
following problem statement: given a set of tasks T and
a set of heterogeneous agents A, where each task t ∈ T
is associated with a demand vector dt the describes the
requirements needed to starts the execution of task t, and
each agent a ∈ A is associated with a supply vector pa
that describes the capabilities of a, it is required to find an
assignment M : A→ T such that:

• For each task t ∈ T , M must contain an assignment
associating t with a set of agents whose aggregate supply
satisfies dt.

• The assignment M should be selected such that the
objective function f =

∑
t∈T w(t)−

∑
m∈M c(ma→t) is

maximized, where w(t) is the reward gained by the system
for executing task t, and c(ma→t) is the cost incurred by
the system for assigning agent a to task t.

[27] shows that this problem is NP-hard, and therefore
finding the optimal solution is prohibitively expensive
for large inputs. Several centralized and distributed
heuristic algorithms have been proposed in [23], [24],
[25], [26] among others. In [24], an online centralized
algorithm is proposed for forming coalitions among mobile
heterogeneous robots, allowing them to perform tasks that
require the collaboration of multiple robots with different
capabilities. A test scenario that involves 10 robots and 3
tasks is given, for which we are now going to devise a
solution using C2A2.

395

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The robot capabilities required in the test scenario are
shown in Table II, along with baseline values for the various
functional elements specific to each capability. The scenario
consists of three tasks, where each task imposes two levels
of constraints: (a) robot-level constraints, which must be
satisfied individually by each robot involved in executing
the task, and (b) coalition-level constraints, which must be
satisfied by the robot coalition as a whole. The three tasks
are shown in Table III. Finally, the ten robots involved in
the test scenario and the different capabilities they possess
are shown in Table IV.

The scenario can be modeled using the reaction rules
shown below. The number of rules correspond to the
number of tasks, where for each task t, a corresponding
rule is responsible for producing a robot coalition, ct, with
collective capabilities that satisfy the task requirements.
In each rule, n is the number of robots in the coalition
(1 ≤ n ≤ 10), and |si| is the magnitude of robot capability
i possessed either by an individual robot or the whole
coalition.
t1 +

(
n× r|s4|≥1×{0.8,0.8,0.5}

)
|s1|≥1×{0.5}
|s3|≥1×{0.5}
|s4|≥2×{0.8,0.8,0.5}

−→ c1

(13)
t2 +

(
n× r|s4|≥1×{0.8,0.8,0.5}

|s6|≥1×{0.8,1}

)
|s4|≥2×{0.8,0.8,0.5}

−→ c2

(14)
t3 +

(
n× r|s5|≥12×{1,1}

)
|s2|≥1×{0.5}
|s3|≥2×{0.5}
|s4|≥2×{0.8,0.8,0.5}

−→ c3 (15)

Just like in [24], we are assuming that tasks are
independent of each other, but the same concept can still
be applied to dependent tasks, where a scheduler would be
responsible for detecting which tasks may compete for the
available resources at any given time and add the necessary
reaction rules for them. The sequential scheme proposed in
[24] uses a greedy heuristic to select the robot coalitions,
but we will show that our concurrent solution can achieve
a conflict-free assignment for all tasks with better resource
utilization.

The next step is to specify the different affinity formulae
that govern reaction execution, and consequently coalition
formation. We consider the optimal solution to be the
one that achieves the least possible surplus of unutilized
capabilities, thus freeing up more robots to participate in
any new tasks that may arise. Accordingly, we are going to
construct the affinity formulae such that they optimize this
objective. However, it can easily be shown that different
definitions of optimality can be catered for by designing
different affinity formulae.

We define the following affinity relationships in our
solution:

• task-to-rule affinity: Because each rule in equations
(13)-(15) is designed to produce a coalition for a particular
task, the affinity between a task t and rule l is defined such
that aff(t, l) = −∞ unless l produced coalition ct:

aff(t, l) =

{
0, if output(l) = ct

−∞, otherwise
(16)

• robot-to-robot affinity: In this particular test scenario
robots have no preference as to which other robots may
join them in a coalition. Therefore, affinities between all
pairs of robots are set to 0.

