
Cloud-based Infrastructure for Workflow and Service Engineering

Using Semantic Web Technologies

Volkan Gezer and Simon Bergweiler

German Research Center for Artificial Intelligence (DFKI)
Innovative Factory Systems

Kaiserslautern, Germany
Email: firstname.lastname@dfki.de

Abstract—This paper presents the concept and implementation
of a cloud-based infrastructure platform and tailored tools for
graphical support for user-driven experiments. The focus lies on
the creation of a platform that allows multiple users to integrate
their expertise via Web service interfaces and combine them
to compose workflows for their experiments in the engineering
domain. The platform employs Semantic Web technologies, which
increase interoperability of the services and assist during work-
flow design by suggesting compatible services. The implemented
tools give users the possibility to utilize the platform using
a standard Web browser, without any knowledge of service
engineering and the underlying complex technologies. An exper-
iment is described as a workflow and consists of orchestrated
services from several software vendors that encapsulate specific
tasks for improving product development. One advantage of this
approach is the automatic execution of the services and data flow
among them. The cloud-based platform can also be combined
with high-performance computing when services require complex
calculations. The created platform offers optimal conditions to
involve independent specialists and conduct short or long-running
experiments, depending on the complexity of the task. This results
in tremendous time savings and allows experts to carry out
more experiments with products, which were omitted due to
the complexity and the limited computing power, until now. The
possibility to conduct these experiments improves the productive
know-how of the companies and enhances the products they are
selling.

Keywords–Cloud infrastructure; semantic workflow description;
Semantic Web services; graphical workflow editing; workflow exe-
cution.

I. INTRODUCTION

In this paper, we present the concept and implementation
of a flexible cloud-based platform for the vendor-independent
integration of Semantic Web services and their execution in the
engineering domain. This platform is provided as Infrastructure
as a Service (IaaS), and is able to integrate, combine and
orchestrate Web services [1]. Cloud-based solutions are part of
the daily life, and their usage is increasing day by day. The ad-
vantage of access to data from a cloud solution from anywhere
allows increased mobility of people and their applications, and
changes also behavior and attitude of responsible persons in
the engineering domain [2].

Involving Semantic Web technologies inside a cloud-based
solution significantly improves usability by structuring the data
in a standardized way. These standardized data structures can
be understood by machines and humans and utilized to create
interoperable and vendor-independent applications. With this
approach vendor lock-in problems can be avoided [3].

The platform enables experts from various application
domains to independently plan, design, and execute their

individual experiments for the analysis and optimization of
their products. Each experiment is described as a workflow that
uses the functionality of different products of different software
vendors in any combination. With the help of this platform,
several independent specialists act as software vendors and offer
their expertise, e.g., strong calculation procedures or routines
for the comparison of 3D models, wrapped by Web service
interfaces in a system-wide infrastructure. These advanced
analytical capabilities, which are accessible via the platform,
can be used to enhance the products, identify weaknesses and
subsequently improve the positive effects of the products.

Thanks to this distributed architecture, the platform offers
optimal conditions for both short and long-running experiments
[4]. To provide an added value and according to customer
requirements, the developed platform is able to pass the
execution of dedicated services to a cluster of high-performance
computers (HPC). These HPC clusters are to perform cal-
culation of complex tasks and are spread across different
virtualization solutions. This design of the platform allows
experts to carry out more experiments with products because
of enormous time savings. The developed tailored tools of
this cloud-based platform, described below as core backend
components, allow engineering companies and software solution
vendors to integrate their Software as a Service (SaaS).
Services are orchestrated in specific workflows, seamlessly
supported by graphical user interfaces. They do not even require
specific skills or knowledge of the underlying Semantic Web
technologies. The developed solution uses standardized Internet
technologies and all workflows can be executed using a standard
Web browser, requiring no additional software download and
installation. The provided platform wraps all complexity of the
technologies and provides Application Programming Interfaces
(API) for communication.

Section II introduces used technologies and describes
the topics under consideration. For a better understanding,
Section III describes a concrete application scenario and
the requirements in the engineering domain. This leads over
to Section IV, where the methodology and concept of the
developed approach is discussed. Section V describes the
architecture and the interaction of the developed core backend
components. The paper ends with a conclusion and an outlook
on future work and extensions.

II. BACKGROUND

A set of complementary reusable functionalities that are
provided for various purposes by software are called “services”.
If a service is offered via World Wide Web using Web
technologies, such as the Hypertext Transfer Protocol (HTTP),
the service is labeled as Web service. Web services are designed

36

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



to support machine-to-machine interaction over a network
and allow interoperable communication [5]. With the help of
description languages, which will be discussed in the upcoming
sections, Web services create communication between peer-
platforms, prevent vendor dependency and increase reusability.

A. Web Services Description Language
The Web Service Description Language (WSDL) is a

language and platform-independent XML-based interface defi-
nition language, designed with the aim to create a standardized
mechanism for the description of Web services. It describes
SOAP-based Web services in detail, their technical input and
output parameters, ports, data types, and how services must be
invoked. With this machine-readable description language, the
automatic detection and execution of Web services is possible.
A ready-revised language draft was submitted to the World
Wide Web Consortium (W3C) [6], but only version 2.0 was
standardized and proclaimed as W3C recommendation [7].
Unfortunately, WSDL is a lower level interface description
language that addresses the technical mechanisms and aspects
of Web services, and it does not reflect the functionality of a
service. Furthermore, it is difficult to create and understand
for humans. In this approach, WSDL is used for the technical
description of Web services, their input and output parameters,
and the SOAP messaging mechanism.

