
448

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Round-Trip Engineering Approach to Keep Activity Diagrams Synchronized
with Source Code

Keinosuke Matsumoto, Ryo Uenishi, and Naoki Mori
Department of Computer Science and Intelligent Systems

Graduate School of Engineering, Osaka Prefecture University
Sakai, Osaka, Japan

email: {matsu, uenishi, mori}@cs.osakafu-u.ac.jp

Abstract—Methods for introducing business logic changes and
new implementation methods into software should be flexible.
Model driven development is regarded as one of the most
flexible development methods. The user expects source code to
be generated from the models. However, the models and the
source code generated from them become unsynchronized if
the code is changed. To solve this problem, a round-trip
engineering (RTE) approach was proposed that has a feature
that keeps the models synchronized with the source code. Tools
that provide RTE exist, but almost all of them are applicable
only for static diagrams. In this study, RTE is directly adapted
to activity diagrams as a type of dynamic diagram. A method is
proposed for realizing an RTE approach that keeps activity
diagrams synchronized with the source code. The results of
application experiments confirmed that the transformation
rate of the models and source code is satisfactory. Thus, the
success of the proposed RTE approach was verified.

Keywords-round-trip engineering; model; reverse engineer;
activity diagram; model driven development.

I. INTRODUCTION
This paper is based on one [1] presented at ICAS 2015.

Model driven architecture (MDA) [2][3] is attracting
attention as an approach that can flexibly handle changes in
business logics or new software technologies [4][5]. Its core
data are models that serve as software design diagrams. It
includes features for transforming the models to various
types of models and for automatic source code generation
[6][7][8][9][10].

The development and standardization of MDA is being
advanced by the Object Management Group (OMG).
However, the models and the source code generated from
them become unsynchronized if the code is changed. To
solve this problem, round-trip engineering (RTE) [11][12]
[13][14] was proposed. RTE includes a feature that keeps the
models synchronized with the source code. Therefore, the
consistency between them can be maintained. Tools that
provide RTE exist, but almost all of them are applicable only
for static diagrams, such as class and component diagrams.
Therefore, it is necessary to adapt RTE to dynamic diagrams.

In this study, RTE is adapted to activity diagrams as a
type of dynamic diagram. A method is proposed to realize
RTE for activity diagrams and source code [15][16]. Activity
diagrams are defined in Unified Modeling Language (UML)
and express the flows of activities. They can also describe

the contents of methods, unlike sequence diagrams. Further,
they can express processes hierarchically and are used
widely from upper to lower processes of software
development. For transforming activity diagrams to source
code, the proposed method analyzes the XML metadata
interchange (XMI) [17] of the activity entities. XML is a
markup language that defines a set of rules for encoding
documents in a format that is both human- and machine-
readable. XMI is a standard for exchanging metadata
information. Conversely, for transforming source code to
activity diagrams, the proposed method analyzes the abstract
syntax tree (AST) [18] of the source code. In the mutual
transformation process, an intermediate representation is
used. It has a hierarchical structure and corresponds to both
activity diagrams and source code. For this reason, XMI can
easily be transformed to an AST and vice versa. For
describing conditional branches and loop statements, activity
diagrams use the same elements. They cannot be transformed
to source code in their existing form. Therefore, a method for
analyzing them and transforming one into the other is
developed that distinguishes the conditional branches and
loop statements. A successful transformation rate of the
models and source code was confirmed. Thus, the validity
of the proposed method was verified.

The contents of this paper are as follows. In Section II,
related work is described. In Section III, the proposed
method is explained. In Section IV, the results of application
experiments conducted to confirm the validity of the
proposed method are given. Finally, in Section V the
conclusion and future work are presented.

II. RELATED WORK
This section describes work related to this study.

A. Abstract Syntax Tree
The AST, which belongs to the Eclipse AST

implementation, is a directed tree that shows the syntactic
analysis results of source code. It is also used to create byte
code from the source code as the internal expression of a
compiler or interpreter. An AST provides the ASTParser
class, which changes source code into an AST. Many types
of nodes can be defined by the AST. An AST node can be
searched by using the ASTVisitor class corresponding to one
of the design patterns [19]. The visitor design pattern allows
an algorithm to be separated from the object structure on

449

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which it operates. A practical result of this separation is that
new operations can be added to existing object structures
without modifying the structures. An example of an AST is
shown in Figure 1. A detailed analysis can be performed by
changing the AST levels.

