
483

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Quality of Service Based Event Stream Processing Systems in Smart Grids

Epal Njamen Orleant

Grenoble INP, LIG
Saint Martin d’Hères, France

Email: orleant.epal-njamen@imag.fr

Lourdes Martinez

Grenoble INP, LIG
Saint Martin d’Hères, France
Email: martinez@imag.fr

Christine Collet

Grenoble INP, LIG
Saint Martin d’Hères, France

Email: christine.collet@grenoble-inp.fr

Genoveva Vargas-Solar

CNRS, LIG-LAFMIA
Saint Martin d’Hères, France

Email: genoveva.vargas@imag.fr

Christophe Bobineau

Grenoble INP, LIG
Saint Martin d’Hères, France

Email: christophe.bobineau@grenoble-inp.fr

Abstract—This paper presents an approach for composing event
streams based on quality of service requirements (QoS) of smart
grids. The approach consists of an event stream model, compo-
sition strategies guided by QoS such as memory consumption,
event priority and notification latency. Model and strategies are
implemented by a distributed event stream processing system
consisting of execution units that can be deployed across a
smart grid. The paper describes implementation issues and
experimental results.

Keywords–Complex event processing; Quality of service; Smart
Grids.

I. INTRODUCTION

Smart grids are complex networks vastly instrumented with
intelligent electronic devices (sensors, smart meters, actuators,
etc.), network communication and information technologies.
Devices emanate huge amounts of data that can be exploited
for a wide range of applications like network traffic analysis,
automation of operational control, prevention or detection
of dysfunctions, etc. Strategies to handle asynchronous data
collection, data transfer, and real-time data notification and
processing are critical for achieving smart grid monitoring.

Those data can be considered as events that refer to hap-
penings of interest produced within the system environment.
The capacity to monitor and supervise a smart grid relies
on processing low level events in order to infer higher level
events semantically richer and more useful for end user appli-
cations [1]. This process includes events filtering, aggregation,
correlation, windowing, etc. Infrastructures able to achieve
these computations on events are referred to as complex event
processing systems like [2–6].

For example, let us consider that a smart meter produces an
event of type CoverOpenAlert when its cover is opened, and a
sensor produces an event of type BadVoltage when it detects
an abnormal voltage on the electrical line. An application
may be interested in the sequence of CoverOpenAlert and
a BadVoltage occurring at the same place, within a two
minutes time window. This pattern detects suspicious activities
(MeterSuspected event type) on smart meters. The detection

of such a high level event includes event filtering (type and
attribute based filtering), windowing and temporal correlation.

In these situations, devices may notify events to a remote
Information System (IS) able to perform complex events
processing. The IS sends commands (with or without human
intervention) to certain devices for reacting to the reported
events. The dialog IS - devices may take considerable time,
thus hindering real-time requirements. An intuitive manner for
alleviating this problem is to inject certain intelligence into
devices, such that they can react to situations without some
external intervention. Thus, (total or partial) event processing
should be distributed among the smart grid devices. An inher-
ent consequence is the necessity to deploy event processing
systems in distributed architectures. The latter must efficiently
achieve event processing while adapting to their environment
in terms of the multiplicity of data sources (sensors, smart me-
ters, existing databases, etc.) and smart grid QoS requirements.

a) Multiplicity of data sources: Distributed systems
like smart grids consist of different types of components
that can act as event producers or consumers, with different
interaction modes (synchronous or asynchronous, push or pull
based style), as illustrated by sensors, smart meters, existing
databases. The diversity of interaction modes, coupled with the
difference in data formats make it difficult to integrate events
from different producers for event processing purposes.

b) Quality of service (QoS): The need to detect and
notify complex events from basic events is sometimes corre-
lated with some quality of service requirements like memory
consumption, network occupancy, event priority, notification
latency, etc. The extension of event models towards more flex-
ible and QoS oriented event models requires an analysis and
the semantics that should be given to the events, and of their
associated processing strategies. This requires dissociating the
modeling of event and the application design and, the proposal
of methods that allow to define event types independently of
the management issues (detection, production, notification).
Therefore, it is required to adapt the event models to smart
grid characteristics. On the other hand, those QoS requirements
generally constrain the way the event processing must be

484

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

achieved. More precisely, event processing must be achieved
on each device considering its memory availability.

Existing systems are limited in the sense that they do
not fully satisfy QoS requirements for event processing. The
problem we address in this paper can be summarized as
follows: given smart grid needs in terms of event composition
and QoS, how to provide the complex event processing system
that best fulfills expected QoS requirements?

Our approach considers an event based abstraction of smart
grids functions and services. This abstraction allows to reason
on the smart grid in terms of event streams that are generated
by smart grid components. In order to identify relevant or criti-
cal situations (complex events) among those event streams, we
propose a distributed complex event processing architecture.
The event processing logic is implemented as a network of
operators executed by distributed event processing units. We
also propose strategies applicable to event processing units in
order to address the following QoS dimensions: event priority,
memory occupation and notification latency.

The remainder of the paper is organized as follows: Section
II presents the related work. Section III presents the overview
of our approach for QoS based complex event processing in
smart grids. Section IV describes the proposed model and
system architecture for QoS based event processing. Section
V discusses how to specify QoS requirements and introduces
the QoS adoption strategies. These strategies are presented
in Section VI and Section VII. Section VIII discusses the
experimental results. Finally, Section IX concludes the paper.

II. RELATED WORK

Many works have been achieved on event streams analysis
and composition, and many event processing systems have
been proposed so far [2–6], either for centralized or distributed
architectures.