B. Technologies of the Semantic Web
The development of the current Web to the “Semantic Web”

is pervasive. Efforts are aiming to add annotations to things
and objects of daily life. Through the help of annotations, the
vision of the Semantic Web allows better cooperation between
people and computers; well-defined meanings are attached to
information [8]. The Resource Description Framework (RDF)
is one of the most important data formats that has been devel-
oped to implement this vision. The Semantic Web combines
technologies that deal with the description of information and
knowledge sources, such as ontologies, RDF triple stores, and
Semantic Web services [9][10]. Ontologies allow the definition
of a vocabulary of a dedicated application domain and define
for this purpose concepts and properties. These concepts can
in turn be connected by relations, which promise a significant
value, when conclusions are drawn about these structures. In
that field, the W3C defines its recommendations as an open
standard like RDF(S) [9][11] and the Web Ontology Language
(OWL) [12].

In contrast to a complex and comprehensive infrastructure
that tries to solve all problems of the interaction and communi-
cation of distributed applications, the Semantic Web Technology
Stack, depicted in Figure 1, is a family of modular standards
mostly standardized by the W3C. Each of these standards aims
at another part of problem or another sub-problem.

This stack of Semantic Web technologies describes the
vision of the W3C to create a Web of linked data. The idea of
open data stores on the Web, the ability to build vocabularies,
and write rules for handling data based on these empowered
technologies, such as RDF, OWL, and the SPARQL Protocol
And RDF Query Language (SPARQL) [13].

In the following, the individual layers and the associated
standards will be briefly explained. Starting at the lowest level
with the Unicode standard and Uniform Resource Identifiers
(URI). The Unicode standard allows an unambiguous name

Figure 1. Semantic Web technology stack.

of the resources in any language. This makes the approach
multilingual and forces the exchange of messages. In order to
identify resources on the Web, it is necessary to have URIs and
to use them for the concrete description of specific resources.
URIs are used to describe a specific resource uniquely. XML
forms the central core technology and is added to the second
level of this architecture or hierarchy. XML is used for the
storage and universal exchange of data. The technologies on
the upper layers rely on it. The third layer of the Semantic
Web technology stack is probably the most important layer
of all. RDF makes it possible to create metadata in machine-
readable form. Here, a sentence structure in the form of triples
(subject, predicate, and object) is used. The layers three and
four are important pillars of the Semantic Web, they host RDF,
RDF Schema, ontologies, and their vocabulary. They serve the
communication of different, mutually independent domains at
the semantic level. The uppermost layers of the architecture are
logic, proof and trust. The Logic level provides technologies to
allow computers to recognize specific patterns by the help of
dedicated rules. By modifying this rule structures and patterns,
new knowledge is inferred and exploited. The Proof level
should make it possible to distinguish the trustworthiness of
resources. Together with the Digital Signature layer it is possible
that computers are able to cope trusting tasks without human
intervention.

C. Semantic Web Services
In the recent years, the tendency towards Semantic Web

technologies increased the research in the domain, results in an
elevated number of available ontologies as well as standards
recommended by the W3C. To widen the scope of applicability,
one of the submitted ontologies to W3C was the Web Ontology
Language for Web Services (OWL-S), which allowed services
on the Web to be found, executed, and monitored. The OWL-S
ontology is designed on top of OWL with extensions to make
service discovery, invocation, composition, and monitoring
possible. The provided structure also allowed these operations
to be performed autonomously, when desired [14]. Based on
the previously described technologies, domain models must
be created to form an important conceptual basis. Therefore,
parts of the dedicated knowledge domain are categorized and
structured in a machine readable form. OWL-S [14] extends this
base to a set of constructs that relate to properties, specialties

37

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and dependencies of the Web service level and is also machine
readable and processable.

A concrete service description in OWL-S is separated
in several parts. Figure 2 shows the main concepts and
relations of a service model in OWL-S: service profile, service
model, service grounding, and important for our approach, the
processes.

Figure 2. Main Web service concepts in OWL-S.

OWL-S API provides its own native engine to execute Web
services described only in WSDL 1.2 and consequently, SOAP
interface. Any Web services provided with a WSDL description
and SOAP interface can be integrated into the infrastructure
and converted into semantic Web service descriptions as long
as they satisfy the requirements. For a Web service that is
converted into a Semantic Web service with the help of an
upper ontology, the following required types of the OWL-S
Submission [14] are created:

• The Service Profile provides information to describe
a service to a requester. The profile provides three
types of information: the service creator, the service
functionality, and the service characteristics [14]. It is
also is used for service discovery and describes the
functionality of the service and contains information
about the service provider. Furthermore, this profile
reflects the overall functionality of a service with its
precondition, input and output types, features, and
benefits.

• The Service Model is a mandatory type for the descrip-
tion how a Web service works. The model describes
the inputs, outputs, preconditions and effects. It also
specifies the Process concepts and their execution
order. The process description consists of simple
atomic processes or complex composite processes
that are sometimes abstract and not executable. Each
function provided by the service is considered as an
Atomic Process, whereas combined multiple services
are named as Composite Service.

• The Service Grounding stores the detailed technical
communication information on protocols and formats.
This concept provides the physical location to the
technical description realized in WSDL. This WSDL-
file is called when the service is executed, as well
as during conversion process to retrieve the technical
inputs and outputs of the service.

The described core concepts are shown in detail in Figure
3 with their subtypes and processes. The listed types provide
the basis for OWL-S to create and use relations, which are
utilized for improved interoperability.

Figure 3. Upper service ontology for OWL-S.

However, the relations generated using only OWL-S on-
tology form the minimal relationship for services, enough to
be operated. If the usage scenario requires involvement of
additional relations, these must be defined creating a service
and workflow ontology and including it inside a Semantic
Repository [15]. This ontology can contain more contextual
information with relations to enhance the interoperability [16].