B. Consistency among Software Documentations and
Source Code

Many approaches, such as those proposed in [20][21],
manage consistency and synchronization between software
documentation and source code. In particular, RTE refines
intermediate results by editing requirement definitions,
design plans, and source code alternately. In general, if either
the models or code is changed, the RTE automatically
reflects the change in the other entity. RTE has a feature that
keeps the models synchronized with the source code. An
outline of RTE is shown in Figure 2.

Tools, such as UML Lab [22] and Fujaba [23][24], were
proposed to maintain the consistency of models and source
code. In these tools, a template for generating source code is
described by a template description language. Source code
can be automatically generated from models by using the
template and these tools allow the source code and static
diagrams, such as class diagrams and component diagrams,
to be refactored synchronously. They also perform code
generation and reverse engineering in real time. However,
they cannot handle dynamic diagrams, such as activity
diagrams, that can describe the behavior of a system.
Although Fujaba considers activity diagrams,

,

it does not address them directly. In contrast, our approach
can handle activity diagrams directly.

III. PROPOSED METHOD
In this section, the proposed transformation method from

activity diagrams to source code and from source code to
activity diagrams is described. Activity diagrams mainly
describe the behaviors of a system using nodes and edges. A
content of action is described in a node. The flow of a series
of actions is expressed by connecting nodes by edges. An
activity diagram is described for each method in class
diagrams in the proposed method. Figure 3 shows the basic
concept of the proposed method.

A. Transformation from Activity Diagram to Source Code
A specific transformation flow from activity diagrams to

source code is as follows.
1) XMI Analysis of Activity Diagram: An activity

diagram is expressed in XMI form as a UML file. It begins
with a start node and ends with a final node, following
nodes or groups through edges. Nodes have information
about the actions or controls of the activity diagram. Edges
have information about the control flows in the form of
attributes and subelements. Group is a tag that has nodes
and edges of a subactivity as subelements. Each tag is given
an id to discriminate it from other tags. Table I shows the
nodes used by an activity diagram.

2) Transformation from XMI to Intermediate
Representation: Node and edge tags have a transition
starting id and targeting id, respectively. Using these ids, the
flow of actions of an activity diagram can be extracted as a
sequence of ids. The activity diagram can be transformed
from XMI to an intermediate representation by replacing the
ids with the corresponding nodes extracted from the XMI
analysis. The intermediate representation is a sequence of
nodes as the flow of actions. The reason for introducing the
intermediate representation is that it facilitates the
transformation of XMI to source code and vice versa. Figure
4 shows a metamodel of intermediate representation and
Figure 5 shows an example of intermediate representation.

Figure 2. Outline of RTE.

Figure 1. Example of AST.

Figure 3. Schematic diagram of the proposed method.

450

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6 shows an image of this transformation.
3) Transformation from Intermediate Representation to

AST: By analyzing the flow of the actions of an intermediate
representation, it can be transformed into an AST. The
intermediate representation is analyzed in order from the
beginning. According to the corresponding nodes, it is
necessary to extract information, such as a branch and loop,
from the representation structure. For example, a branch has

TABLE I. NODES USED BY AN ACTIVITY DIAGRAM

Tag Node

Node tag

ActivityInitialNode
ActivityFinalNode
CallBehaviorAction
CallOperationAction
DecisionNode
LoopNode
MergeNode
OpaqueAction

Group tag StructuredActivityNode
Edge tag ControlFlow

a structure embraced by Decision node and Merge node, but
a loop has a structure embraced by Decision nodes. In order
to distinguish such structures, a stack that stores the ids of
Decision nodes is created. If a Decision node is extracted,
the id is pushed to the stack immediately. It is a branch if a
Merge node is extracted before a subsequent Decision node
is extracted. If a Decision node is extracted and its id is the
same id as that popped from the stack, then it is a loop.
Otherwise, a new Decision node is extracted and its id is
stacked. Figure 7 shows this transformation.

4) Transformation from an AST to Source Code: The
target source skeleton code is transformed from class
diagrams by using Acceleo templates for classes. Acceleo
[25] is the Eclipse Foundation’s open-source code generator
that provides templates for skeleton code. Transformed
activity diagrams and classes of a target source skeleton
code are expressed by an AST. A method having a name
that is identical to that of an activity diagram can be
searched by using ASTVisitor class. The method code
transformed from the AST of the activity diagram is added
to the method body to which it corresponds in the target
source skeleton code for every activity diagram.