In centralized architectures, produced events are pro-
cessed by a single node acting as an event processing server
[3][5][6][7][8]. In this approach, event streams must be routed
to the server node. This potentially increases the latency of the
event processing, and overloads the network and server, which
risks to become a point of failure. Therefore, this approach is
not suited for distributed contexts.

In distributed architectures, the event processing logic is
performed by a set of distributed communicating nodes, each
one achieving a part of the work. This offers a better scalability
and availability than centralized approaches. Some distributed
event processing systems are [2][4][9][10]. In this category, we
distinguish between clustered and in-network architectures. In
clustered architectures, the event processing is realized in a
clustered environment [4][11], whereas in-network architec-
tures allows to distribute the event processing over a large
number of nodes within a network topology [9][2]. This work
aims to propose an in-network event stream processing systems
for smart grid that deals with QoS.

Behnel et al. [12] and Appel et al. [13] identify some
QoS dimensions (latency, priority, etc.) relevant for distributed
event processing, but they do not propose mechanisms for
their adoption. However, some other systems provide QoS
support. They optimize the query processing according to
a particular objective, and differs from each other by the
adopted QoS dimensions. For example, [2] focuses on reducing

the network traffic whereas [9] studies energy consumption.
In wide networking environments, it is not reasonable to
expect that all applications share the same objective. In our
approach, we identify a set of QoS properties relevant for event
processing in smart grids, and we study their adoption by the
event processing system.

A survey on the QoS requirements of smart grid communi-
cation systems is presented in [14]. It focuses on the function-
alities that have to be provided by smart grid communication
infrastructures in order to address application requirements.
Sun et al. [15] propose to add QoS by providing differentiated
service for data traffic with different priority at the MAC (Me-
dia Access Control) layer. GridStat [16] is a publish-subscribe
middleware framework designed to meet the QoS requirements
for the electric power grid. It manages network resources to
provide low-latency, reliable delivery of information produced
anywhere on the network and sent to multiple other points.
In our work, we assume the existence of QoS support at the
networking layer (e.g, message priority) on which a complex
event processing system dealing with event priority, memory
occupation and notification latency can be proposed for smart
grids.

III. APPROACH OVERVIEW

Figure 1 summarizes our approach to integrate complex
event processing technologies into smart grids. It consists in
three layers of abstraction, namely smart grid, event streams,
and event processing network layers.

• The smart grid layer consists in the real physical
smart grid architecture, which includes telecommuni-
cation based devices such as smart meters, sensors,
data concentrators, etc. Those devices are connected
by communication networks technologies including
power line, wireline or wireless communications [17].
The smart grid is described in terms of information
being used and exchange between functions, services
and components. This layer of abstraction is referred
to as the Information layer in the smart grid reference
architecture model [18]. In our approach, information
is seen as events that happen within the smart grid.

• The event streams layer considers that data generated
by smart grids components are event streams. In this
layer, smart grid components act as sources, which
can generate different types of events in a continuous
manner. The event model considered in this work is
presented in Section IV.

• The event processing network layer consists in a set
of distributed event processing units that are con-
nected by event channels. This network is created
according to complex event subscriptions. It may
be deployed across multiple distributed computers,
software artifacts and physical networks. The complex
event subscriptions are tagged with applications QoS
requirements such as event priority and notification
latency. Those QoS requirements have to be translated
into constraints applicable to event processing units
at execution time. In addition to constraints derived
from applications requirements, inherent constraints to
the smart grid infrastructure also must be taken into
consideration, such as limitations on computational

485

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resources (i.e., memory and CPU) and / or communi-
cation networks (i.e., network occupation).

Figure 1. Approach overview

IV. MODEL AND ARCHITECTURE

This section presents the event model (event type and event
stream), and the runtime architecture of our approach (event
processing network).

A. Event model
1) Event type and event instance: An event type represents

a class of significant facts (events) and the context under
which they occur. The definition of an event type includes
the attributes presented in Table I.

TABLE I. EVENT TYPE ATTRIBUTES

Name Type
typeName String
producerID String
detectionTime Number
productionTime Number
notificationTime Number
receptionTime Number
priority Number
context Set<Attribute >

The typeName attribute refers to the name of the event
type. The producerID attribute refers to the id of the entity
who produced the event instance. The detectionTime attribute
refers to the time at which the event instance has been detected
by a source. The productionTime attribute refers to the time
at which the event has been produced (as a result of a
processing on others events) by an event processing unit. The
notificationTime attribute refers to the time at which the event
is notified to interested consumers. The receptionTime refers
to the time at which the event is received by an interested
consumer. The priority attribute represents the priority value
associate to the event instance. The context (context attribute)
of an event type defines all the attributes that are particular
to this event type. They represent the others data manipulated
by the producer, which are relevant to this event type. For
example, the context of a MeterMeasure event type generated
by a smart meter includes the voltage and current attribute.

An event type can be simple or composite. Simple event
types are event types for which instances are generated by
producers (sensors, smart meters, etc.). They are not generated

from the processing of other events. In the example considered
in Section I, BadVoltage and CoverOpenAlert are simple
event types. More generally in a smart grid, the event types
include Alarms, MeterMeasure and SensorMeasure generated
by electric devices and such as smart meters and sensors, and
Command, ControlOrder, ControlAction generated by utility
applications.