D. Triple Stores
Computational tasks often require collection and storage of

the results for further usage. Storage of information without a
structured form increases the complexity and the time to access
the data, and reducing the flexibility for further modifications
and enhancements [17] causing fragmentation problems. To
address this issue, databases play the role as containers, which
collect and organize the data for swift future access [18].

Semantic repositories are similar to the database manage-
ment systems (DBMS) in terms of providing functionality for
organization, storage, and querying the data, but differ from
them in terms of the type of organization and data representation.
Unlike DBMS, semantic repositories use schemata to structure
the data, but are also able to establish relationships between
stored values. Regarding to data representations, semantic
repositories work with flexible and generic physical data models,
which allow merging other ontologies “on the fly” and relate
the data among merged schemata [19]. As OWL-S is based
on OWL, which is built on top of RDF, see Section II-B, the
data operations are performed using the same RDF structure.
This structure provides descriptions to query the data, and
allows optimal extension of relations allowing multiple use. The
Sesame framework [20] is one RDF storage solution, which can
be used in this context. It allows creation, processing, editing,
storing, and querying RDF data, therefore, it is chosen to serve
as a storage solution in this approach.

E. Business Process Execution Language and OWL-S
The Business Process Execution Language (BPEL) is a

language for describing and executing business processes in
general. It provides an XML-based syntax and allows data
manipulation for data processing and data flow. It also allows
orchestration of services, after specifying the service set and
the service execution order [21]. Numerous platforms (such

38

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



as Oracle BPEL Process Manager, IBM WebSphere Applica-
tion Server Enterprise, IBM WebSphere Studio Application
Developer Integration Edition, and Microsoft BizTalk Server
2004) support the execution of BPEL processes. Some of these
platforms also provide graphical editing tools.

For the languages OWL-S and BPEL, there exist tools
for the automated execution of Web services described in
WSDL. They also permit implementations in any programming
languages as long as they provide valid WSDL descriptions.
Different from BPEL, OWL-S facilitates Semantic Web tech-
nologies, which make the structure meaningful for human and
machines and allow automated design and orchestration of
services, whereas BPEL does not [22].

The execution order of services is usually defined using a
design tool (textual or graphical), which is then executed and
monitored using an engine. For BPEL, Apache BPEL Designer
and JBoss Tools BPEL Editor can be given as examples to
design tools, whereas Oracle BPEL Process Manager, Apache
ODE, IBM WebSphere Process Server, and Microsoft BizTalk
Server can be listed as examples for execution and monitoring.

Using OWL-S increases the interoperability and enables
automatic orchestration between the services, but it requires
a deep knowledge in the domain. Hence, there are few
editors available for OWL-S. Additionally, to create complex
workflows, Protégé OWL-S Editor [23], which is a plug-in
for Protégé, can be utilized. Nevertheless, the usage of this
plug-in also requires advanced knowledge in the domain. All
of these tools must be locally installed to be used. To convert
Web services into Semantic Web services, a design tool and
an execution engine are necessary.

In another approach, created in the context of the THESEUS
funding program, a framework for the discovery, integration,
processing, and fusion of Semantic Web services is described
[24]. According to a user request, the framework identifies and
assembles matching services for problem solving and creates
a plan for the composition and execution order. The focus is
on the matching of heterogeneous services and the fusion of
all gathered information in real time. The harmonizing and
mapping of knowledge is carried out based on ontologies.

The advantage of our approach is the continuous integration
of services in an cloud-based infrastructure. The user is guided
from the provided Web user interface to a graphical editor,
where individual services could be integrated, experiments
could be designed by orchestrating these services and stored
as specific workflows that could also be executed within the
framework in a further step. This execution of workflows could
be initiated by the creator of the workflow or by another
authorized user who is allowed to get the results. Within the
developed infrastructure, specific services can be deployed
and assigned to simple or complex workflows graphically.
Each provided tool can be used and executed without detailed
knowledge of the underlying Semantic Web technologies. All
functionality of the cloud-based infrastructure platform can be
accessed using a simple Web browser without installation of
additional software applications.

III. SCENARIO

In the engineering domain, a conventional practice for
quality assurance of the manufactured final product are compar-
ison checks against the virtual designed product model. This
accuracy check is performed by comparing two 3D models.

First a scanning process creates and transfers accurate points,
and in this way a virtual 3D model is created. The entire model
consists of millions of 3D points, which must be matched and
compared with the designed product model to find out the
discrepancies by calculating the distances of points in both,
the designed model and the virtual clone of the final product
[25][26].

The manufacturer of these big turbine blades uses different
tools to perform this comparison task and these supplementary
tools generate additional license and training costs. The
handling of different software solutions requires many hours of
work. By using the workflow and service infrastructure and the
distributed HPC solution described here, the comparison time
is significantly reduced. These advantages allow the company
to focus on quality measurement and also increase the capacity
of the company for initiating new projects. Figure 4 shows a
complete Kaplan turbine (a), one blade that is to be evaluated
(b) and the scanned and virtualized 3D model with color-coded
comparison results (c) [26]. The virtual model is created by an
open-source tool for rendering and visualization [27].

Figure 4. A complete manufactured Kaplan turbine (a), its single turbine
blade (b) and the color-coded comparison of its scan and design (c).

The workflow described in this scenario consists of several
orchestrated services. In the first step a service is included,
which allows to load files as input for the experiment. In this
scenario two files, a Computer-Aided Design (CAD) model
and a laser scanned point file are chosen. With the help of
another service that provides an user interface an initial coarse
alignment of both models can be made manually. Finally, the
automated comparison of the models is performed in the next
service that uses the HPC cluster. This is helpful, in order to
shorten the comparative process by increasing the computing
power. The result of this calculation is displayed in a dedicated
application, the distance viewer. The details on this scenario
can be found in the work done by Holm et al. [4].

