
117

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DXNet: Scalable Messaging for Multi-Threaded
Java-Applications Processing Big Data in Clouds

Kevin Beineke, Stefan Nothaas and Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

E-Mail: [Kevin.Beineke,Stefan.Nothaas,Michael.Schoettner]@hhu.de

Abstract—Many big data and large-scale cloud applications are
written in Java or are built using Java-based frameworks.
Typically, application instances are running in a data center
on many virtual machines which requires scalable and effi-
cient network communication. In this paper, we present the
practical experience of designing an extensible Java network
subsystem, called DXNet, providing fast object de-/serialization,
automatic connection management and zero-copy messaging.
Additionally, we present a Java.nio-based transport for DXNet,
called EthDXNet, to efficiently utilize Ethernet networks. The
proposed design uses a zero-copy send and receive approach
for asynchronous messages and requests/responses. DXNet is
optimized for small messages (< 100 bytes) in order to sup-
port graph-based applications, but also works well with larger
messages (e.g., 8 MB). DXNet is available on GitHub, and its
modular design is open for different transport implementations
currently supporting Ethernet and InfiniBand. EthDXNet is based
on Java.nio socket channels complemented by application-level
flow control to achieve low latency and high throughput for 10
GBit/s and faster Ethernet networks. Furthermore, a scalable
automatic connection management and a low-overhead interest
handling provide efficient network communication for dozens of
servers, even for small messages (< 100 bytes) and an all-to-all
communication pattern. The evaluation with micro-benchmarks
and the Yahoo! Cloud Serving Benchmark (YCSB) shows the
efficiency and scalability with up to 64 virtual machines in the
Microsoft Azure cloud. Furthermore, DXNet achieves request-
response latencies sub 10 µs (round trip) including object de-
/serialization, as well as a maximum throughput of more than 9
GByte/s on a private cluster (using InfiniBand).

Keywords–Message passing; Ethernet networks; InfiniBand;
Java; Cloud computing.

I. INTRODUCTION

This paper is an extended version of the conference pa-
per "Scalable Messaging for Java-based Cloud Applications"
published at ICNS 2018 [1].

Big data processing is emerging in many application do-
mains of which many are developed in Java or are based
on Java frameworks [2][3][4]. Typically, these big data ap-
plications aggregate the resources of many virtual machines
in cloud data centers (on demand). For data exchange and
coordination of application instances, an efficient network
transport is essential. Fortunately, public cloud data centers
already provide 10 GBit/s Ethernet, 56 GBit/s InfiniBand and
faster.

Java applications have different options for exchanging
data between Java servers, ranging from high-level Remote

Method Invocation (RMI) [5] to low-level byte streams using
Java sockets [6] or the Message Passing Interface (MPI)
[7]. However, none of the mentioned possibilities offer high
performance messaging, elastic automatic connection manage-
ment, advanced multi-threaded message handling and object
serialization all together.

In this paper, we propose DXNet, a network messaging
system which addresses all of these requirements. DXNet
is a network library for Java-based applications which has
originally been designed for DXRAM [8] a distributed in-
memory key-value store and DXGraph [9] a graph processing
framework built on top of DXRAM. We provide DXNet as
a standalone library through GitHub [10] as we think it is
useful for many other Java-based big data applications. DXNet
is extensible by transport implementations to support different
network interconnects. In this paper, we also present the Eth-
ernet transport implementation for DXNet, called EthDXNet.
The Ethernet transport is based on Java.nio and provides
high throughput and low latency networking over Ethernet
connections.

The contributions of this paper are:

• the DXNet architecture (highly concurrent and trans-
port agnostic)

• zero-copy, parallel de-/serialization of Java objects

• lock-free, event-driven message handling

• scalable automatic connection management

• zero-copy approach for sending and receiving data
over socket channels

• efficient socket channel interest handling

• evaluations with 5 GBit/s Ethernet (with up to 64
VMs in the Microsoft Azure cloud) and 56 GBit/s
InfiniBand networks

The evaluation shows that DXNet efficiently handles high
loads with dozens of application threads concurrently sending
and receiving messages. Synchronous request/response pat-
terns can be processed in sub 10 µs Round-Trip Time (RTT)
with InfiniBand transport (including object de-/serialization).
Also, high throughput is achieved even with smaller payloads,
i.e., bandwidth saturation with 1-2 KB payload on InfiniBand
and 256-byte payload on Ethernet. Furthermore, the evaluation
shows that EthDXNet scales well while per-node message

118

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

throughput and request-response latency is constant from 2 to
64 nodes, even in an high-load all-to-all scenario (worst case).

The structure of the paper is as follows: after discussing
related work, we present an overview of DXNet in Section III.
In Section IV, we describe the lock-free Outgoing Ring Buffer
followed by the concurrent serialization in Section V. The next
section explains the event-driven processing of incoming data.
Section VII presents thread parking strategies. In Section VIII,
we describe the sending and receiving procedure of EthDXNet,
followed by a presentation of the connection management in
Section IX. Section X focuses on the flow control imple-
mentation and Section XI on the interest handling. Transport
implementations for InfiniBand and Loopback are described in
Section XII. Evaluation results are discussed in Section XIII,
followed by the conclusion.

II. RELATED WORK

In this section, we discuss related work for this paper.
DXNet combines high-level thread and connection manage-
ment and a concurrent object de-/serialization with lock-free,
event-driven message handling and zero-copy data transfer
over Ethernet and InfiniBand (extensible). To the best of our
knowledge, no other Java-based network library provides this
communication semantics. We compare DXNet with the most
relevant related work, only.

A. DSM

Distributed Shared Memory (DSM) is re-gaining attraction
due to fast networks supporting RDMA but is not an option
for most existing Java applications because it requires many
modifications within the Java Virtual Machine (JVM) and its
memory management [11]. Furthermore, despite all advantages
modern networks provide, DSM systems have limited scalabil-
ity because of their transparent implicit communication [12].

B. Java RMI

Java’s RMI [5] provides a high-level mechanism to trans-
parently invoke methods of objects on a remote machine,
similar to Remote Procedure Calls (RPC). Parameters are auto-
matically de-/serialized, and references result in a serialization
of the object itself and all reachable objects (transitive closure),
which can be costly [13]. Missing classes can be loaded from
remote servers during RMI calls which is very flexible but
introduces even more complexity and overhead. The built-in
serialization is known to be slow and not very space efficient
[13][14]. Furthermore, method calls are always blocking.