Figure 4. Metamodel of intermediate representation.

Figure 5. Example of intermediate representation. Figure 7. From intermediate representation to AST.

Figure 6. From XMI to intermediate representation.

451

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. From AST to intermediate representation.

B. Transformation from Source Code to Activity Diagram
The specific flow of transformation from source code to

activity diagrams is as follows.
1) AST Analysis of Source Code: The ASTParser class

transforms source code into an AST, and the ASTVisitor
class searches AST nodes to handle. These are defined as an
AST library. The structure of the source code is analyzed by
using these classes.

2) Transformation from AST to Intermediate
Representation: The required information is extracted by
analyzing the AST. Whenever an AST node is searched, the
information on the AST node is saved in detail. Required
AST nodes are the DeclarationStatement node (such as
variables and call of methods) IfStatement node,
WhileStatement node, ForStatement node, and so on. The
flow of the processing is almost the same as that of the
transformation from the XMI of an activity diagram to
intermediate representation. Figure 8 shows this
transformation.

3) Transformation from Intermediate Representation to
XMI: A sequence of ids can be extracted from nodes, groups,
and edges in the transformation from activity diagrams to
source code. If this transformation is executed in reverse,
nodes, groups, and edges are generated by analyzing the
flow of actions. Specifically, nodes or groups are generated
for each action of the intermediate representation. They are
transformed to XML according to the action type.
Simultaneously, the edges that connect nodes or groups are

generated. A transition starting id and targeting id can be
generated from the sequence of intermediate representation.
By generating Decision or Merge nodes expressing branches
or loops, a stack that is similar to that of the transformation
from activity diagrams to intermediate representation is used.

4) Adding XMI to Activity Diagram: Generated nodes,
groups, and edges are added to the XMI file of an activity
diagram. In the case of an addition, the user refers to the
activity diagram in the package where the source code is
located. If the diagram already exists, the addition is
performed after deleting the contents of the existing file;
otherwise, the addition is performed after generating a new
diagram.

 Figure 9. Plug-ins of the proposed method.

452

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Implementation of the Proposed Method
The plug-in shown in Figure 9 was implemented in order

to realize the proposed method using the integrated
development environment, Eclipse [26]. The details of the
plug-in are as follows.

1) Reflection of Activity Diagrams in Source Code: The
pop-up menu for source code is opened and a dialog
reflecting activity diagrams is called. In the dialog, the
target activity diagram can be chosen from a selection
dialog. An activity that has already been selected can also be
made a target in its existing form. Two or more activity
diagrams can be chosen from a selection dialog. When an
activity diagram is reflected in the source code, the
signature of a method is created from the activity diagram.
If the signature may agree with that of the method in the
target source code, processing is added in the method body.

2) Reflection of Source Code in Activity Diagrams:The
pop-up menu for an activity diagram is opened and a dialog
reflecting the source code is called. In the dialog, the target
source code can be chosen from a selection dialog. A source

code that has already been selected can also be made a
target in its existing form. When the activity diagram is
created, a folder with the name of the target source code is
formed in the same package as that which includes the
source code. Each activity diagram is created for every
method of the source code in the folder. If an activity
diagram already exists, overwrite preservation is conducted.

IV. EVALUATION OF THE PROPOSED APPOACH
The proposed method was applied to sample systems to

confirm its validity.

A. Transformation Rate
The transformation rate was computed by comparing the

number of XMI nodes of the activity diagrams. The objects
that were compared were the handwritten activity diagrams
and the activity diagrams automatically generated from the
source code. The AST and XMI nodes were utilized as an
index of whether the transformation had succeeded. The
equations for calculating the rate of transformation are as
follows.

Figure 10. Comparison results of AST nodes.

453

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. COMPARISON OF THE NUMBER OF XMI NODES

XMI node Automatic Original Difference
group 47 47 0
packagedElement 75 75 0
guard 155 159 -4
operation 198 198 0
elementImport 300 300 0
importedElement 300 300 0
edge 1137 1142 -5
node 1367 1369 -2

 [1 − {abs (ΝΑg − ΝΑο) / ΝΑο }]∗ 100 (1)

where NAg and NAo are the number of AST nodes of
generated source code and the original source code,
respectively.