Complex (or composite) event types are event types for
which instances are generated as a result of event processing.
Reference [19] includes a set of operators applicable to events.
They capture particular situations (relevant or critical) that can
be inferred from occurrences of others events. Those situations
have to be notified to utility applications, such that the system
can be automatically or manually controlled. In the same
example, MeterSuspected is a complex event type. Complex
event types can also capture aggregated values, like the daily
electricity consumption of a household. This can be product of
the aggregation of the MeterMeasure event instances included
on a one-day window.

An event instance (or simply event) is an occurrence of
an event type. The event instance defines the value associated
to each attribute of the event type. For example, the event
occurrence e with attributes presented in Table II denotes an
event instance of type MeterMeasure, which has been produced
by producer meter1 at time 1, notified at time 2, received at
time 3, which has a priority value 3, and for which the voltage
and current values are 220 and 3, respectively.

TABLE II. EVENT INSTANCE

Name Type
typeName ’MeterMeasure’
producerID ’meter1’
detectionTime 1
productionTime 1
notificationTime 2
receptionTime 3
priority 3
voltage 220
current 3

2) Event stream: An event stream is a continuous, append-
only sequence of events. We note Stream(s,T) the stream of
events of type T generated by the source s. If S is a set of
sources, then {

⋃
stream(s,T),s∈ S} defines a stream of events

of type T, denoted Stream(T).

B. Event processing network
As introduced in Section III, the event processing logic

is implemented by the event processing units. The runtime
deployment of event processing units with associated event
channels is called the event processing network [20][21]. This
is illustrated in Figure 2.

The general vision of our QoS based complex event pro-
cessing system can be briefly described as follows: applications
subscribe to composite events by issuing complex event pat-
terns to the system, this must also include the specification of
the associated QoS requirements. The system then deploys a
set of distributed event processing units, which apply different
strategies to meet QoS requirements during event processing.
Complex events produced by the event processing units are
notified to consumers. In a smart grid, such an infrastructure
can act as a middleware on which utility applications rely

486

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for detecting interesting or critical situations (sensors errors,
alarms, etc.) over the electrical grid, and at the same time, rely
on some QoS guarantees (e.g., priority, notification latency,
etc.).

EPU	

EPU	

EPU	
EPU	

Event
Producers

Event
Consumers

Event processing network

Event channels

Figure 2. Event processing network

1) Event processing unit: An event processing unit can be
defined by three types of components (see Figure 3):

• a set of input queues, on which parts of input event
streams are maintained.

• an operator, which implements a three step event
processing logic: fetch-produce-notify. In the first step
(fetch), some events are selected from the input queues
and marked as ready to be used to produce new
composite events. In the second step (produce), the
events selected at the first step are used to produce new
composite events according to the operator semantic.
The produced complex events are stored in the output
queue. In the third step (notify), events in the output
queue are notified either, to another event processing
units or to the interested consumers.

• an output queue, which contains events to be notified.

produce

Stream 1

notify

fetch
Input queue 1

Output
 stream

Stream 2
Input queue 2

output queue

Figure 3. Event processing unit

2) Event channel: Event processing units communicate
through event channels. Event channels are means of convey-
ing events [22]. This can be done via standard tcp or udp
connections, or higher level communication mechanisms like
publish/subscribe [23] or group communication [24] provided
by a middleware layer.

C. Architecture
The architecture of the proposed QoS based event pro-

cessing system is depicted at Figure 4. It consists of four layers
described as follows.

• the application layer consists of two types of compo-
nents: event producers (sensors, smart meters, etc.),

Figure 4. System architecture

and event consumers that subscribe to complex event
patterns having specific QoS requirements.

• the event processing network layer consists of a set of
distributed event processing units that communicate
among them via event channels.

• the middleware layer provides a high level communi-
cation mechanism to event processing units. This can
be publish/subscribe [23][16] or group communication
services [24]. It relies on the underlying network layer.

• the network layer ensures messages delivery from one
destination to another.

V. QOS SUPPORT IN EVENT PROCESSING

The need to detect and notify complex events from basic
events is sometimes correlated with some QoS requirements.
The QoS dimensions we address in this paper are event
priority, notification latency and memory occupation. Those
QoS requirements are either imposed by smart grid applica-
tions (event priority, notification latency), or by the execution
environment (memory occupation).

1) Event priority: Event priority defines a priority order
between events. In some contexts, events may have different
priorities that have to be captured at event processing runtime.
For example, in a smart grid, a BadVoltage event can be

487

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

higher priority than a CoverOpenAlert event. Events that have
a higher priority have to be processed and notified earlier than
less priority events.

2) Memory occupation: Smart grid devices may have dif-
ferent memory capacity. To adapt event processing to the
memory capacity of devices, it must be a way to specify the
maximum memory occupation incurred by an event processing
unit at execution time. The memory occupation constraint
gives an upper bound of the number of events that an event
processing unit can maintain at execution time.

3) Notification latency: In the common practice for power
device protection, the circuit breaker must be opened imme-
diately if the voltage or current on a power device exceeds
the normal values. The notification latency of an event is the
time elapsed between its production and its notification to
interested consumers (end users or event processing units). The
notification latency constraint imposed on an event processing
unit defines an upper bound on the notification latency of
events produced by that event processing unit.

A. QoS expressions
Each QoS requirement is associated to a specific value

domain. Below we specify the value domains corresponding
to the introduced QoS requirements:

• Dlatency denotes the notification latency domain. La-
tency is a measure of time that adopts a numeric value
expressed as either, a positive integer or a positive
fraction. Therefore, a latency value belongs to the
domain of real numbers R+. Thus, we can say that
Dlatency ⊆ R+. We also assume that the arithmetic
and comparison operations that can be applied on real
numbers also can be applied among values belonging
to Dlatency. For instance, intuitively a low latency is
preferable than a high latency, thus it can be desir-
able to compare latency values using the comparison
operators less than(<), and less than or equal to (≤).