Manta [15] improves runtime costs of RMI by using a
native static compiler. KaRMI [16], a drop-in replacement
for Java RMI, is implemented in Java without any native
code supporting standard Ethernet. KaRMI also replaces Java’s
built-in serialization reducing overhead and improving overall
performance. DXNet does not provide transparent remote
method calls but an efficient parallel serialization which avoids
copying memory. DXNet is primarily designed for parallel
applications and high concurrency, RMI for Web applications
and services.

C. MPI

MPI is the state-of-the-art message passing standard for
parallel high-performance computing and provides very ef-
ficient message passing for primitive, derived, vector and
indexed data types [17]. As MPI’s official support is limited
to C, C++ and Fortran, Java object serialization is not consid-
ered by the standard. Nevertheless, MPI is available for Java
applications through implementations of the MPI standard in
Java [18] or wrappers of a native library [19].

MPI-2 introduced multi-threading for MPI processes [17]
enabling well-known advantages of threads. Prior to MPI-2,
intra-node parallelization demanded the execution of multiple
MPI processes (and the use of more expensive IPC). To enable
multi-threading, the process has to call MPI_init_thread
(instead of MPI_init) and to define the level of thread
support ranging from single-threaded execution over funneled
and serialized multi-threading to complete multi-threaded ex-
ecution (every thread may call MPI methods at any time).
A lot of effort has been put into the latter to provide a
high concurrent performance [20][21]. Still, the performance
is limited compared to a message passing service designed for
multi-threading [20].

One of DXNet’s main application domains are long
running applications with dynamic node addition and re-
moval (not limited to), e.g., distributed key-value stores
or graph storages. The MPI standard defines the re-
quired functionality for adding and removing processes (over
Berkeley Sockets with MPI_Comm_join or by calling
MPI_Open_port and MPI_Comm_accept on the server
and MPI_Comm_connect on the client). Unfortunately, most
recent MPI implementations are still not fully supporting
these features [22][23]. Furthermore, job shut down and crash
handling is also limited [23]. MPI is particularly suitable for
spawning jobs with finite runtime in a static environment.
DXNet, on the other hand, was designed for up- and down-
scaling and handling node failures. In [24], DXNet was used
in the in-memory key-value store DXRAM to examine crash
behavior and scalability.

D. Sockets

High level mechanisms for typical socket-like interfaces
supporting Gigabit Ethernet (and higher) are provided by
Java.nio [25][26], Java Fast Sockets (JFS) [27] or High Perfor-
mance Java Sockets [28]. DXNet uses Java.nio to implement
a transport for commonly used Ethernet networks.

1) Java.nio: The java.io and java.net libraries pro-
vide basic implementations for exchanging data via TCP/IP
and UDP sockets over Input- and OutputStreams [25][6].
To create a TCP/IP connection between two servers, a new
Socket is created and connection established to a remote
IP and port. On the other end, a ServerSocket must
be listening on given IP-port tuple creating a new socket
when accepting an incoming connection-creation request. The
connection creation must be acknowledged from both sides
and can be used to exchange byte arrays by reading/writing
from/to the socket hereafter. While this is sufficient for small
applications with a few connections, this basic approach lacks
several performance-critical optimizations [29] introduced with
Java.nio [25][26]. (1) Instead of byte arrays, the read/write

119

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Simplified DXNet Architecture.

methods of Java.nio use ByteBuffers, which provide ef-
ficient conversion methods for all primitive data types. (2)
ByteBuffers can be allocated outside of the Java heap allow-
ing system-level I/O operations on the data without copying
as the ByteBuffer is not subject to the garbage collection
outside of the Java heap. This relieves the garbage collector
as well as lowering the overhead with many buffers. (3)
SocketChannels and Selectors enable asynchronous,
non-blocking operations on stream-based sockets. With simple
Java sockets, user-level threads have to poll (a blocking oper-
ation) in order to read data from a socket. Furthermore, when
writing to a socket the thread blocks until the write operation
is finished, even if the socket is not ready. With Java.nio,
operation interests (like READ or WRITE) are registered on
a selector which selects operations when they are ready to be
executed. This enables efficient handling of many connections
with a single thread. The dedicated thread is required to call the
select method of the selector which is blocking if no socket
channel is ready or returns with the number of executable
operations. All available operations (e.g., sending/receiving
data) can be executed by the dedicated thread, afterward.

2) Java Fast Sockets: JFS is an efficient Java commu-
nication middleware for high-performance clusters [27]. It
provides the widely used socket API for a broad range of target
applications and is compatible with standard Java compilers
and VMs. JFS avoids primitive data type array serialization
(JFS does not include a serializer), reduces buffering and
unnecessary copies in the protocol and provides shared mem-
ory communication with an optimized transport protocol for
Ethernet. DXNet provides a highly concurrent serialization for
complex Java objects and primitive data types which avoids
copying/buffering.

III. DXNET

DXNet relieves programmers from connection manage-
ment, provides transferring Java objects (beyond plain Java.nio
stream sockets) and allows the integration of different underly-
ing network transports, currently supporting reliable verbs over
InfiniBand and TCP/IP over Ethernet. In this section, we give
a brief overview of the interfaces and functionality of DXNet
(see Figure 1). Further implementation details can be found in
the GitHub repository [10].

A. Basic Functionality

Automatic connection management. DXNet abstracts
physical network addresses, e.g., IP/Port for Ethernet or GUID

for InfiniBand, by using node IDs. The aforementioned node
address mappings are registered in the library and are mutable
for server up- and downscaling. A new connection is opened
automatically when a message needs to be sent to another
server which is not connected thus far. In case of errors, the
library will throw exceptions to be handled by the application.
Connections are closed based on a recently used strategy, if
the configurable connection limit is exceeded, or in case of
network errors which may be reported by the transport layer
or detected using timeouts, e.g., absent responses.

Sending messages. DXNet sends messages
asynchronously to one or multiple receivers but also provides
blocking requests (to one receiver) which return when the
corresponding response is received (DXNet transparently
manages the association of responses and requests). Messages
are Java objects and serialized by using DXNet’s fast and
concurrent serialization (providing default implementations for
most commonly used objects, see Section V). The serialization
writes directly into the Outgoing Ring Buffer (ORB) which
aggregates messages for high throughput (see Section IV)
and is allocated outside of the Java heap. Sending data is
performed by a decoupled transport thread based on event
signaling. DXNet also includes a flow control mechanism,
which is described in Section X.