IV. CONCEPT

This approach follows the idea of offering individual
functionality by services via standardized interfaces. These can

39

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



be easily integrated, offered and consumed via a cloud-based
infrastructure platform. Unfortunately, conventional service
descriptions do not provide enough self-description capabilities.
Therefore, in the concept of this approach, a language has to
be chosen, which allows semantic descriptions to add more
contextual information to the services. There are a number
of semantic technologies that provide machine and human
readable descriptions, such as OWL-S, Web Service Modeling
Ontology (WSMO), Web Service Modeling Language (WSML),
and the Semantic Web Services Framework (SWSF) [28]. The
most recently updated language to describe Semantic Web
services, OWL-S, is used to provide descriptions that are
machine readable and processable.

In this approach OWL-S satisfies the requirements and
is chosen to describe the services and their orchestrations,
describes further on as workflows. In addition to the description
of the technical parameters, each service must also provide
the information on the provided functionality, e.g., analyzing
methods and calculation models such as the finite element
method or the visualization and comparison of 3D-models.

The used ontology, which follows the OWL-S standard,
is shown in Figure 3. Based on this upper-level ontology, a
Service and Workflow Ontology (SWO) is created to store
domain-specific information for interoperability of services and
workflows. This SWO with its concepts, instances, and the
relationships between them, is shown in Figure 5. The defined
SWO makes it possible to differentiate the service categories
from each other via CFServiceType class. It also introduces
User and UserGroup for permission control, which is one
requirement to separate users in multi-user environments. Based
on the described InputParameter and OutputParameter classes
suggestions for technically matching services can be made,
during the process of the creation of an individual experiment.

Figure 5. This ontology stores context-specific service and workflow
information.

Due to the complexity of OWL-S and the necessary
embedding into the application domain, all available technical
Web service interfaces need to be described using standards,
such as WSDL. The semantic service description is generated
out of these WSDL descriptions. All necessary additional
information is offered to the user by forms within the Web
portal and transferred to the description. Based on this technical
description with its functions, input, and output types, a Seman-
tic Web service model, described in OWL-S, is generated and
integrated into the Semantic Repository. This transformation and
conversion is automatically performed by provided converter
library, Semantic Web Service Creator, shown in Figure 6. As
depicted, the creator retrieves the URL of the WSDL file, the
service type and user provided semantic information for the
concrete data types of service inputs and outputs in addition to
the data types parsed from WSDL. In a next step, it converts
the service into a specific instantiated Semantic Web service
description in OWL-S that is stored in the Semantic Repository.

Figure 6. Generation of services in OWL-S.

In principle, according to the different design of the
experiments, two service categories are differentiated. On the
one hand, services that have a role to play in delivering data
within a specified period of time, and on the other hand, those
long-lasting services that do not matter that the data quickly
land at the addressee. In this approach, we used these services
types in three different application categories:
• Synchronous Service
• Asynchronous Service
• Asynchronous Web Application
These application categories are disjoint, i.e., each Web

service can only be assigned to exactly one category and stored
in the Semantic Repository. Standard Web services belong to
the Synchronous Service category. Whenever a request is made,
they must respond within 60 seconds, which is defined as
default timeout limit in HTTP. Every service, which does not
require an interaction with the user, is part of this category. An
Asynchronous Service is a special category that the services
within return information whenever the calling component
checks the status. Unlike the previous category, asynchronous
services can display feedback messages and these services
can last days or even weeks to complete. A response to the
calling component reports the status by telling either the service
is completed or still ongoing. Lastly, the Asynchronous Web
Application category contains Web services, which are similar
to asynchronous services, but without a status check. This type
of service is used to provide interactive user interfaces on Web
pages within the Web portal. Since the completion of the tasks
for this service type depend on user interaction, a trigger must
be sent to the called for reporting.

Services provide functionality for special tasks, but complex
tasks in the engineering domain usually consist of multiple steps.
Therefore, one service is not sufficient and an orchestration

40

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of services is needed. The cloud-based infrastructure allows
users to create experiments and orchestrate services individually,
formalized by a workflow. Depending on the application domain,
a workflow can have multiple definitions, but in the context
of this paper, a workflow will be considered as a set and
ordered list of chained up Web services provided with a service
description in WSDL and with SOAP-based APIs to involve,
deploy and perform each specific task with or without user
interaction. According to the different requirements of the
experiments to the editing and execution environment, four
different constructs were defined in order to be able to model
corresponding workflows, as depicted in Figure 7.

Figure 7. Possible workflow design and execution types.

A workflow of an experiment can of course be designed
with a combination of these and consist of one or more of
the listed types. The following workflow design and execution
types are possible using the OWL-S:
(a) A linear, sequential execution of several Web services,

which often fits for many situations. The services within
the workflow will be executed one after another, one at
each workflow step.

(b) Branching the workflow with if-then-else, which follows
one of the two possible branches after evaluating the
inserted condition. This is mostly useful for evaluation
of a simulation and performing additional tasks in case the
results are not satisfactory.

(c) Parallel execution of two branches simultaneously via split,
in case their inputs and outputs do not depend on each other.
This type of workflow is generally useful if a sequential
execution of multiple services would take long time and a
separate execution of independent services would reduce
this.

(d) Looping back to a specific step using repeat-until, until a
condition is fulfilled. This type is useful to iterate specific
step(s) until the result is the acceptable value.
As shown in Figure 8, a user interacts with the Web portal of

cloud-based infrastructure platform via standard Web browser.