• Dpriority denotes the event priority domain. An event
instance is associated to a priority level that varies
according to the event type. A priority level is rep-
resented with a positive integer value. Therefore, we
consider that a priority value belongs to the domain of
natural numbers N; thus, Dpriority ⊆ N ≤ n. We assume
that we can use comparison or arithmetic operators
on latency values. The priority is a heavily restricted
bounded QoS requirement, priority = 1 denotes the
highest priority and priority = n denotes the lower
priority. The equal to (=) operator is required to
associate an event to a priority level.

• Dmemocc denotes the memory occupation domain. We
express the memory occupation in terms of number
of events, for this reason, such a requirement adopts
an integer positive value thus belonging to the domain
of natural numbers N. We state that Dmemocc ⊆ N ≤
m. Where the comparison operator less than or equal
to (≤) specifies an upper bound and m specifies the
maximum memory capacity of the current device.

Let us assume that D is the set of the considered QoS
domains, thus D = Dlatency

⋃
Dpriority

⋃
Dmemocc. Given a

domain DQ, we assume a function name(DQ) that returns the
domain name, a function operator(DQ) that returns the set of

related operators, and a function value(DQ) that returns the set
of possible values.

For instance, let us consider the domain Dlatency, thus:

• name(DQ) = notification latency

• operator(DQ) = greater than (>), greater than or equal
to (≥), less than (<), less than or equal to (≤), equal
to (=), not equal to (6=)

• value(DQ) = R+, this is the set of all positive real
numbers

1) Atomic QoS expression: An atomic QoS expression α

specifies a QoS requirement. It is of the form (n, Θ, v), where

• n denotes a domain DQ , where DQ ∈ D

• Θ ∈ operator(DQ) and,

• v ∈ value(DQ)

For instance, the atomic QoS expression (notification la-
tency, ≤, 2000 ms) specifies that the latency for notifying an
event must be equal than or less to 2000 milliseconds.

2) Complex QoS expression: A complex QoS expression ε

specifies multiple QoS requirements. Assuming that an atomic
QoS expression specifies a QoS requirement, thus a complex
QoS expression results from the conjunction of two or more
atomic QoS expressions. The definition of a complex QoS
expression is as follows:

• If α1 and α2 are atomic QoS expressions then α1
⋃

α2 is a complex QoS expression ε1.

• Let us suppose that the complex QoS expression ε2
results from the conjunction α1

⋃
α2

⋃
α3 of atomic

expressions.

• Thus, ε2 results from the conjunction ε1
⋃

α3.

• A complex QoS expression results from the conjunc-
tion of two or more QoS atomic expressions, or other
complex expressions.

The QoS expression (notification latency, ≤, 2000 ms)
⋃

(event priority, =, 1) specifies that the notification latency must
be less than or equal to 2000 milliseconds, and in addition, the
highest priority level (i.e., priority = 1) is required.

B. QoS adoption

QoS expressions are translated into constraints that have to
be satisfied by the runtime environment. In order to address
those QoS requirements, we propose:

• an event processing units placement algorithm that
ensures load balance between the available processing
devices while minimizing the end to end latency.
For simplicity, we will refer to this problem as the
operators placement problem, since the placement of
an event processing unit is the same as the placement
of the operator it implements.

• a strategy applicable to event processing units al-
lowing to ensure that high priority events will be
processed and notified earlier than less priority events.

488

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. OPERATOR PLACEMENT

Event stream processing operators can be deployed in
several ways on smart grid devices. Operators placement
may considerably impact the quality of service. For instance,
deploying operators on a single node may potentially minimize
the latency of events processing, since it avoids the time spent
to communicate among several nodes. However, concentrating
the process on one node may overflow its memory capacity,
thus resulting in the violation of a QoS requirement (i.e.,
memory occupation). This section presents a QoS adoption
strategy that addresses the operator placement problem.

A. Problem definition
Operators placement refers to the (close to) optimal selec-

tion of the physical nodes hosting the operators in an event
processing network in order to satisfy a predefined global cost
function. Operators placement is an instance of a more general
task-assignment problem that addresses the (close to) optimal
assignment of m tasks to n processors in a network, which
has an O(nm) complexity. The operator placement problem is
NP-complete.

The operator placement algorithm takes as input a speci-
fication of a physical network topology T = {N,E}, which
consists in a set of computing nodes N and their links E.
The operator placement also requires a specification of the
resources (i.e., memory and CPU) available on each node,
and the latency of communication links. Figure 5 shows an
example of network topology that comprises 9 computing
nodes, each communication link being labeled with its cor-
responding latency. Table III shows the resources availability
on each computing node. In order to specify the exact value
of CPU rate available on each node, we specify a coefficient
that indicates how fast is that node compared to a reference
node for which the CPU coefficient is 1. For example, node
n1 is two times slower than node the reference node n7, and
node n8 is three times faster than node n7

n2

n3

n4

n5

n6

n7

n8 n9

n1
2

2

2

2

2

1

1

0.5

Figure 5. A physical network topology

The operator placement algorithm also takes as input an
event processing graph EPG =< θ,A >, which consists in a
set of event streams producers P∈ θ, a set of stream processing
operators O ∈ θ and a set of event stream consumers C ∈ θ.
A represents the set of edges that connect the operators in
O. Figure 6 shows an example of an event processing graph,
where P1 and P2 are two producers, C1 is a consumer, o1,o2,o3
and o4 are stream processing operators. The operators are

TABLE III. RESOURCES AVAILABILITY ON NETWORK NODES

Node Memory CPU coefficient
n1 10 1/2
n2 10 1/2
n3 15 1/2
n4 12 1/2
n5 10 1/2
n6 10 1/2
n7 50 1
n8 60 3
n9 30 2

associated with measures or estimates of demand, such as
the memory and CPU time that each operator expects for
processing a single input event. Table IV shows the estimates
associated to operators o1,o2,o3 and o4.