Receiving messages. When incoming data is detected by
the network transport, it requests a pooled native memory
buffer and copies the data into the buffer (see Section VI
and Figure 1). By using a native memory buffer, we avoid
burdening the Java garbage collector. The term native is
described in Section IV-C. The buffer containing the received
data is then pushed to the Incoming Buffer Queue (IBQ),
a ring buffer storing references on buffers which are ready
to be deserialized (see Section VI). The buffer pool and the
IBQ are shared among all connections. The buffers of the
IBQ are pulled and processed asynchronously by dedicated
threads. Message processing includes parsing message headers,
creating the message objects and deserializing the payload
data. Finally, the received message is passed back to the
application (as a Java object) using a pre-registered callback
method.

A brief overview of DXNet’s API is shown in Table I.

B. High Throughput and Low Latency

A key objective of DXNet is to provide high throughput
and low latency messaging even for small messages found in
many graph applications, for instance. We achieve this with
a thread-based and event-driven architecture using lock-free
synchronization, zero-copy, and zero-allocation.

Multithreading. All processing steps like serialization,
deserialization, message transfer and processing are handled by
multiple threads which are decoupled through events allowing
high parallelism.

Lock-free event signaling. Dispatching processing events
between threads is implemented using lock-free synchroniza-
tion providing low-latency signaling. CPU load is managed
without impairing latency by parking currently idling threads
(described in Section VII).

120

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. DXNET’S APPLICATION INTERFACE

Method Description
new DXNet(config,nodeMap) initialize/configure (max. connections, server address mappings etc.)
MyMessage extends Message/Request/Response define message (serializable Java object) by implementing three methods

exportObject(exporter) serialize message with predefined methods from exporter
importObject(importer) deserialize message with predefined methods from importer
sizeOfObject() return payload length

sendMessage(message) send message asynchronously (receivers defined in message instance)
sendSync(request,timeout) send request/response synchronously
MyReceiver implements MessageReceiver receive messages/requests as Java objects

onIncomingMessage(message) pre-registered callback handler function

Fast serialization. DXNet implements fast serialization of
complex data structures and writes data directly into an ORB.
Many threads can access the ORB in parallel and ORBs are not
shared between different connections increasing concurrency
even more. The processing of incoming messages is also highly
scalable because of the event-driven architecture.

Zero copy. DXNet does not copy data for messaging
(except de-/serialization). For TCP/IP, we rely on Java’s Direct-
ByteBuffers and for InfiniBand on verbs pinning the buffers
used by DXNet.

Zero allocation. DXNet uses object pooling wherever
possible avoiding time-consuming instance creation and, even
more important, not burdening the Java garbage collector
which may block an application in case of low memory for up
to multiple seconds.

C. Network Transport Interface

DXNet supports different underlying reliable network
transports. The integration of a new transport protocol requires
implementing just five methods:

• signal data availability on connection (callback)

• pull data from ORB and send it

• push received data to IBQ

• setup a connection

• close a connection

Sections VIII to XI present an transport for Ethernet
networks.

IV. LOCK-FREE OUTGOING RING BUFFER

The Outgoing Ring Buffer (ORB) is a key component for
outgoing messages and essential for providing high throughput
and low latency. The latter is achieved by a highly concurrent
approach based on lock-free synchronization.

Each connection has one dedicated ORB allowing concur-
rent processing of different connections. The ORB itself allows
many application threads serializing their outgoing messages
concurrently and directly into the ORB. The ORBs are allo-
cated outside of the Java heap in native memory allowing zero-
copy sending by the network transport. Directly serializing
Java objects into the ORB is more efficient than serializing
each object in a separate buffer and combining them later
by copying these buffers. The ORB preserves message order

as given by the application threads and aggregates implicitly
multiple smaller messages in order to achieve high throughput.
We decided to use lock-free synchronization for concurrency
control which is more complex but highly efficient concerning
latency compared to locks.

A. Basic Lock-Free Approach

The ORB has a configurable but fixed size and is accessed
concurrently by several producers (application threads) and one
consumer (dedicated transport thread for sending messages).
The configurable buffer size limits the maximum number of
messages/bytes to be aggregated. For our experiments (see
Section XIII), we used 1 MB and 4 MB ORBs.

Figure 2 shows the ORB with three application threads
producing data (serialization cores). All pointers move forward
from left to right with a wraparound at the end. The white area
between FP and BP is free memory.

Messages available for sending (fully serialized) are de-
tected by the consumer (sending core) between BP and
FC . The consumer sends aggregated messages and moves
BP forward accordingly but not beyond FC . All messages
between FC and FP are not yet ready for sending as parallel
serialization is still in progress.

FP is moved forward concurrently (if the buffer has enough
space left) by the producers using a Compare-and-Set (CAS)
operation, available in Java through the Unsafe class (see
Section IV-C). Therewith, each producer can concurrently and
safely store the position of FP in a local variable F ′

P and adjust
FP by the size of the message to be sent. All F ′

P pointers
(thread-local variables) are used by the associated producer
for writing its serialization data concurrently at the correct
position in the ORB. The light-colored arrows in Figure 2
show the starting point of each serialization core (producer)
whereas the solid-colored ones show the current position. In
the example, the purple producer finished its serialization first,
and the green and orange producers are still serializing.

FC is moved forward by producers when messages are
fully serialized. In Figure 2, the purple producer finishes before
the orange and green ones but cannot set FC to FP because
the two preceding messages (from the other producers) have
not been completely serialized yet. Each producer can easily
detect unfinished preceding messages by comparing its starting
point (light-colored arrow) with FC . A naive solution lets
fast producers wait for slower ones (e.g., with wait-notify
semantics). As we do not want to impact latency, we cannot

121

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. ORB for parallel serialization and aggregating outgoing messages.
BP : next message to consume. FC : end of messages to consume.

FP : next free byte to produce. F ′
P : thread-local copy FP .

use locks/conditions here. An alternative solution is to busy-
poll until all preceding messages have been serialized which
stresses the CPU. A more sophisticated solution is presented
in the next section.