• robot-to-task affinity: The affinity between robot r and
task t is computed according to equation (17). If r does
not satisfy the robot-level constraints of t, then r cannot
join coalition ct, and thus aff(r, t) is set to −∞. On the
other hand, if r meets the robot-level constraints of t, then
aff(r, t) decreases as the average capability surplus of r
increases beyond the requirements of task t.

aff(r, t) =

 −avg
i:|s(r)i | ≥ |s

(t)
i |
{s(r)i − s

(t)
i }, if r ≡ t

−∞, otherwise
(17)

• coalition-to-rule affinity: For every rule in equations
(13)-(15), C2A2 has to generate all possible input reactant
groups that satisfy the rule (as discussed in more detail
in Section III-B). In our test scenario, all of these groups
are comprised from the task associated with the rule in
addition to a candidate robot coalition that is compatible
with the task. As such, the affinity between a candidate
coalition cct and a rule l is defined as the average
robot-to-task affinity (equation (17)) over all robots in the
coalition if output(l) = t, and −∞ otherwise:

aff(cct, l) =

{
avg
r∈cct
{aff(r, t)}, if output(l) = ct

−∞, otherwise
(18)

Having defined the reaction rules and affinity formulae,
we can now feed them into the reaction execution engine
to obtain the solution. This particular problem has 608
conflict-free solutions, out of which only 55 (~9%) satisfy
the resources needed by all three tasks. Figure 11 shows the
possible objective values achievable by those 55 solutions
and the number of occurrences of each objective. The results
show that C2A2 was able to converge to the second best
solution, which is compared to the optimal solution in
Table V. The table also shows the magnitude of unutilized
resources on robots assigned by each solution to the three
tasks.

Figure 11. Number of conflict-free solutions for each objective value.

396

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Robot capabilities used in test scenario, with baseline values for the functional elements specific to each capability.

Symbol Description Attributes
s1 robot arm wlift = 10kg (max. lifting capacity)
s2 gripper wgrip = 20kg (max. object weight)
s3 container wcarry = 50kg (max. payload)

s4 camera
aview = 90◦ (viewing angle)
dview = 5m (visible range)
fsampling = 5frame/s (sampling frequency)

s5 sonar ddet = 5m (sensor range)
fdet = 40Hz (scan frequency)

s6 mobility vmax = 0.6m/s (max. linear velocity)
ωmax = 0.5π/s (max. angular velocity)

TABLE III. Tasks used in the test scenario and their robot-level and coalition-level constraints. The magnitude of each capability functional element is
mapped to the range [0, 1], with 1 being the baseline value shown in Table II.

Symbol Description Robot-level Constraints Coalition-level Constraints

t1
area search and

object manipulation 1× s4 (camera) {0.8, 0.8, 0.5}
1× s1 (robot arm) {0.5}
1× s3 (container) {0.5}
2× s4 (camera) {0.8, 0.8, 0.5}

t2 area exploration 1× s4 (camera) {0.8, 0.8, 0.5}
1× s6 (mobility) {0.8, 1} 2× s4 (camera) {0.8, 0.8, 1}

t3 cargo transportation 12× s5 (sonar) {1, 1}
1× s2 (gripper) {0.5}
2× s3 (container) {0.5}
2× s4 (camera) {0.8, 0.8, 0.5}

TABLE IV. Capability matrix of robots used in the test scenario.

Capability/
Robot

s1
(robot arm)

s2
(gripper)

s3
(container)

s4
(camera)

s5
(sonar)

s6
(mobility)

r1 1× {0.5} 1× {0.5} 1× {0.8, 0.8, 0.5} 16× {1, 1} 1× {0.8, 1}
r2 1× {0.6} 1× {0.8, 0.8, 0.5} 16× {1, 1} 1× {0.8, 1}
r3 1× {0.5} 1× {1} 16× {1, 1} 1× {0.5, 0.8}
r4 1× {0.8, 0.8, 0.5} 16× {1, 1} 1× {0.8, 1}
r5 1× {0.8, 0.8, 1} 14× {1, 1} 1× {1, 1}
r6 1× {1} 1× {1} 14× {1, 1} 1× {0.8, 1}
r7 1× {1, 1, 0.5} 14× {1, 1} 1× {0.8, 1}
r8 1× {0.5} 1× {1, 1, 0.5} 14× {1, 1} 1× {0.8, 1}
r9 1× {0.3} 1× {0.8, 0.8, 1} 14× {1, 1} 1× {0.8, 1}
r10 1× {1} 1× {0.8, 0.8, 0.5} 8× {1, 1} 1× {0.5, 0.8}

TABLE V. C2A2 vs. optimal task-to-robot assignment.