P2

P1 o1

o2

o3 o4 C1

Figure 6. An event processing graph

TABLE IV. ESTIMATES OF THE OPERATORS RESOURCES REQUIREMENTS

Operator Memory Execution time
o1 8 4
o2 12 5
o3 10 6
o4 20 9

The output of the operator placement algorithm is a map-
ping function λ that associates to each operator the node on the
network topology in which it should be hosted. Figure 7 shows
a possible operator placement, where operators o1,o2,o3 and
o4 are mapped to nodes n6,n4,n8 and n8, respectively.

P1

P2

C1

o1

o2

o3 o4 2

2

2

2

2

1

1

0.5

Figure 7. Example of operators placement.

We assume that each producer and each consumer is
restricted to a permanent physical network node. Operators can
be placed on arbitrary nodes having enough available resources
for their execution. In general, a placement algorithm assigns

489

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operators to processing nodes in a way that satisfies a set of
specified constraints and optimize a given objective function.
In our setting, the constraint is to ensure that no processing
node is overloaded beyond its memory capacity. The objective
function is the expected end-to-end latency between producers
and consumers.

B. Problem formalization
In order to formally define the issue of operators placement,

let us consider the notations presented in Table V.

TABLE V. NOTATIONS

Operator Execution time
o event processing operator
n network node
init initial mapping of producers and consumers
time(o) execution time of o on a reference node
mem(o) memory required by operator o
p(o,n) execution time of o on node n
cpuCoe f (n) CPU coefficient of node n
amem(n) memory available on a node n
lat(e) latency of the network link e
netPath(ni,n j) the network path between nodes ni and n j
c(a) latency of the communication between operators

connected by the edge a
λ(o) the mapped location of operator o

We formalize the operator placement problem as follows:

minimize
λ

cost(λ) = ∑
o∈θ

p(o,λ(o)+ ∑
a∈A

c(a)) (1)

subject to:
λ(o) = init(o), i f o ∈ P∪C (2)
∀n ∈ N ∑

o:λ(o)=n
mem(o)≤ amem(n) (3)

where

p(o,n) =
time(o)

cpuCoe f (n)
(4)

c(a) =
{

0 if for a = (oi,o j), λ(oi) = λ(o j)
β(a) otherwise (5)

a = (oi,o j), β(a) = ∑
ei∈netPath(λ(oi),λ(o j))

lat(ei) (6)

Equation (1) states the cost of an operator mapping λ,
which is the estimated end-to-end latency incurred by λ. It
is calculated as the sum of the latency due to event processing
(first part) and the latency due to the network communication
(second part). Equation (2) states that the mapping should be
consistent with respect to the initial mapping of producers and
consumers. Equation (3) states that the mapping should be
defined such that no processing node is overloaded beyond
its memory capacity. Equation (4) shows the formula that
allows to compute the processing time of a mapped operator.
Equations (5) and (6) show how to compute the network
latency incurred by inter operator communications. By using
these formulas, we can compute the cost of the operators
mapping presented in Figure 7.

First, note that this mapping is valid, since it does not
violate (2) and (3). Following (4), we compute p(o,λ(o)) for

operators o1 to o4 as 8, 10, 2 and 3, respectively. The latency
of event processing is then 23.

Now let us compute the latency due to inter-operator
communications. For the edge (P1, o1), it equals 2. For the
edge (P2,o2), it also equals 2. For the edge (o1,o3), it equals 1.
For the edge (o2,o3), it equals 2+1, so 3. For the edge (o3,o4)
it equals 0. For the edge (o4,C1), it equals 0.5. The latency
incurred by inter operator communication is then 7.5. Thus,
the total cost of the operator mapping is cost(λ) = 23+7.5 =
30.5.

C. Brute force approach
The operator placement problem can be modelled as a

constraint satisfaction problem (CSP). CSPs are mathematical
problems defined as a set of objects whose state must satisfy
a number of constraints. The constraints that we consider are
defined by (2) and (3), and are similar to the constraint defined
by the bin packing problem, where items of different volumes
must be packed into a finite number of bins, each with a
given volume. For the purpose of operator placement, the bins
represent the processing nodes, and their size represents their
memory capacity. The items represent the operators, and their
volume represents their memory occupation. We can now rely
on a CSP solver to find the set of valid mappings according
to the bin packing constraint. The optimal mapping is the one
with the minimum cost among the set of valid mappings, as
shown in the following algorithm.