 [1 − {abs (ΝXg −ΝXο) / ΝXο }]∗ 100 (2)

where NXg and NXo are the number of XMI nodes of
generated source code and original source code, respectively.

B. Transformation of Hunter Game
The proposed method was applied to a hunter game

[27][28]. Both the activity diagrams and source code of the
hunter game were available. The number of AST nodes of
the original hunter game is 4971. Figure 10 shows the
comparison results of the number of AST nodes.

A handwritten activity diagram was transformed into
source code and the source code was transformed in reverse
into an activity diagram. The two activity diagrams were
compared. Tables II and III show a comparison of the
number of XMI and AST nodes, respectively.

The XMI nodes that were not transformed can be seen in
Table II. There are three types of nodes: guard, edge, and
node. A switch statement cannot be described in an activity
diagram, but the same processing can be described by using
if statements. Guard nodes also decreased in the same
number as the switch cases in the generated activity
diagrams. The number of edges in connection with them also
decreased.

Table III shows the comparison results of AST nodes.
The total transformation rate is 99.5%. There are no
differences between nodes that in fact express processing,
“group,” “edge,” and “node.” This is because only the
processing that can be expressed in an activity diagram is
expressed in the source code generated from the activity
diagram. According to the number of nodes, it was
determined that the transformations were successful.

Since there are many kinds of AST nodes, the number of
nodes of every type should be compared. The

TABLE IV. COMPARISON OF THE NUMBER OF AST NODES

AST node Automatic Original Difference
ActivityParameterNode 69 69 0
Activity 75 75 0
MergeNode 102 102 0
DecisionNode 114 114 0
InitialNode 118 118 0
ActivityFinalNode 118 118 0
StructuredActivityNode 141 141 0
Expression 159 159 0
CallOperationAction 192 198 -6
PrimitiveType 300 300 0
OpaqueAction 515 509 +6

TABLE III. COMPARISON OF THE NUMBER OF AST NODES

AST node Automatic Original
Transfor-
mation

rate (%)

SwitchCase 0 4 0
CatchClause 0 8 0
TryStatement 0 8 0
NullLiteral 1 1 100
SuperMethodInvocation 1 1 100
BreakStatement 3 3 100
ArrayInitializer 4 4 100
ThisExpression 8 8 100
CastExpression 11 11 100
WhileStatement 12 12 100
PrefixExpression 16 16 100
ArrayType 17 17 100
ReturnStatement 30 30 100
ClassInstanceCreation 35 35 100
StringLiteral 44 44 100
ForStatement 47 47 100
VariableDeclarationExpres sion 47 47 100
SingleVariableDeclaration 69 77 89.6
MethodDeclaration 75 75 100
ParenthesizedExpression 82 82 100
PostfixExpression 83 83 100
BooleanLiteral 88 88 100
VariableDeclarationStatement 98 98 100
FieldAccess 100 100 100
SimpleType 112 120 93.3
IfStatement 147 143 97.2
VariableDeclarationFragment 151 151 100
ArrayAccess 180 180 100
QualifiedName 212 212 100
PrimitiveType 215 212 98.6
Assignment 227 227 100
Block 368 315 83.2
ExpressionStatement 435 435 100
MethodInvocation 460 460 100
NumberLiteral 616 616 100
InfixExpression 977 973 99.6
Total 4971 4944 99.5

454

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transformation rate is shown in Table IV. Only the number
of the node type CallOperationAction decreased.
CallOperationAction is an AST node that calls a method.
The reason why the number of this node decreased is that
the calling method part was not appropriately determined.
OpaqueAction expresses the processing that cannot be
expressed by the AST nodes. Therefore, OpaqueAction
expresses the processing that CallOperationAction should
originally express. It can be affirmed that the mutual
transformation of activity diagrams was successful.

C. RTE of Activity Diagrams
RTE of activity diagrams and source code was performed

using the proposed method. A bubble sort algorithm was
used as an example. Figure 11 shows its activity diagram and
the source code generated from the diagram. After adding a
change (modification, addition, and deletion) to the source
code, an activity diagram was generated from the changed
source code. It was verified that the generated activity
diagram reflected the added change.