C2A2 Optimal Solution
t1 {r1, r10} {r1, r10}
t2 {r5, r9} {r5, r9}
t3 {r3, r4, r6, r7} {r3, r6, r7, r8}

Resource Surplus

s1
1× {1}

1× {0.5}
1× {1}

2× {0.5}

s2
1× {0.5}
1× {0.3}

1× {0.1}
1× {0.5}

s3 2× {0.5} 2× {0.5}
s4 1× {0.2, 0.2, 0} 2× {0.2, 0.2, 0}
s5 64× {1, 1} 62× {1, 1}

s6

4× {0.8, 1}
2× {0.5, 0, 8}
1× {0.2, 0}

4× {0.8, 1}
2× {0.5, 0, 8}
1× {0.2, 0}

Objective 72.43 71.07

V. CONCLUSION AND FUTURE WORK

In this paper we presented a novel implementation
of a chemical reaction execution engine geared toward
multi-mission pervasive computing applications. By utilizing
the concept of chemical affinity between network nodes,
or between nodes and certain tasks or missions, we
demonstrated an approach by which the network as a whole
can be steered toward convergence on a set of common goals
through the distributed exchange of affinity values expressed
on an individual basis. We showed how the problem can be
represented as a Maximum-a-Posteriori assignment problem
and how it can be solved efficiently using the Max-Product
Belief Propagation algorithm after carefully constructing a
probabilistic factor graph and designing the message update
formulae for the problem. We validated the efficacy of
our approach using simulation, and also more tangibly by
applying it to the problem of resource-constrained task
assignment.

397

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As an ongoing effort to extend the work presented here,
we are developing a formal framework for modeling various
pervasive computing and Internet-of-Things applications,
which will be responsible for abstracting the different
physical and logical elements of the network as entities in the
chemical domain. Furthermore, we are studying the effect of
context on inter-reactant affinities, allowing the development
of context-aware systems that can quickly adapt to their
surroundings. Finally, we plan to utilize reinforcement
learning techniques and exploratory self-adaptation, where
the system associates past decisions with their effect
on performance, enabling the system to self-optimize in
anticipation of potential events expected to take place in
the future.

REFERENCES

[1] M. ElGammal and M. Eltoweissy, “Chemistry-inspired,
Context-Aware, and Autonomic Management System for Networked
Objects,” in FUTURE COMPUTING, The Seventh International
Conference on Future Computational Technologies and Applications,
2015, pp. 38–47.

[2] J. D. Park and A. Darwiche, “Solving MAP Exactly using Systematic
Search,” in UAI’03: Proceedings of the Nineteenth Conference on
Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers
Inc, Aug. 2002.

[3] D. Koller and N. Friedman, Probabilistic Graphical Models:
Principles and Techniques, ser. Adaptive Computation and Machine
Learning. MIT Press, 2009.

[4] J. Banâtre, A. Coutant, and D. Le Metayer, “A Parallel Machine
for Multiset Transformation and its Programming Style,” Future
Generation Computer Systems, vol. 4, no. 2, 1988, pp. 133–144.

[5] G. Berry and G. Boudol, “The Chemical Abstract Machine,”
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’90., 1992.

[6] J. Bergstra and I. Bethke, “Molecular Dynamics,” The Journal of
Logic and Algebraic Programming, vol. 51, no. 2, 2002, p. 193–214.

[7] G. Păun, “Membrane Computing,” Fundamentals of Computation
Theory, 2003.