B. Optimized Lock-Free Solution

The basic solution already avoids the overhead of locks,
but with an increasing number of parallel serializations the
probability of threads having to wait for slower ones increases
(a thread might be slower because of less CPU time, for
instance, or simply because the message to serialize is larger).
The busy-polling can easily overload the CPU. Reducing the
polling frequency of producers by sleeping (≥ 1 ms) or parking
(≈ 10 µs) increases latency too much. Instead, we propose a
solution which avoids having fast producers waiting for slower
ones by leaving a note and returning early to the application.
This note includes the message size so that slower producers
can move FP forward for the faster ones that already left. But,
message ordering must be preserved.

Our solution is based on another configurable fixed-size
ring buffer called Catch-Up Buffer (CUB). As mentioned
before, we allocate one ORB for each connection which is
now complemented by one associated CUB (e.g., with 1000
entries) for every ORB. The CUB is implemented using an
integer array, each entry for one potential left-back note from
faster producers. An entry will be 0 if there is no note or > 0
representing the message size if a producer finished faster than
its predecessors. In the latter case, a slower producer will move
forward FP by the message size read from the CUB.

Figure 3 shows a CUB corresponding to the ORB shown
in Figure 2. The front pointer F is moved concurrently using
a CAS operation (similar to FP in the ORB). The colored F ′

are the thread-local copies needed by the producers to leave
back a potential note at the correct position in the CUB. The
64 is a note from the purple producer (message size of the
filled purple box in Figure 2) who finished fastest and returned
already to the application. The green and orange producers are
still working (0 = no note). If the green producer would now
finish before the orange one, it would also fill in its message
size and return immediately.

If the orange producer finishes next, it moves forward FC

in the ORB as well as B in the CUB (leaving no note). The
green one will do the same, but twice as it will detect the note
(64) after committing its serialization and, thus, move forward
FC in the ORB by 64 bytes and also B by one slot (now
pointing to F in the CUB, indicating we are done).

It is important that the order of entries in the ORB and
the CUB is consistent, meaning, we need to move forward F

Figure 3. Catch-Up Buffer (CUB). Allowing faster producers returning early
and not wasting CPU cycles for waiting. B: back pointer. F : front pointer.

F ′: thread-local copy of F .

and FP , as well as B and FC synchronously. We do this, by
storing each of those two indexes in one 64-bit long variable
in Java (e.g., F and FP are stored together in one long) and,
as the CAS operation works atomically on 64-bit longs, we
can avoid locks.

Two more challenges remain, namely large messages which
cannot be serialized at once and a potential ORB overflow
during the serialization (both discussed in Section V).

C. Native Memory

The ORB, amongst other data structures, is allocated in
native memory, i.e., it is located outside of the Java heap
in the virtual address space of the Java process. Therefore,
data structures stored in native memory are not managed by
the JVM (e.g., no garbage collection or type safety). But,
this does not pose a security risk for cloud applications as
memory access is still managed by the operating system. On
the other hand, using native memory allows the underlying
network transports to send messages without copying them,
for instance. The class Unsafe provides basic methods for
memory allocation, memory copy and reading/writing primi-
tives from/into native memory. Furthermore, Unsafe is very
fast because of extensive optimizations and is widely used in
third-party libraries [30].

We favor Unsafe over DirectByteBuffers [26] for two
reasons. First, access is faster (e.g., missing boundary checks
are already handled on a higher level). Second, Unsafe is
more versatile because it allows accessing memory which was
allocated in C/C++ code (e.g., used for InfiniBand).

V. SERIALIZATION

DXNet is designed to send and receive Java objects which
need to be de-/serialized from/into a byte stream of messages.
The built-in serialization of Java (interface Serializable)
as well as file-based solutions are too slow and have a large
memory footprint [31] (because of automatic un-/marshaling
and the use of separators). Other binary serializer like Kyro
[32], for instance, either do not support writing directly into
native memory or interruptible processing which is needed
by DXNet (see Sections V-A and V-B). We propose a new
serializer addressing all these limitations while still being
intuitive to use. The programmer has to implement two in-
terfaces Importable and Exportable. The former re-
quires implementing the method importObject, the latter
exportObject and both sizeOfObject.

122

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Message header.
Cat.: message, request or response; X: exclusive or not (ordering).

A. Export

Exporter. The serialization (or export) of Java objects re-
quires an exporter which is passed to the exportObject
method. The exporter class provides default method implemen-
tations for the serialization of all primitives, compact numbers
and Strings and can be extended for supporting custom types
(all types can also be arranged in arrays). Compact numbers
are coded integers using a variable number of bytes as needed
to reduce space overhead.

The exporter writes directly into the ORB by using Unsafe
(see Section IV). It stores the start position within the ORB, the
size of the ORB and the current position within the message.

Exporting an object involves two steps: exporting the mes-
sage header (see Figure 4) which has a fixed size and exporting
the variable-sized payload by calling the exportObject
method.

DXNet uses its default exporter for serialization
which is optimized for performance. It is complemented by
two other exporters (described below) for handling messages
which do not fit in the ORB without copying buffers.

Buffer overflow. If the end of the ORB will be reached
during the serialization of an object, DXNet switches to the
overflow exporter. The overflow exporter performs a
boundary check for each data item of an object and writes
bytes with a wrap-around to the beginning of the ORB, if
necessary. The resulting message is sent as two pieces over
the network stream avoiding copying data.

Large messages. Serialized objects resulting in messages
larger than the ORB must be written iteratively. First, the entire
unused section of the ORB (see Figure 2) is reserved and
filled with the first part of the message. If the back pointer is
reached, the export is interrupted and its current state is stored
in an unfinished operation instance to allow resuming
serialization as soon as there is free space in the ORB again.

Unfinished operation. The instance stores the interrupt
position within the message and the rest of the current opera-
tion. Depending on the operation, the rest is either a part of a
primitive which can be stored in a long within the unfinished
operation or an object with partly uninitialized fields whose
reference can be stored.

Resume serialization after an interrupt. To continue
the serialization, the exportObject method is called again
(threads return after being interrupted during serialization)
and all previously successfully executed export operations are
automatically skipped up to the position stored in the unfin-
ished operation. The rest of the object is serialized from there
(might be interrupted, again). For exporting large messages,
the large message exporter is used, which extends the
overflow exporter.

B. Import

All incoming messages are written into native memory
buffers taken from the incoming buffer pool and are pushed
to the IBQ (see Section VI). Each buffer contains received
bytes (one or several messages) from the connection stream.
The underlying network independently splits and aggregates
packets resulting in a buffer beginning and ending at any byte
within a message. DXNet is able to serialize split messages
without copying buffers.