1) Code Modification: A modification was added to the
generated source code. Items to be modified were variable
value, variable name, and loop statement (while statement to
for statement). A new activity diagram was generated from
the modified source code by the proposed method. Figures
12-13 show the modified source code and activity diagrams
for the modifications of variable name and loop statement,
respectively. The figures show that the modifications were
reflected in the activity diagrams.

2) Code Addition: Code was added to the source code
and a new activity diagram was generated from the added
source code using the proposed method. Figures 14-15 show
the added source code and the activity diagrams for the

Figure 11. Original activity diagram and its source code.

Figure 12. Modified variable code and activity diagram.

455

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

addition of a loop statement and if statement. The figures
show that the addition was reflected in the activity
diagrams as intended.
3) Code Deletion: Code was deleted from the

generated source code and a new activity diagram was
generated from the deleted source code using the proposed
method. Figure 16 shows the deleted source code and the
activity diagram for deletion of the if statement. The figure
shows that the deletion was reflected in the activity diagram.

Figure 13. Modified source code and activity diagram.

Figure 14. Added source code and activity diagram.

456

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Reverse engineering was investigated by generating
activity diagrams from handwritten source code and
transforming these activity diagrams to source code. The
objects that were compared were the handwritten source
code and the automatically generated source code. The
transformation rate was 99.8%. Except for switch statements
and block positions, the two source codes are almost the
same. It was verified that the generated source code is
functionally equivalent to the handwritten source code. The
transformation rates for forward and reverse engineering are
not 100%, because there is no standard expression for
describing switch and try-catch statements in an activity
diagram, and thus, they are not transformed by the proposed
method, as shown in Table III.

V. CONCLUSION
In this paper, the problem in model driven development

that the models and the source code generated from them
become unsynchronized if the code is changed was
addressed. In order to solve the problem, an RTE approach
was proposed to keep the models used to generated the code
updated, i.e., to avoid inconsistences between the systems
that are running and giving services and the models used in
their development and implementation. Therefore, on the one
hand, techniques to translate models into code were proposed,
and on the other hand, techniques to obtain models from
code were also used. The effectiveness of the proposed
method was verified by application experiments using the
source code of a hunter game and bubble sort algorithm. It
was confirmed that the RTE between the activity diagrams
and source code was successful. The characteristics of the

Figure 15. Added source code and activity diagram.

Figure 16. Deleted source code and activity diagram.

457

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

activity diagrams that can be handled by this approach are as
follows. They consist of actions of the same granularity, and
they do not include many multilayered group nodes.

Since activity diagrams cannot yet handle switch and try-
catch statements, the definition of these description methods
and increasing the number of convertible elements are
important future work.

ACKNOWLEDGMENT
This work was supported in part by JSPS KAKENHI

Grant Number 24560501.

REFERENCES
[1] K. Matsumoto, R. Uenishi, and N. Mori, “A round-trip

engineering method for activity diagrams and source code,”
Proc. of the Eleventh International Conference on Autonomic
and Autonomous Systems (ICAS 2015), IARIA, May 2015,
pp. 24-29, ISBN: 978-1-61208-405-3.

[2] S. J. Mellor, K. Scott, A. Uhl, and D. Wiese, MDA Distilled:
Principles of Model Driven Architecture, Addison Wesley
Longman Publishing Co., Inc. Redwood City, CA, 2004.

[3] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development, Springer Berlin Heidelberg, 2005.

[4] M. J. Escalona and G. Aragón, “NDT: A model-driven
approach for Web requirements,” IEEE Transactions on
Software Engineering, vol. 34, no. 3, 2008, pp. 377-390.

[5] G. Casale, D. Ardagna, M. Artac, F. Barbier, E. Di Nitto, A.
Henry, G. Iuhasz, C. Joubert, J. Merseguer, V. I. Munteanu, J.
F. Pérez, D. Petcu, M. Rossi, C. Sheridan, I. Spais, D.
Vladušič, “DICE: Quality-driven development of data-
intensive cloud applications,” Proc. of the Seventh
International Workshop on Modeling in Software Engineering
(MiSE 2015), May 2015, pp. 1-6.

[6] A. Uhl, “Model-Driven development in the Enterprise,” IEEE
Software, January/February 2008, pp. 46-49.

[7] R. F. Paige and D. Varró, “Lessons learned from building
model-driven development tools,” Software System Model,
vol. 11, 2012, pp. 527-539.