A part of the portal is the graphical user interface for the
creation and editing process of workflows. Each workflow
describes an experiment and consists of several orchestrated
services. Within this concept, the workflow editing component
stores these individual experiments in an storage solution with
attached annotations, the Semantic Repository, when the editing
task is finished. Furthermore, independent of the editing step,
the user can initiate the execution of stored workflows of the
respective experiments. The result of each conducted experiment
is delivered to the Web portal by the execution component of
the workflow management and execution component.

Figure 8. User creates a workflow of an experiment and initiates the execution.

This suggested kind of service categorization and interaction
make it possible to support users and their specific needs
to complete their tasks with synchronous or asynchronous
processes executed in the background. A service orchestration
is performed by using a component for workflow editing to
create a semantic workflow description. First, the workflows
are created or edited and the services are arranged in the
correct order, in which they have to be executed. In the process
chain, the output of a service is passed to the input of the
next service. This can be done by an supported graphical
editing tool. The use of a tool has the advantage that the
complexity remains hidden from the user. The user must not
have a detailed knowledge of OWL-S to describe their workflow.
The graphically sketched sequence of services is formalized
in a workflow and stored in an XML-based meta-format that
serves as input for the conversion into OWL-S. The automatic
conversion of these inputs into workflows is also performed by
the aforementioned Semantic Web Service Creator. Figure 9
shows the process of the generation of workflow descriptions for
different experiments. Both processes in Figure 6 and Figure
9 use the same library for conversion. However, the inputs
and outputs of the converter shown in bold text are different
depending on the purpose. The former is for Semantic Web
service creation whereas the latter is for workflow creation.

The service domain is structured by an upper model for the
generic description and vocabulary of services and workflows in
OWL-S. It defines how services must be described and specified,
using annotations and technical descriptions. The knowledge of
different application domains is represented by several domain
ontologies that describe application functionalities in detail.
The SWO provides properties to define several additional
relations. The next section describes the special tooling to
design individual workflows, where each step in the workflow

41

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 9. Generation of workflows in OWL-S.

must be assigned to a service.

V. INTERACTION OF CORE COMPONENTS

The creation of an interoperable and flexible platform
provided as IaaS requires an embodiment of several core
components which are compatible with each other [4]. These
core components are presented as Web services with their
technical interface description in WSDL. The implemented
core components to form the infrastructure and host all the
functionality are:
• Semantic Repository for Services and Workflows
• Workflow Editor
• Semantic Web Service Creator
• Workflow Manager
Generic platform services are utilities which can be used

for generic purposes such as loading data structures with
different formats, e.g., Computer-Aided Engineering (CAE) and
Computer-Aided Design (CAD) data. On the other hand, vendor-
provided Web services introduce and wrap functionality for
specific software components of different complexity levels. The
services can encapsulate complex calculations and comparison
operators or even provide the interface to third-party systems
to perform complex calculations in HPC clusters. Semantic
Repository for Services and Workflows component hosts the
OWL-S descriptions of these services as well as workflows in
triple store format. As a requirement by the project, a Web-based
solution for easy integration of new services was necessary.
Tools which works with OWL-S did not provide either a Web
interface or were too complex for new users. Therefore, a
wrapper and interface for easy conversion between WSDL and
OWL-S is implemented. New services can be integrated with
the help of a graphical user interface starting with a technical
description of the service in WSDL. Using this description
and additional information added to forms, the services are
automatically converted into Semantic Web services, without
requiring specific knowledge of used complex Semantic Web
technologies, such as OWL and OWL-S. The service providers
are able to deploy the WSDL description of their Web services
via the Workflow Editor (WFE) component using the Web portal.
This component assists in the integration of Web services in the
Semantic Repository and creation of workflows. Unlike existing
tools that available for different technologies as mentioned by
Grolinger et. al. [28], the implemented WFE performs all tasks
without installation of any software on the end-user side and
targets all users with different knowledge in the domain. The
Semantic Web Service Creator uses the absolute URL to the
WSDL description of the service to generate the Semantic Web
service descriptions in OWL-S. Then it stores and registers
them in the Semantic Repository, including the inputs and

outputs of the services. In another context, this component
creates semantic workflow descriptions in OWL-S, based on
the XML meta-format introduced by the WFE and stores
the creator of the workflow along with their user group. A
partial and incomplete example of this meta-format is given
in Figure 10. The basic requirement for all saved services and
workflows are unique names which are created automatically
and a unique identifier of the user to set the ownership of a
workflow. This identifier, a session token, is retrieved using an
external identity service, OpenStack Keystone, therefore, no
usernames or passwords are stored in the semantic repository
[29]. The Semantic Repository is based on a central domain
model, formalized as an OWL ontology, that describes the
input and output types for the matchmaking process of the
services. Finally, the Workflow Manager (WFM) component
starts, manages, orchestrates, monitors workflows, and checks
permissions of the users for the execution. This component is
also responsible for passing the data between services.

<workflow URI="namespace/Workflow.owl#Name">
<input ID="input1"

URI="namespace/workflows/Workflow#extraParameters"
x="-6" y="527"/>

<input ID="input2" URI="namespace/workflows/Workflow#file"
x="53" y="623"/>

<input ID="input3"
URI="namespace/workflows/Workflow#sessionToken"
x="55" y="721"/>

<output ID="output1"
URI="namespace/workflows/Workflow#DistanceFile"
x="1535" y="783"/>

<services>
<sequence>
<service URI="namespace#CADFileService" x="387" y="43">
<input URI="namespace#buttonText"/>
<input URI="namespace#desc" value="Select"/>
<input URI="namespace#filter" value="pts"/>
<input ID="input3" URI="namespace#sessionToken"/>
<input ID="input1" URI="namespace#extraParameters"/>
<input URI="namespace#gssToken"/>
<input URI="namespace#header_base64"/>
<input URI="namespace#serviceID"/>
<output ID="p1_output1" URI="namespace#fileSelected"/>
<output ID="p1_output2" URI="namespace#status_base64"/>

</service>
<service>

...
</service>

</sequence>
</services>

</workflow>

Figure 10. Workflow description in the XML meta format.