The import works analogously to the export. Messages
are deserialized directly from native memory by using Un-
safe (message header and payload). The fast default
importer is complemented by three other importers (de-
scribed below) for handling split messages. This requires to
handle three situations: buffer overflow (tail of message/header
missing), buffer underflow (head of a message/header is miss-
ing) and both combined.

Buffer overflow. When the buffer’s end will be
reached before the message is complete, we switch to
the overflow importer. It does boundary checks and
uses the unfinished operation (see Section V-A) when
necessary. Furthermore, the serialization is aborted with
an IndexOutOfBoundsException handled by DXNet
avoiding returning invalid values for succeeding operations.

Buffer underflow. This situation occurs after a buffer
overflow (on the same stream). It is known apriori and handled
by the underflow importer, which uses the unfinished
operation instance (passed from the overflow importer) con-
taining all information necessary to continue deserialization.

Buffer under- and overflow. When a message’s head and
tail are missing (likely for large messages), the message is
handled by the underoverflow importer.

C. Resumable Import and Export Methods

Messages may be split caused by DXNet’s buffering or
the underlying network. In order to avoid copying buffers, we
require both import and export methods to be interruptible
and idempotent as they may be called multiple times for one
object (to avoid blocking threads, see Sections V-A and V-B).
DXNet’s importer and exporter methods are sufficient for most
object types and only custom object structures must be aware
of these requirements and avoid functions causing side effects
(e.g., I/O access).

VI. EVENT-DRIVEN PROCESSING OF INCOMING DATA

Figure 5 gives an overview of the parallel event-driven
processing of incoming data. Like for the ORB, we use multi-
threading, lock-free synchronization, zero-copy and zero-
allocation to provide high throughput and low latency.

Receiving process. The network transport pulls a buffer
from the incoming buffer pool when new data can be received
and fills it accordingly. The buffer is then pushed to the
IBQ and processed by the Message Creation Coordinator
thread (MCC) by deserializing the message headers. The
message headers are pushed to the message header store
afterward. Multiple message handler threads concurrently cre-
ate the message objects, deserialize the messages’ payloads

123

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Receiving and processing messages. Green: Native memory access.

and pass the received Java objects to the application using its
registered callback methods. When all data of a buffer has been
processed, it is released and pushed back into the incoming
buffer pool.

Incoming buffer pool. The buffer pool provides buffers,
allocated in native memory, in different configurable sizes
(e.g., 8 × 256 KB, 256 × 128 KB and 4096 × 16 KB). The
transport pulls buffers using a worst-fit strategy as the number
of bytes ready to be received on the stream is unknown.
The pool can also scale-up dynamically when running out of
buffers.

The buffer pool management consists of three lock-free
ring buffers optimized for access of one consumer and N
producers (similar to the ORB but without the CUB, see
Section IV).

A. Parallel Message Deserialization

The transport thread pushes filled buffers into the IBQ. The
IBQ is a basic ring buffer for one consumer and one producer
and is synchronized using memory fences. The IBQ may be
full and require the transport thread to park for a short moment
and retry (see Section VII).

High throughput requires parallel deserialization. As the
received messages of the incoming stream can be split over
several incoming buffers (see Section V-B), the buffer pro-
cessing must be in order and we need a two-staged approach
to enable concurrency. The MCC thread pulls the buffer entries
from the IBQ, deserializes all containing message headers
(using relevant state information stored in the corresponding
connection object) and pushes them into the message header
store. Message payload deserialization based on the message
headers can then be done in parallel by the message handler
threads. This approach is efficient as the time-consuming pay-
load deserialization and message object creation is parallelized.

The deserialization of split messages’ payload (last mes-
sage in the buffer, which is not complete) must be in order as
well because all preceding parts of a message must be available
to continue the deserialization of a split message. We address
this situation by the MCC detecting and deserializing not only
the header but the payload fraction within the current buffer,
as well, for the split message. The rest of the message in the
next buffer can be read by a message handler, again.

Split message headers are not an issue as deserialization of
message headers is always done by the MCC which can store

incomplete message headers within the connection object and
continue with the next buffer.

Message header store. As mentioned before, the MCC
pushes complete message headers to the message header store.
The latter is implemented as a lock-free ring buffer for N
consumers and one producer. Synchronization overhead is
reduced by the MCC buffering the small message headers and
pushing them in batches into the message header store. The
batch size is limited but configurable, e.g., 25 headers.

Message header pool. Message headers are pooled, as
well, in another single consumer, multiple producers lock-
free ring buffer. Furthermore, message headers are pushed
and pulled in batches. To reduce the probability of multiple
message handler threads returning message headers at the same
time, which increases latency because of collisions, the batch
sizes differ slightly for every message handler.

Returning of buffers. A pooled buffer must not be re-
turned before all its messages have been deserialized. Because
of the concurrent deserialization and split messages, we use
the MCC incrementing an atomic counter for every message
header pushed to the message header store (more precisely, the
counter is increased once for every batch of message headers).
Accordingly, the message handlers decrement the counter for
every deserialized message. When all messages have been
deserialized, the buffer can be safely returned to the pool.

We could run out of buffers during high throughput if
the MCC deserializes headers faster than the message handler
threads can handle. Although we can scale up the number
of incoming buffers, we prefer to throttle the MCC when a
predefined number of used buffers is exceeded to reduce the
memory consumption. Another benefit of limiting the number
of incoming buffers is that all buffer states like the message
counters, the buffers’ addresses or the unfinished operations
which are filled for incomplete messages can be allocated once
and reused for every incoming buffer to be processed.

Message Ordering. DXNet allows applications to mark
messages and thus ensure message ordering on a stream/con-
nection. All marked messages are guaranteed to be processed
(deserialized and executed) by the same message handler. All
other steps preserve message ordering by default. For achieving
maximum throughput, marking of messages should be used if
necessary, only.

VII. THREAD PARKING STRATEGIES

Lock-free programming allows low-latency synchroniza-
tion but can easily overload a CPU by uncontrolled polling
using CAS operations. DXNet implements a multi-level flow
control with explicit message flow regulation and implicit
throttling if memory pools drain and queues fill-up. We address
three thread situations: blocked (the thread waits for another
thread/server finishing its work because a pool is empty or
queue full), colliding (failing CAS operation because another
thread entered a critical section faster) and idling (the thread
has nothing to do and waits for another thread/server commit-
ting new work).