OpPlacement(EventProcessingGraph epg, NetworkTopol-
ogy topo, InitialMapping init)
λopt ← null;
solver← BinPackingSolver();
solver.constructBinPackingConstraint(epg, topo, init);
if solver.hasSolution() then

λ← solver.nextSolution();
c← cost(λ);
λopt ← λ;
while solver.hasSolution() do

λ← solver.nextSolution();
c2← cost(λ);
if c2 < c then

c← c2;
λopt ← λ;

end if
end while

end if
return λopt ;

D. Greedy approach
The OpPlacement algorithm browses the whole space of

correct solutions (with respect to the bin packing constraint)
in order to find the optimal one. Then, it follows a brute
force approach. Because of its exponential complexity, the
OpPlacement algorithm fails to produce a result in an ac-
ceptable period of time for large event processing graphs and
network topologies. In order to deal with such large inputs, we
propose a greedy approach for operator placement. The idea
of this approach is to incrementally map parts of the event
processing graph on specific parts of the network topologies,
combining found solutions, till all operators are mapped. There
are two main aspects that have to be considered here in order
to apply this approach. First, it should be specified how to

490

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

compute parts of the event processing graph. Then, it should
be specified how to compute the part of the network topology
where a computed part of the event processing graph should
be mapped. In order to do that, we rely on the following
hypothesis on event processing graph and network topology
respectively:

• Hypothesis 1: there is one consumer for each input
event processing graph. This reduces the complexity of
the problem, since considering many consumers in the
event processing graph will lead to multi optimization
with respect to each consumer, especially when some
consumers share the same part of the event processing
graph.

• Hypothesis 2: the network topology has a tree struc-
ture. This is consistent with electrical grid topologies,
which are generally designed under a tree structure.

1) Computing subgraphs of the event processing graph:
Given the original event processing graph, a subgraph will
consist of intermediates operators that are reachable from a
given producer to the consumer c. Therefore, they will be the
same number of subgraph than the number of producers in
the original graph. In the following, we assume the existence
of a function subgraph(EPN,Pi) that computes the subgraph
associated to the producer Pi. For example, considering the
event processing graph in Figure 8, the result of the function
subgraph(EPN,P2) is the subgraph that consists of the set
of nodes θ′ = {P2,o2,o3,o4,c} and the set of edges A′ =
{(P2,o2),(o2,o3),(o2,o4),(o3,c),(o4,c)}.

2) Computing a subgraph of the network topology: Once
we compute a subgraph subgrap(EPN,Pi) of an event pro-
cessing graph for a given producer Pi, we need to compute the
subgraph of the network topology where it should be mapped.
In order to do that, we consider the mapped location of the
producer Pi and the one of consumer c as defined by the initial
mapping init. The resulting subgraph is the one that includes
the nodes in the path between init(Pi) and init(c). Since the
network topology is a tree, there is only one path between
init(Pi) and init(c). Then, the size of the subgraph is of the
order of O(log(n)), where n corresponds to the number of
nodes in the original network topology. We assume that this
subgraph is computed by the function subgraphTopo(T,ni,n j).

P0

P1

o2 o3

o4

o1

C P2

Figure 8. Event processing graph

For example, considering the network topology in Figure
9, and assuming that the producer P2 and the consumer c are
initially mapped at nodes n6 and n10, respectively, the result
of the function subgraphTopo(T,n6,n10) is the subgraph that
consists in the set of nodes N′ = {n6,n8,n9,n10} and the set
of edges E ′ = {(n6,n8),(n8,n9),(n9,n10)}.

n5

n2

n6

n7

n8

n9 n10

n3

200

200 100

100

100

100

25

n0

n1

n4

200

200

200

Figure 9. Network topology

3) Greedy algorithm: The greedy version of the algorithm
is presented as follows.

OpPlacementGreedy(EventProcessingGraph epg, Network-
Topology topo, InitialMapping init)
λ← init;
for each producer Pi in epg do

epg′← subgraph(epg,Pi);
topo′← subgraphTopo(topo, init(Pi), init(c));
λ′← OpPlacement(epg′, topo′,λ);
if λ′ != null then

λ← λ
⋃

λ′;
for each operator o in epg′ do

if o is not mapped then
mark o as mappped;
update the availble memory in λ(o);

end if
end for

else
return null;

end if
end for
return λ;

The OpPlacementGreedy algorithm achieves local opti-
mization for each computed subgraph of the original event
processing graph. At each step, the solution is combined with
the previously found solutions and the result is used like
the initial mapping for others iterations. As it finds solutions
during subgraph mappings, it marks all non-mapped operators
as mapped, and continues till all subgraphs are mapped. If the
mapping of a subgraph of the original event processing graph
fails, the algorithm stops and the mapping is considered as
failed.

VII. DEALING WITH EVENT PRIORITY

The QoS requirements concerning memory occupation and
latency have already been addressed by the operators place-
ment algorithm presented in the previous section. However,

491

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the event priority still remains for being attended, this section
presents a proposal to deal with this requirement.

As stated in Section IV, any instance of an event type has
a priority attribute to which an integer value must be assigned
(See Table I). The priority value of a simple event is defined
by its producer, whereas the priority value of a composite
event is computed as the maximum priority of its operand
events. The higher is the priority value associated to an event
instance, the higher is the event priority. Events are inserted
into input and output queues according to their priority. Input
and output queues are priority-based FIFO structures with
limited capacity. The priority relation ≺ is defined as follows:
ei ≺ e j→ ei.priority < e j.priority∨ei.priority = e j.priority∧
e j.detectionTime≤ ei.detectionTime

The ≺ relation ensures that high priority events will be no-
tified early compared to less priority events. As consequence,
the notification of a less priority event can be postponed for
a significant amount of time. This issue, that we refer to as
the starvation problem, is stated more precisely as follows: an
event in the output queue may suffer the starvation problem
with respect to the notification step, if after a significant
number of notifications k, the event is still in the output queue,
due to its priority that is less compared to that of inserted
events.