[8] N. Condori-Fernández, J. I. Panach, A. I. Baars, and T. Vos,
Ó. Pastor, “An empirical approach for evaluating the usability
of model-driven tools,” Science of Computer Programming,
vol. 78, no. 11, 2013, pp. 2245–2258.

[9] K. Matsumoto, T. Maruo, M. Murakami and N. Mori, “A
graphical development method for multiagent simulators,”
modeling, simulation and optimization - focus on applications,
Shkelzen Cakaj, Eds., March 2010, pp. 147-157, INTECH,
ISBN 978-953-307-055-1.

[10] K. Matsumoto, T. Mizuno, and N. Mori, “A method of
applying component-based software technologies to model
driven development,” Proc. of the Third International
Conference on Intelligent Systems and Applications
(INTELLI 2014) IARIA, June 2014, pp. 54-59, ISBN: 978-1-
61208-352-0,

[11] N. Medvidovic, A. Egyed, and D. S. Rosenblum, “Round-trip
software engineering using UML: From architecture to design
and back,” Proc. of the 2nd Workshop on Object Oriented
Reengineering, 1999, pp.1-8.

[12] U. Aßmann, “Automatic roundtrip engineering,” Electronic
Notes in Theoretical Computer Science, vol. 82, 2003, pp. 33-
41.

[13] A. Henriksson and H. Larsson, “A definition of round-trip
engineering,” Technical Report, University of Linköping,
Sweden, 2003.

[14] M. Antkiewicz and K. Czarnecki, “Framework-specific
modeling languages with round-trip engineering,” in Model
Driven Engineering Languages and Systems, Springer Berlin
Heidelberg, 2006, pp. 692-706.

[15] A. K. Bhattacharjee and R. K. Shyamasundar, “Activity
diagrams: A formal framework to model business processes
and code generation,” Journal of Object Technology, vol. 8,
no. 1, January-February 2009, pp. 189-220 .

[16] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed Hashem,
and Mohamed F. Tolba, “A proposed test case generation
technique based on activity diagrams,” International Journal
of Engineering & Technology IJET-IJENS vol. 11, no. 3,
2011, pp. 35-52.

[17] XML metadata interchange. XMI: [Online]. Available from:
http://www.omg.org/spec/XMI/ 2015.11.24.

[18] I. Neamtiu, J. S. Foster, and M. Hicks., “Understanding
source code evolution using abstract syntax tree matching,”
ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4.
ACM, 2005, pp. 1-5.

[19] E. Gamma, R. Helm, R. Johson, and J. Vlissides, Design
patterns: Elements of reusable object-oriented software,
Addison-Wesley, 1995.

[20] A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio,
“Automating co-evolution in model-driven engineering,” Proc.
of the 12th International Enterprise Distributed Object
Computing Conference (EDOC'08), IEEE, September 2008,
pp. 222-231.

[21] Roberto E. Lopez-Herrejon and Alexander Egyed, “C2mv2:
Consistency and composition for managing variability in
multi-view systems,” Proc. of the 15th European Conference
on Software Maintenance and Reengineering. IEEE, 2011. pp.
347-350.

[22] Unified Modeling Language Lab. UML Lab: [Online].
Available from: http://www.uml-lab.com/en/uml-lab/
2015.11.24.

[23] U. A. Nickel, J. Niere, J. P. Wadsack, and A. Zündorf,
“Roundtrip engineering with Fujaba,” Proc. of the Second
Workshop on Software-Reengineering (WSR), Bad Honnef,
2000, pp. 1-4.

[24] L. Geiger and A. Zundorf, “Tool modeling with Fujaba,”
Electronic Notes in Theoretical Computer Science, vol. 148,
2006, pp. 173-186.

[25] Acceleo: [Online]. Available from:
http://www.eclipse.org/acceleo/ 2015.11.24.

[26] Eclipse: [Online]. Available from:
https://www.eclipse.org/home/index.php 2015.11.24.

[27] M. Benda, V. Jagannathan, and R. Dodhiawalla, “On Optimal
Cooperation of Knowledge Sources,” Technical Report, BCS-
G 2010-28, Boeing AI Center, 1985.

[28] K. Matsumoto, T. Ikimi, and N. Mori, “A switching Q-
learning approach focusing on partial states,” Proc. of the
Seventh IFAC Conference on Manufacturing Modelling,
Management, and Control, June 2013, pp. 982-986, Saint
Petersburg, Russia.