Blocked thread. When blocked, the thread can park to
reduce the CPU load because it was too fast executing its
work compared to other threads/servers. However, the thread

124

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Data structures and Threads. Details of the Interest Queue can be
found in Figure 8.

should not park for a long period to avoid restraining other
threads/servers. Experiments showed that a reasonable park
period is between 10 and 100 µs. Java allows minimum
parking times of around 10 to 30 µs for a thread with
LockSupport.parkNanos() for Linux servers with x86
CPUs.

Colliding thread. When colliding, the thread will repeat
the CAS operation with updated values until successful be-
cause the thread is about to commit something and this should
be done as fast as possible. However, reducing the collision
probability (e.g., the ORB optimization described in Section
IV-B) reliefs the CPU significantly.

Idling thread. This situation occurs, if a thread has nothing
to do at the moment, e.g., a transport thread polls an empty
ORB, the MCC polls an empty IBQ or a message handler polls
an empty message header store. However, new work events
can arrive within nanoseconds. Latency is minimized when
threads do not park or yield, but only as long as the CPU is
not overloaded. In the case of CPU overload situations, parking
threads can reduce latency.

We address this with an overprovisioning detection com-
bined with an adaptive parking approach (10 to 30 µs) if
the number of active threads (application threads and network
threads) reaches a threshold, e.g., four times the number of
cores, see also Section XIII-A for the evaluation.

Idling for longer periods, e.g., applications not exchanging
messages for a longer period, must be addressed, too. DXNet
detects this, e.g., a network thread idling for one second (con-
figurable time), and starts parking threads, if idling, reducing
CPU load to a minimum.

VIII. ETHDXNET - SENDING AND RECEIVING

In the following sections, we describe the Ethernet trans-
port of DXNet, called EthDXNet. An overview of the most im-
portant data structures and threads of EthDXNet are depicted
in Figure 6.

A. Sending of Data

To send messages, the DXNet API methods
sendMessage or sendSync are called by the application
threads (or message handler threads). In DXNet, messages are
always sent asynchronously, i.e., application threads might
return before the message is transferred. It is possible, though,
to wait for a response before returning to the application
(sendSync). After getting the ConnectionObject (a
Java object) from the Connection Manager, the message
is serialized into the ORB associated with the connection.
For performance reasons, many application threads can
serialize into the same or different ORBs in parallel (more
in Section IV). The actual message transfer is executed by
the SelectorThread, a dedicated daemon thread driving the
Java.nio back-end. Thus, after serializing the message into
the ORB, the application thread must signal data availability
for the corresponding connection. This is done by registering
a WRITE interest (see Table II) for given connection in the
Interest Queue (see Section XI). When ready, Java.nio’s
Selector wakes-up the SelectorThread (which is blocked in
the select method of the Selector) to execute the operation
and thus to transfer the message.

After returning from the select method, a SelectionKey
is available in the ready-set of the Selector. It contains the
operation interest WRITE, the socket channel and attach-
ment (the associated ConnectionObject). This SelectionKey
is dispatched based on the operation. In order to send the
message over the network, the SelectorThread pulls the data
block from the ORB of the corresponding connection and
calls the write method of the socket channel. From this
point, we cannot distinguish single messages anymore because
messages are naturally aggregated to data blocks in the ORBs,
which is a performance critical aspect. The write method is
repeatedly called until all bytes have been transferred or the
method returned with return value 0. The second case indicates
congestion on the network or the receiver and is best handled
by stopping the transfer and continue it later. After sending, the
back position (Bp, see Figure 2) of the ORB is moved by the
number of bytes transferred to free space for new messages
to send. Additionally, if the transfer was successful and the
ORB is empty afterward, the SelectionKey’s operation is set
to READ which is the preset operation and enables receiving
incoming data blocks. If the transfer failed, the connection
is closed (see Section IX). If the transfer was incomplete or
new data is available in the ORB, the SelectionKey is set
to READ | WRITE (combination of READ and WRITE by
using the bitwise or-operator) which triggers a new WRITE
operation when calling select the next time but also allows
receiving incoming messages. It is important to change the
SelectionKey to this state as keeping only the WRITE opera-
tion could result in a deadlock situation in which both ends try
to transfer data, but none of them can receive data on the same
connection. This causes the kernel socket receive buffers to
fill up on both sides preventing further data transfer.

The ORB is a ring buffer allocated in native memory
(outside of the Java heap). In order to pass a ByteBuffer
to the socket channel, which is required for data transfer,
we wrap a DirectByteBuffer onto the ORB and set the
ByteBuffer’s position to the front position in the ORB
and the limit to the back position. A DirectByteBuffer

125

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is a ByteBuffer whose underlying byte array is stored in
native memory and is not subject to garbage collection.
This enables native operations of the operating system
without copying the data first. The socket channel’s send and
receive operations are examples for those native operations,
thus, benefiting from the DirectByteBuffer. Java does not
support dynamically changing the address of a ByteBuffer.
Therefore, on initialization of the ORB, we allocate a new
DirectByteBuffer by calling allocateDirect of the
Java object ByteBuffer and use the underlying byte array
as the ORB. To do so, we need to determine the memory
address of the byte array, which can be obtained with
Buffer.class.getDeclaredField("address").
That is, during serialization the ORB is accessed with
Java.unsafe by reading/writing from/to the actual address
outside of the Java heap, but the socket channel accesses the
data by using the DirectByteBuffer’s reference (with adjusted
position and limit). We do not access the ORB by using the
DirectByteBuffer during serialization because of performance
and compatibility reasons.

Although this approach prevents copying the data to be
sent on user-level, the data is still copied from the ORB to
the kernel socket send buffer which is a necessity of the
stream-based socket approach. Therefore, correctly configur-
ing the kernel socket buffer sizes (one for sending and one
for receiving) has a significant impact on performance. We
empirically determined setting both buffer sizes to the ORBs’
size offers good performance without increasing the memory
consumption too much (typically the ORBs are between 1 and
4 MB depending on the application use case).