To solve the starvation problem, we associated to each
event in the output queue a time to live value ttl that is
initialized to an integer k. At each notification step, the ttl
value of each event decreases and the events for which the ttl
value equals zero are notified. For the event priority defined
by applications to be really effective, there are also some
assumptions that have to be made on the underlying layers of
the event processing runtime. More precisely, the middleware
layer must provide a FIFO delivery mechanism, allowing to
convey events while preserving their notification order such as
in [24] [25].

VIII. EXPERIMENTAL EVALUATION

We focused our experiments to the evaluation of the
operator placement algorithm. We developed our algorithm
using Java programming language. We rely on the Jacop
CSP solver [26] to implement the bin packing constraint.
For our experiments, we defined different types of devices
(smart meters, data concentrators, sensors, etc.) with different
resource profiles. A resource profile is defined by a memory
capacity and a CPU coefficient. Based on this, we generated
network topologies with various sizes, and containing devices
with different defined profiles. The latency of the communi-
cation links among the different devices was fixed too. We
followed the same idea with operators. We defined different
kind of operators with memory and CPU time requirements.
We generated event processing graphs of different sizes, and
comprising the specified operator types.

We conducted a first experiment to compare the results of
the greedy algorithm with those of the brute force algorithm.
More precisely, we focused on the algorithm execution time,
and the quality of resulting operator placement, which is
captured by its cost. We generate 20 different inputs for
the algorithm, each consisting in a network topology and
an event processing graph. Each network topology consisted
in 15 nodes, and the number of operators in each event
processing graphs ranged from 7 to 10. For each input, we

executed the OpPlacement algorithm (brute force) and the
OpPlacementGreedy. We choose to run this experiment over a
small network topology and small event processing graphs in
order to make sure that the optimal solution can be calculated.

We compared first the execution time of the algorithms.
The result is depicted at Figure 10, which presents for each
of the 20 executions (x axis), the time duration (y axis)
of the brute force algorithm, and the time duration of the
greedy algorithm. Clearly, the greedy algorithm performs faster
than the brute force algorithm, being in average one order of
magnitude faster.

0	
200	
400	
600	
800	

1000	
1200	
1400	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Ti
m
e	
du

ra
*o

n	

Execu*on	n°		

Time	brute	force		

Time	Greedy	

Figure 10. Operator placement execution time: comparison between brute
force and greedy algorithm

Figure 11 compares the cost of operator placement com-
puted by the greedy algorithm with the optimal one, computed
by the brute force algorithm. We can observe that the cost
of the operator mapping computed by the greedy algorithm
is generally close to the optimal one. Even more interesting,
for this experiment, the accuracy of the greedy approach
(computed as the percentage of optimal solutions that were
found) was 55%.

0	
200	
400	
600	
800	
1000	
1200	
1400	
1600	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Co
st
		

Execu+on	n°	

Cost	brute	force	

Cost	Greedy	

Figure 11. Cost of operator placement: comparison between brute force and
greedy algorithm

We conducted another experiment in order to test how the
greedy algorithm behaves on large event processing graphs.
We execute the algorithm over a network topology consisting
in 50 nodes. The size of event processing graphs ranged from
15 to 110 nodes. It is worth to mention that the brute force
approach was not able to compute the optimal result here, due
to its time complexity. Figure 12 presents the result of this
experiment. We notice that the time duration of the greedy
algorithm does not necessarily increases when the size of
the event processing graph growths. In fact, the structure of
the event processing graph is another factor that impacts the
performance of the algorithm. In event processing graphs for
which operators are highly connected, the subgraph associated
to a producer can have a high number of operators. Therefore,
the time to compute the mapping of that subgraph can be
longer. For example, in the experiment, the event processing
graphs having size 45 and 60 were dense, this explains the
peaks we observed in the duration time.

492

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	 90	 100	 105	 110	

Ti
m
e	
du

ra
*o

n	

Size	of	event	processing	graph	

Time	Greedy	

Time	Greedy	

Figure 12. Scale up of the greedy algorithm

IX. CONCLUSION

This paper shows that monitoring of smart grids can be
done using an event based approach where event streams
generated by distributed sources are processed by distributed
event processing units. Such units may produce complex
events indicating situations of interest that are notified to
consumers. Since the invocation of business, critical processes
is now triggered by events. The QoS of the event processing
infrastructure becomes a key issue. We have identified key
QoS dimensions relevant to smart grids, namely event priority,
memory occupation and notification latency. We proposed a
brute force algorithm for deploying event stream operators in a
network topology, considering memory occupation and latency.
To overcome the time complexity of the brute force approach,
we propose a greedy algorithm for operator placement. The
experiments shown that, while performing faster than the brute
force approach, the greedy algorithm provides good quality
solutions. We also proposed a strategy to deal with event
priority.

We are currently developping a simulation platform to
demonstrate our approach. The simulation platform allows
to represent a smart grid topology and an event processing
network. In addition, it implements the proposed strategies for
QoS adoption. On the other hand, we are working on the
specification of a real smart grid use case. The simulation
platform will leverage the implementation and validation of
the proposed use case.

Network occupation is another QoS dimension relevant to
smart grids that was not addressed in this work. As future
work, it would be interesting to integrate network occupation
as another constraint in our model. The proposed QoS based
event stream processing approach can be associated with
a language for describing complex event composition with
related QoS. This will also be studied in future works.

ACKNOWLEDGMENT

This work was carried out as part of the SOGRID project
(www.so-grid.com), co-funded by the French agency for En-
vironment and Energy Management (ADEME) and developed
in collaboration between participating academic and industrial
partners.