An overview of the interaction of the core components
of the developed platform is given in Figure 11. The main
user interface of the developed platform is a Web portal,
and it translates user actions into core component specific
requests, e.g., during workflow design, workflow and service
execution, service monitoring, and result management. The
communication between the Web portal and the components
are performed using SOAP messages therefore these requests
are converted into this format according to the API. With
the graphical interface of the WFE, the user gets access to
the services stored in the Semantic Repository. Here, services
dedicated to experiments can be chained up to create dedicated
workflows, such as for the comparison of 3D models. Each
created workflow is also stored in the Semantic Repository and
can be found easily by simple properties. Determined by the

42

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



complexity, multiple workflows can be necessary to finalize and
perform the tasks needed for the whole experiment. In this case,
semantic descriptions can use workflows similar to a Semantic
Web service as “sub-workflows”. Similar to workflows, sub-
workflows are also stored in semantic repositories. Both of
them are comparable to Semantic Web services, and reusable.
Moreover, their descriptions are updated without causing any
fragmentation.

Figure 11. Overview of the interactions of the core components.

To store the experiments, the graphical contents of the
related workflows are transferred into a XML-based meta-
format. This format serves as input for the Semantic Web
Service Creator that generates the workflow descriptions in
OWL-S. The WFE is provided as a Web service which is
described in WSDL. Additionally, all methods that available in
its description are accessible through its graphical implemen-
tation. The graphical implementation of the WFE is currently
developed using PHP and JavaScript, but can completely be
written using another programming language. To allow that and
prevent language lock-in, the workflows can also be defined
using the defined meta-format. This format is also easy to
understand and sometimes preferable by experts for fine-tunings.
The purpose of graphical interface of the WFE is to provide a
full-featured yet simple user interface to translate visual actions
into this meta-format and then to prepare SOAP messages.
These messages are later sent to the service implementation of
the WFE.

The WFM component is used for the management and exe-
cution of individual predetermined workflows. In the execution
task, the component processes the individual workflows and
accordingly queries the listed services in the defined order.
If the service execution is completed and the answer of a
service is received, the next step in the workflow is activated.
The results of respective services are unified and added to a
single representation structure, which is passed at the end of
all processing steps back to the UI of the Web portal.

The WFM can execute the workflows designed following
any of the depicted types in Figure 7. For the cases b and d, the

next step is determined by a logical expression. These logical
expressions are defined during the workflow design. For user
friendliness, these expressions are adapted and simplified, and
can be one of greaterThan, greaterOrEqual, equalTo, lessThan,
or lessOrEqual.

An example of a graphical workflow is shown in Figure
12. Using the toolbar, one can append the services into the
workflow choosing a service to add and using append service to
workflow button. They can also add snippets for branching (if-
then-else), iteration (repeat-until), or parallel execution (split)
using the corresponding buttons.

Figure 12. The graphical workflow editor UI shows the scenario workflow.

The more the list of available services within the Semantic
Repository grows, the more difficult the user finds it to choose
the appropriate service for the workflow. To prevent this, the
WFE introduces different filtering mechanisms. The service list
has auto-complete functionality which allows searching as the
user types. Although this helps to find the service that the user
is looking for, it does not, however, provide the information
about the compatibility of this service. To solve this, the WFE
offers optional filtering method using the semantic information
of the services. During service integration into the Semantic
Repository, the users provide the acceptable types or file formats
for the inputs and outputs of the service. During workflow
design, when a service is appended into the workflow, the
service list is updated containing only the compatible ones. This
filtering has two modes which may suit for different situations.
Last service mode considers only the last service appended into
workflow and lists the services that are only compatible with
this one. This is an aggressive mode which is useful if there
are too many services registered in the Semantic Repository
and only fully compatible services are desired. Whole workflow
mode provides rather a moderate filter which also takes the
previously appended services into consideration during filtering.
To illustrate both modes, one can assume that there are several
services denoted as S registered in the Semantic Repository R
as:

∀S ∈ R = {A,B,C,D,E, F} (1)

where each S in R is compatible with the services written in
their indices listed in a compatibility list L:

L = {AB,C , BD, CD,E,F , DA,B , EF , FB,D} (2)

43

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



According to L, for example, AB,C is an integrated service
that is compatible with services B and C. If AB,C is appended
into the workflow as the first service, with the Last service
mode enabled, the list will be updated to display only BD and
CD,E,F . With this mode still on, when BD is appended, the list
will only display DA,B since this is the only compatible service
with BD. On the other hand, if Whole workflow mode is active
and AB,C is appended, similarly, BD and CD,E,F will be
listed. When BD is chosen from these two, the list will contain
DA,B as well as BD and CD,E,F since BD and CD,E,F were
compatible with AB,C which is an existing service inside the
workflow. To increase the compatibility of the services, the
input and output types of the services must be well defined
during the service integration. However, it might be the case
that a service with untested compatibility among other services
is desired for the next step. In this case, to list all services
regardless of their compatibilities, Reset Filtering button can
be used to disregard the relations. Similarly, the filtering can
also be disabled temporarily by unchecking Enable Filtering
button.

In addition to this two filtering modes, a history of recently
used services is also kept. This reduces the work of the user
during workflow creation by listing all used services during
the active session for quick access.