B. Receiving of Data

Receiving messages is always initiated by Java.nio’s Se-
lector which detects incoming data availability on socket
channels. When a socket channel is ready to be read from,
the SelectorThread selects the SelectionKey and dispatches the
READ operation. Next, the SelectorThread reads repeatedly
by calling the read operation on the socket channel until
there is nothing more to read or the buffer is full. If reading
from the socket channel failed, the socket channel is closed.
Otherwise, the ByteBuffer with the received data is flipped
(limit = position, position = 0) and pushed to the IBQ (see
Figure 1). The buffer processing is explained in Section VI.

In order to read from a socket channel, a ByteBuffer is
required to write the incoming data into. Continually allocating
new ByteBuffers would decrease the performance drastically.
Therefore, we implemented a buffer pool. The buffer pool pro-
vides DirectByteBuffers in different configurable sizes (e.g.,
8 × 256 KB, 256 × 128 KB and 4096 × 16 KB). The Selec-
torThread pulls them using a worst-fit strategy as the number
of bytes ready to be received on the stream is unknown. It
can also scale-up dynamically, if necessary. The buffer pool
management consists of three lock-free ring buffers optimized
for access of one consumer and N producers, see Section VI.

The pooled DirectByteBuffers are wrapped to provide the
ByteBuffer’s reference as well as the ByteBuffer’s address.
The reference is used for reading from the socket channel and
the address is necessary to deserialize the messages from the
ByteBuffer.

IX. AUTOMATIC CONNECTION MANAGEMENT

For sending and receiving messages, DXNet has to manage
all open connections and create/close connections on demand.
A connection is represented by an object (ConnectionObject),
containing a node ID to identify the connection based on the
destination, a PipeIn and a PipeOut. The PipeOut consists
mostly of an ORB, a socket channel and flow control for
outgoing data. The PipeIn contains a socket channel, flow
control for incoming data, has access to the buffer pool (shared
among all connections) and more data structures important to
buffer processing, which are not further discussed in this paper.

1) Connection Establishment: Connections are created in
two ways: (1) actively by creating a new connection to a
remote node or (2) passively by accepting a remote node’s
connection request. In both cases, the connection manager
must be updated to administrate the new connection. Figure
7 shows the procedure of creating a new connection (active
on the left side and passive on the right). The core part is the
TCP handshake, which can be seen in the middle.

Active connection creation: A connection is created ac-
tively if an application thread wants to send a message to
a not yet connected node. To establish the connection, the
application thread creates a new ConnectionObject (including
PipeIn and PipeOut and all its components), opens a new
socket channel and connects the socket channel to the re-
mote node’s IP and port. Afterwards, the application thread
registers a CONNECT operation, creates a ReentrantLock
and Condition and waits until the Condition is signaled
or the connection creation was aborted (using a lock here
is not a performance issue as connections are held open).
To correctly identify the corresponding ConnectionObject to
a socket channel, the ConnectionObject is attached to the
SelectionKey when registering the CONNECT interest and all
following interests.

The SelectorThread continues the connection establishment
by applying the CONNECT interest and selecting the socket
channel when the remote node accepted the connection or the
connection establishment failed. After selecting the Selection-
Key, the socket channel’s status is checked. If it is pending,
the connection creation was successful so far, and the socket
channel can be completed by calling finishConnect. If the
connection establishment was aborted, the application thread
is informed by setting a flag (which is checked periodically by
the application thread).

The remote node has to identify the new node currently
creating a connection. Thus, the node ID is sent to the
remote node using the newly created channel. Furthermore,
the SelectorThread marks the PipeOut as connected and signals
the condition so the application thread can continue. It adds
the connection to the connection manager, increments the
connection counter and starts sending data, afterward.

Passive connection creation: For accepting and creating
an incoming connection, the Selector implicitly selects a Selec-
tionKey with ACCEPT operation interest which is processed by
the SelectorThread by calling accept on the socket channel.
This creates a new socket channel and acknowledges the
connection. Afterward, the interest READ is registered in order
to receive the node ID of the remote node. After selecting and

126

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Connection Creation

dispatching the interest, the node ID is read by using the socket
channel’s read method.

At this point, the socket channel is ready for sending
and receiving data, but the connection object has yet to be
created and pushed to the connection manager. This process is
rather time-consuming and might be blocked if an application
thread creates a connection to the same node at the same
time (connection duplication is discussed in Section IX-2).
Therefore, the SelectorThread creates a job for creating the
connection and forwards it to the ConnectionCreationHelper
thread. Additionally, the interest is set to NO-OP (0) to avoid
receiving data before the connection setup is finished and the
connection is attached to the SelectionKey.

The ConnectionCreationHelper polls the job queue period-
ically. There are two types of jobs: (1) a connection creation
job and (2) a connection shutdown job. The latter is explained
in Section IX-3. When pulling a connection creation job,
the ConnectionCreationHelper creates a new ConnectionObject
(including the pipes, ORB, FC, etc.) and registers a READ
interest with the new ConnectionObject attached. Furthermore,
the PipeIn is marked as connected.

To be able to accept incoming connection requests, every
node must open a ServerSocketChannel, bind it to a
well-known port and register the ACCEPT interest. Further-
more, for selecting socket channels, a Selector has to be
created and opened.

2) Connection Duplication: It is crucial to avoid connec-
tion duplication which occurs if two nodes create a connection
to each other simultaneously. In this case, the nodes might
use different connections to send and receive data which
corrupts the message ordering and flow control. There are two
approaches for resolving this problem: (1) detecting connection
duplication during/after the connection establishment and (2)
avoiding connection duplication by using two separate socket
channels for sending and receiving.

Solution 1: Detect and resolve connection duplication
by keeping one connection open and closing the other one.
Apparently, the other node must decide consistently which

can be done by considering the node IDs (e.g., always keep
the connection created by the node with higher node ID).
One downside of this approach is the complex connection
shutdown. It must ensure that all data appended to the ORB of
the closing connection, to be sent over the closing connection,
has already been sent and received. Furthermore, message
ordering cannot be guaranteed until the connection duplication
situation is resolved.