REFERENCES

[1] O. Epal, C. Collet, and G. Vargas, “Towards a Quality
of Service Based Complex Event Processing in Smart
Grids,” in Proceedings of the 5th International Conference

on Smart Grid, Green Communication and IT Energy-
aware Technologies (ENERGY). Internatonal Academy,
Research and Industry Association, May 2015, pp. 1–4.

[2] G. Cugola and A. Margara, “Raced: An adaptive middle-
ware for complex event detection,” in Proceedings of the
8th International Workshop on Adaptive and Reflective
Middleware, ser. ARM ’09. New York, NY, USA: ACM,
2009, pp. 5:1–5:6.

[3] “Homepage of Esper,” 2015, URL: http://esper.codehaus.
org/ [accessed: 2015-03-27].

[4] “Homepage of TIBCO StreamBase,” 2015, URL: http:
//www.streambase.com/ [accessed: 2015-03-27].

[5] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg,
and G. Anderson, “SASE: complex event processing over
streams,” in Proceedings of the 3rd Biennial Conference
on Innovative Data Systems Research (CIDR), 2007, pp.
407–411.

[6] “Homepage of Oracle CEP,” 2015, URL: http://www.
oracle.com/ [accessed: 2015-03-26].

[7] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. M. White, “Cayuga: A general
purpose event monitoring system.” in Proceedings of
the 5th Biennial Conference on Innovative Data Systems
Research (CIDR). www.cidrdb.org, January 2007, pp.
412–422.

[8] D. Luckham, “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Orderings
of Events,” Stanford University, Tech. Rep., 1996.

[9] O. Saleh and K.-U. Sattler, “Distributed complex event
processing in sensor networks,” in Proceedings of the
2013 IEEE 14th International Conference on Mobile
Data Management - Volume 02, ser. MDM ’13. IEEE
Computer Society, June 2013, pp. 23–26.

[10] P. R. Pietzuch, B. Shand, and J. Bacon, “A framework for
event composition in distributed systems,” in Proceedings
of the ACM/IFIP/USENIX International Conference on
Middleware, ser. Middleware ’03, vol. 2672. Springer-
Verlag New York, Inc., 2003, pp. 62–82.

[11] “Storm: Distributed and fault-tolerant real-time com-
putation,” 2013, URL: http://storm.incubator.apache.org/
[Accessed: 2015-11-10].

[12] S. Behnel, L. Fiege, and G. Mühl, “On quality-of-service
and publish-subscribe,” in Proceedings of the Interna-
tional Conference on Distributed Computing Systems,
2006, pp. 1–6.

[13] S. Appel, K. Sachs, and A. Buchmann, “Quality of
service in event-based systems,” in Proceedings of the
CEntral EURop Workshop (CEUR), vol. 581, 2010, pp.
1–5.

[14] Y.-h. Jeon, “QoS Requirements for the Smart Grid Com-
munications System,” Journal of Computer Science and
Network Security, vol. 11, no. 3, 2011, pp. 86–94.

[15] W. Sun, X. Yuan, J. Wang, D. Han, and C. Zhang, “Qual-
ity of Service Networking for Smart Grid Distribution
Monitoring,” in Proceedings of the 1st IEEE International
Conference on Smart Grid Communications, 2010, pp.
373–378.

[16] H. Gjermundrø d, D. E. Bakken, C. H. Hauser, and
A. Bose, “GridStat: A flexible QoS-managed data dis-
semination framework for the power grid,” IEEE Trans-
actions on Power Delivery, vol. 24, no. 1, 2009, pp. 136–
143.

493

International Journal on Advances in Intelligent Systems, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/intelligent_systems/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[17] W. Wang, Y. Xu, and M. Khanna, “A survey on the
communication architectures in smart grid,” Computer
Networks, vol. 55, no. 15, Oct. 2011, pp. 3604–3629.

[18] Smart Grid Coordination Group, “Smart grid reference
architecture,” 2012, URL: http://ec.europa.eu/ [accessed:
2015-03-27].

[19] G. Cugola and A. Margara, “Processing flows of infor-
mation: From data stream to complex event processing,”
ACM Computing Surveys, vol. 44, no. 3, 2012, pp. 15:1–
15:62.

[20] L. Perrochon, W. Mann, S. Kasriel, and D. C. Luckham,
“Event Mining with Event Processing Networks,” pp.
474–478, 1999.

[21] G. Sharon and O. Etzion, “Event-processing network
model and implementation,” IBM Systems Journal,
vol. 47, no. 2, 2008, pp. 321–334.

[22] “Event processing glossary version 2.0,” 2011, URL:
http://www.complexevents.com [accessed: 2015-03-27].

[23] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec, “The many faces of publish/subscribe,” ACM
Computing Surveys, vol. 35, no. 2, 2003, pp. 114–131.

[24] G. V. Chockler and R. Vitenberg, “Group Communication
Specifications : A Comprehensive Study,” ACM Comput-
ing Surveys, vol. 33, no. 4, 2001, pp. 427–469.

[25] A. Malekpour, A. Carzaniga, G. T. Carughi, and F. Pe-
done, “Probabilistic FIFO Ordering in Publish/Subscribe
Networks,” in Proceedings of the 10th International Sym-
posium on Network Computing and Applications. Ieee,
augst 2011, pp. 33–40.

[26] “Homepage of JaCoP,” 2015, URL: http://jacop.osolpro.
com [accessed: 2015-03-26].