The execution order in WFE is represented by dashed arrows
inside WFE and the blue blocks are the individual workflow
steps. If a service is selected to be executed on HPC by the
user in the editing process, an HPC sub-workflow is used. In
the graphical editor interface this is marked as a green block.
This means that the WFM initiates the service execution in a
dedicated HPC server environment.

The structure of an HPC sub-workflow in turn consists of
a sequence of three tasks:

1) pre-processing task to generate the command to be
executed by HPC process,

2) HPC command task, which receives the command by user
interface and gives feedback to the user, and

3) post-processing task, which converts the output from the
HPC process into application specific output.

If the workflow is complex and consists of more services,
the service connections can be shown or hidden using the Show
service connections toggle.

For each workflow, the manager initiates execution proce-
dures and tracks the progress individually. As the user, who
created the workflow, and their group are stored in the semantic
repository during workflow creation, it is possible to prepare
a list of allowed users for the workflow execution. Therefore,
before starting a workflow, the WFM checks whether the user or
group has permission to run it to prevent unauthorized execution.
It also provides a monitoring functionality, which allows users
to leave the workflow anytime and return at later stage to
continue where they left off. This maximizes the benefits of
such a cloud-based platform, supporting access anytime and
from any desktop or mobile device with Internet access. If the
workflow does not need user input, the WFM is even able to
complete it automatically and display its results to the user at a
later time. The usability can be extended by including reusable
utility services such as an e-mail service which notifies the
user who ran the workflow at any step.

As explained in the previous sections, services of different
vendors can be used that are implemented by different pro-
gramming techniques and run within the cloud on different
application servers. Nevertheless, during the lifetime of a
workflow, the user does not need to know, where the services
are stored and how the data is forwarded to the next service.
The manager component retrieves the service descriptions and
performs the tasks without user notification and the complexity
of all associated services within a workflow remains hidden
from the user. Using the cloud-based approach, it is also
possible to include a service within a workflow which could
execute the services in an HPC cluster that reduces computation
times.

Based on their defined service types, synchronous or
asynchronous, services are differentiated and executed by the
execution engine of the WFM. The aforementioned service
for the pre- and post-processing tasks are implemented as
Synchronous Services, because they take just a few seconds to
execute. However, HPC command task must be implemented
as Asynchronous Service, since the duration of a Web service
execution cannot be predicted. The status of execution is
monitored and provided via a status method. This result is
provided to the user as HTML feedback and displayed on the
Web portal.

If a Web service provides an UI to interact, the service
must be implemented as an Asynchronous Web Application.
Services that belong to this category are implemented similar
to Asynchronous Services, but contrarily do not need to deliver
their status. This service type explicitly tells the WFM that the
task is completed. After receiving this notification, the WFM
performs the next step and gives feedback on the Web portal.

VI. CONCLUSION AND FUTURE WORK

This paper explained the concept and realization of a flexible
cloud-based infrastructure platform, which involves Semantic
Web technologies and tailored tools for the creation, execution,
and management of workflows and conducted services by
graphical user interface. The realized platform allows a seamless
integration and combination of engineering services, and a
controlled execution and monitoring of used resources. It
satisfies the requirements for the development and execution of
user-driven experiments defined as workflows, without requiring
detailed knowledge on High Performance Computing or other
underlying technologies.

The platform offers a Web portal that can be accessed via
standard Web browser, without the need of installing additional
software. New services can be integrated and orchestrated to
workflows with the help of graphical user interfaces. Starting
with a technical description of the service in WSDL and
using additional information added to forms, services are
automatically converted into Semantic Web services, without
requiring specific knowledge of used complex Semantic Web
technologies, such as OWL and OWL-S. With another graphical
user interface, the Workflow Editor, these integrated services
can be orchestrated within the meaning of the experiment
and stored as workflow descriptions in an platform-wide
accessible Semantic Repository. The component assists the
user by allowing search and filtering incompatible services
during workflow design. Another core component of the created
solution, the Workflow Manager, is used to execute, orchestrate,
and monitor the created workflows of the experiments. The

44

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



result of each conducted experiment is in turn delivered to
the user via the Web portal of the cloud-based infrastructure
platform.

Another advantage of this approach is the combination of
the created platform with high-performance servers. Complex
tasks can be outsourced to these servers and this results in
enormous time savings and allows the experts to carry out
more experiments with products, which was omitted due to the
complexity and the required computing power until now. Of
course, the possibility to conduct these experiments leads to
an enormous increase in expert knowledge.

In future, the Workflow Editor will be able to perform
automated dynamic workflow design. A dynamic workflow
formalizes an orchestration of services, supported by an
automated matchmaking process that provides adequate services
ordered by their confidence values, which is only possible using
Semantic Web technologies. Furthermore, the Workflow Editor
will be able to insert converter services into the workflow
automatically, just for adjustment of input and output types,
e.g., convert units of measurement and file formats.

ACKNOWLEDGMENTS

This research has received funding in part by the European
Union’s Horizon 2020 research and innovation program under
grant agreement No 680448 (CAxMan). And this work is
also based on preparatory work, which was funded in part by
the 7th Framework Program of the European Union, project
number 609100 (project CloudFlow). The responsibility for
this publication lies with the authors.

REFERENCES

[1] V. Gezer and S. Bergweiler, “Service and Workflow Engineering based
on Semantic Web Technologies,” in Tenth International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies
(UBICOMM 2016), International Academy, Research, and Industry
Association (IARIA). IARIA, 10 2016, pp. 152–157.

[2] T. Barton, “Cloud Computing,” in E-Business mit Cloud Computing.
Springer Fachmedien Wiesbaden, 2014, pp. 41–52.

[3] A. Ranabahu and A. Sheth, “Semantics Centric Solutions for Application
and Data Portability in Cloud Computing,” in Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International
Conference on, 2010, pp. 234–241.