[8] M. Viroli and M. Casadei, “Biochemical Tuple Spaces for
Self-organising Coordination,” in Proceedings of the 11th
International Conference on Coordination Languages and Models
(COORDINATION 2009), 2009, pp. 143–162.

[9] P. Kreyssig and P. Dittrich, “On the Future of Chemistry-Inspired
Computing,” Organic Computing — A Paradigm Shift for Complex
Systems Autonomic Systems, vol. 1, 2011, pp. 583–585.

[10] V. Rajcsányi and Z. Németh, “The Chemical Machine: An Interpreter
for the Higher Order Chemical Language,” Euro-Par 2011: Parallel
Processing Workshops, 2012.

[11] C. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem,” Artificial Intelligence, vol. 19, no. 1, 1982.

[12] D. T. Gillespie, “Exact Stochastic Simulation of Coupled Chemical
Reactions,” The journal of physical chemistry, 1977.

[13] M. A. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation
of Chemical Systems with Many Species and Many Channels,” The
Journal of Physical Chemistry, vol. 104, no. 9, 2000, pp. 1876–1889.

[14] A. Slepoy, A. P. Thompson, and S. J. Plimpton, “A Constant-time
Kinetic Monte Carlo Algorithm for Simulation of Large Biochemical
Reaction Networks,” The Journal of Chemical Physics, vol. 128,
2008.

[15] D. Pianini, S. Montagna, and M. Viroli, “Chemical-oriented
Simulation of Computational Systems with Alchemist,” Journal of
Simulation, vol. 7, 2013, pp. 202–215.

[16] M. Monti, L. Sanguinetti, C. F. Tschudin, and M. Luise, “A
Chemistry-Inspired Framework for Achieving Consensus in Wireless
Sensor Networks,” Sensors Journal, IEEE, vol. 14, no. 2, 2014, pp.
371–382.

[17] T. Meyer, “On Chemical and Self-healing Networking Protocols,”
Ph.D. dissertation, PhD Thesis, University of Basel, 2010.

[18] M. Monti, T. Meyer, C. F. Tschudin, and M. Luise, “Stability
and Sensitivity Analysis of Traffic-Shaping Algorithms Inspired
by Chemical Engineering,” IEEE Journal on Selected Areas in
Communications, vol. 31, no. 6, 2013, pp. 1105–1114.

[19] J. Pearl, “Reverend Bayes on Inference Engines: A Distributed
Hierarchical Approach,” in AAAI, 1982, pp. 133–136.

[20] J. Banâtre, P. Fradet, and Y. Radenac, “Generalised Multisets
for Chemical Programming,” Mathematical Structures in Computer
Science, Cambridge University Press, vol. 16, no. 04, 2006, pp.
557–580.

[21] D. Dueck, “Affinity Propagation: Clustering Data by Passing
Messages,” Citeseer, 2009.

[22] I. Givoni, “Beyond Affinity Propagation: Message
Passing Algorithms for Clustering,” Ph.D. dissertation,
tspace.library.utoronto.ca, University of Toronto, 2012.

[23] S. S. Ponda, L. B. Johnson, and J. P. How, “Distributed
chance-constrained task allocation for autonomous multi-agent
teams,” 2012 American Control Conference - ACC 2012, 2012, pp.
4528–4533.

[24] J. Chen and D. Sun, “Resource constrained multirobot task allocation
based on leader–follower coalition methodology,” The International
Journal of Robotics Research, vol. 30, no. 12, Oct. 2011, pp.
1423–1434.

[25] T. Mercker, D. W. Casbeer, P. T. Millet, and M. R. Akella,
“An Extension of Consensus-Based Auction Algorithms for
Decentralized, Time-Constrained Task Assignment,” 2010 American
Control Conference (ACC 2010), 2010, pp. 6324–6329.

[26] S. Xu, “Energy-efficient Task Assignment of Wireless Sensor
Network with The Application to Agriculture,” Iowa State University
Digital Repository, 2010.

[27] C.-H. Fua and S. S. Ge, “COBOS: Cooperative Backoff Adaptive
Scheme for Multirobot Task Allocation,” IEEE Transactions on
Robotics, vol. 21, no. 6, Dec. 2005, pp. 1168–1178.