[4] H. H. Holm, J. M. Hjelmervik, and V. Gezer, “CloudFlow - An
Infrastructure for Engineering Workflows in the Cloud.” in Tenth
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM 2016), International Academy,
Research, and Industry Association (IARIA). IARIA, 10 2016, pp.
158–165.

[5] R. Cyganiak, D. Wood, and M. Lanthaler, “Web Services Architecture,”
W3C Working Group Note, 2004, [retrieved: March 2017]. [Online].
Available: https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
“Web Services Description Language (WSDL) 1.1,” W3C, W3C
Note, March 2001, [retrieved: March 2017]. [Online]. Available:
http://www.w3.org/TR/wsdl

[7] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web
Services Description Language (WSDL) Version 2.0 Part 1: Core
Language,” W3C Recommendation, 2007, [retrieved: March 2017].
[Online]. Available: https://www.w3.org/TR/wsdl20/

[8] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, 2001, [retrieved: March 2017]. [Online]. Available:
http://www.jeckle.de/files/tblSW.pdf

[9] G. Klyne and J. J. Carroll, “Resource Description Framework
(RDF): Concepts and Abstract Syntax,” W3C Recommendation, 2004,
[retrieved: March 2017]. [Online]. Available: http://www.w3.org/TR/
2004/REC-rdf-concepts-20040210/

[10] P. Hitzler, M. Krötzsch, and S. Rudolph, Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, 2009.

[11] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts
and Abstract Syntax,” W3C Recommendation, 2004, [retrieved:
March 2017]. [Online]. Available: http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

[12] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, “OWL Web
Ontology Language Semantics and Abstract Syntax,” Feb. 2004,
[retrieved: March 2017]. [Online]. Available: http://www.w3.org/TR/
2004/REC-owl-semantics-20040210/

[13] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler, “Semantic
Web Architecture: Stack or Two Towers?” in Principles and Practice
of Semantic Web Reasoning, Third International Workshop, PPSWR
2005, Dagstuhl Castle, Germany, F. Fages and S. Soliman, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 37–41.

[14] D. Martin et al., “OWL-S: Semantic Markup for Web Services,”
2004, [retrieved: March 2017]. [Online]. Available: http://www.w3.org/
Submission/2004/SUBM-OWL-S-20041122/

[15] S. Bergweiler, “A Flexible Framework for Adaptive Knowledge Re-
trieval and Fusion for Kiosk Systems and Mobile Clients,” in Eighth
International Conference on Mobile Ubiquitous Computing, Systems,
Services and Technologies (UBICOMM 2014), International Academy,
Research, and Industry Association (IARIA). IARIA, 8 2014, pp.
164–171.

[16] M. Loskyll, I. Heck, J. Schlick, and M. Schwarz, “Context-based
orchestration for control of resource-efficient manufacturing processes,”
Future Internet, vol. 4, no. 3, 2012, pp. 737–761.

[17] C. Casanave, “Designing a Semantic Repository - Integrating
architectures for reuse and integration,” 2007, [retrieved: March
2017]. [Online]. Available: https://www.w3.org/2007/06/eGov-dc/papers/
SemanticRepository.pdf

[18] “Webster Database Definition,” [retrieved: March 2017]. [Online].
Available: http://www.merriam-webster.com/dictionary/database

[19] Ontotext, “GraphDB - Semantic Repository,” [retrieved: March 2017].
[Online]. Available: http://ontotext.com/knowledgehub/fundamentals/
semantic-repository

[20] Sesame Framework Contributors, “Sesame Java Framework,” [retrieved:
March 2017]. [Online]. Available: http://archive.rdf4j.org/users/ch01.html

[21] “Web Services Business Process Execution Language Version 2.0,”
OASIS Web Services Business Process Execution Language (WSBPEL)
Technical Commitee, 2007, [retrieved: March 2017]. [Online]. Available:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[22] S. Bansal, A. Bansal, G. Gupta, and M. B. Blake, “Generalized semantic
Web service composition,” Service Oriented Computing and Applications,
vol. 10, no. 2, 2016, pp. 111–133.

[23] D. Elenius et al., “The OWL-S editor - a development tool for semantic
web services,” in ESWC, 2005, pp. 78–92.

[24] S. Bergweiler, “Interactive service composition and query,” in Towards
the Internet of Services: The Theseus Program. Springer Berlin
Heidelberg, 2014, pp. 169–184.

[25] C. Stahl, E. Bellos, C. Altenhofen, and J. Hjelmervik, “Flexible Integra-
tion of Cloud-based Engineering Services using Semantic Technologies,”
in Industrial Technology (ICIT), 2015 IEEE International Conference
on, 2015, pp. 1520–1525.

[26] Stellba, “Comparing CAD Models with 3D Scanned Manufactured
Parts on the Cloud,” [retrieved: March 2017]. [Online]. Available:
{http://eu-cloudflow.eu/experiments/first-wave/experiment_6.html}

[27] C. Dyken et al., “A framework for OpenGL client-server rendering,” in
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th
International Conference, 2012, pp. 729–734.

[28] K. Grolinger, M. A. M. Capretz, A. Cunha, and S. Tazi, “Integration
of business process modeling and web services: a survey,” Service
Oriented Computing and Applications, vol. 8, no. 2, 2014, pp. 105–128.
[Online]. Available: http://dx.doi.org/10.1007/s11761-013-0138-2

[29] H. H. Holm, J. M. Hjelmervik, and V. Gezer, “CloudFlow - an
infrastructure for engineering workflows in the cloud,” in UBICOMM
2016: The Tenth International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies. IARIA, October
2016, pp. 158–165.

45

International Journal on Advances in Internet Technology, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/internet_technology/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