Solution 2: Avoid connection duplication by using two
socket channels per connection: one for sending and one
for receiving (implemented in EthDXNet). Thus, simultane-
ous connection creation leads to one ConnectionObject with
opened PipeIn and PipeOut (one socket channel, each) whereas
a single connection creation opens either the PipeOut (active)
or PipeIn (passive). This approach requires additional memory
for the second socket channel, Java.nio’s Selector has more
socket channels to manage and connection setup is required
from both ends. The additional memory required for the
second socket channel is negligible as the kernel socket buffers
are configured to use a little socket receive buffer for the
outgoing socket channel and a little socket send buffer for
the incoming socket channel. The second TCP handshake (for
connection creation, both sides need to open and connect a
socket channel) is also not a problem as both socket channels
can be created simultaneously and for a long-running big
data application connections among application instances are
typically kept over the entire runtime. Finally, the overhead
for Java.nio’s Selector is difficult to measure but is certainly
not the bottleneck taking into account the limitations of the
underlying network latency and throughput. Sending out-of-
band (OOB) data is possible by utilizing the unused back-
channel of every socket channel. We use this for sending
flow control data in EthDXNet (see Section X).

3) Connection Shutdown: Connections are closed on three
occasions: (1) if a write or read access to a socket channel
failed, (2) if a new connection is to be created, but the config-
urable connection limit is reached or (3) on node shutdown.
In the first case, the SelectorThread directly shuts down the
connection. In the second case, the application thread registers
a CLOSE interest to let the SelectorThread close the connection

127

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

asynchronously. On application shutdown, all connections are
closed by one Shutdown Hook thread.

To shut down a connection, first, the outgoing and incoming
socket channels are removed from the Selector by canceling
the SelectionKeys representing a socket channel’s registration.
Then, the socket channels are closed by calling the socket
channels’ close method. At last, the connection is removed
from the connection manager by creating a shutdown job
handled by the ConnectionCreationHelper (case (1)) or directly
removing it when returning to the connection management
(cases (2) and (3)). The ConnectionCreationHelper also trig-
gers a ConnectionLostEvent, which is dispatched to the
application for further handling (e.g., node recovery).

When dismissing a connection (case (2)), directly shutting
down a connection might lead to data loss. Therefore, the
connection is closed gracefully by waiting for all outstanding
data (in the connection’s ORB) to be sent. Priorly, the con-
nection is removed from connection management to prevent
further filling of the ORB. Afterward, a CLOSE interest is
registered to close the socket channels asynchronously. The
SelectorThread does not shut down the socket channels on
the first opportunity but postpones shutdown for at least two
RTT timeouts to ensure all responses are received for still
outstanding requests.

X. FLOW CONTROL

DXNet implements a flow control (FC) protocol to avoid
flooding a remote node with messages. This would result in an
increased overall latency and lower throughput if the remote
node cannot keep up with processing incoming messages.
When sending messages, the per-connection dedicated FC
checks if a configurable threshold is exceeded. This threshold
describes the number of bytes sent by the current node but
not fully processed by the receiving node. The receiving
node counts the number of bytes received and sends a con-
firmation back to the source node in regular intervals. Once
the sender receives this confirmation, the number of bytes sent
but not processed is reduced. If an application send thread was
previously blocked due to exceeding this threshold, it can now
continue with processing the message.

EthDXNet uses the Transmission Control Protocol (TCP)
which already implements a flow control mechanism on pro-
tocol layer. Still, DXNet’s flow control is beneficial when
using TCP. If the application on the receiver cannot read and
process the data fast enough, the sender’s TCP flow control
window, the maximum amount of data to be sent before data
receipt has to be acknowledged by the receiver, is reduced.
The decision is based on the utilization of the corresponding
kernel socket receive buffer. In DXNet, reading incoming
data from kernel socket receive buffers is decoupled from
processing the included messages, i.e., many incoming buffers
could be stored in the IBQ to be processed by another thread.
Thus, the kernel socket receive buffers’ utilizations do not
necessarily indicate the load on the receiver leading to delayed
or imprecise decisions by TCP’s flow control.

This section focuses on the implementation of the flow
control in EthDXNet. Flow control data has to be sent with
high priority to avoid unintentional slow-downs and fluctua-
tions regarding throughput and latency. Sending flow control

data in-band, i.e., with a special message appended to the
data stream, is not an option because the delay would be too
high. TCP offers the possibility to send urgent data, which
is a single byte inlined in the data stream and sent as soon
as possible. Furthermore, urgent data is always sent, even if
the kernel socket receive buffer on the receiver is full. To
distinguish urgent data from the current stream (urgent data
can be at any position within a message as the transfer is
not message-aligned), a dedicated flag within the TCP header
needs to be checked. This flag indicates if the first byte of the
packet is urgent data. Unfortunately, Java.nio does not provide
methods for handling incoming TCP urgent data.

We solve this problem by using both unused back-
channels of every socket channel which are available because
of the double-channel connection approach in EthDXNet.
Thus, the incoming stream of the outgoing socket channel and
the outgoing stream of the incoming socket channel of every
connection are used for sending/receiving flow control data.

Sending flow control data: When receiving messages,
a counter is incremented by the number of received bytes
for every incoming buffer. If the counter exceeds a con-
figurable threshold (e.g., 60% of the flow control window),
a WRITE_FC interest is registered. This interest is applied,
selected and dispatched like any other WRITE interest. But,
instead of using the socket channel of the PipeOut, the PipeIn
is used to send the flow control data. The flow control
data consists of one byte containing the number of reached
thresholds (typically 1). If the threshold is smaller than 50%,
for example, 30%, it is possible that between registering the
WRITE_FC interest and sending the flow control data, the
threshold has been exceeded again. For example, if the current
counter is at 70% of the windows size which is more than two
thresholds of 30%. In this case 2 * 30% = 60% is confirmed
by sending the value 2. After sending flow control data, the
SelectionKey is reset to READ to enable receiving messages
on this socket channel, again.

Receiving flow control data: To be able to receive flow
control data, the socket channel of the PipeOut must be
readable (register READ). If flow control data is available
to be received, the socket channel is selected by the Selector,
and the SelectorThread reads the single byte from the socket
channel of the PipeOut. When processing serialized messages
on the sender, a counter is incremented. Application threads
which want to send further messages if the counter reached
the limit (i.e., the flow control window is full) are blocked
until the receiver acknowledges message receipt. The read flow
control value is used to decrement the counter to re-enable
sending messages. Usually, the limit is never reached as the
flow control data is received before (if the threshold on the
receiver is low enough).

In Section VIII-A, we discussed the end-to-end situation of
both nodes sending data to each other, but never reading (if the
SelectionKey’s operation stays at WRITE) causing a deadlock.
This situation cannot occur with two socket channels per
connection as reading and writing are handled independently.
But, a similar situation is possible where two nodes send data
to each other, but flow control data is not read for a while.
This does not cause a deadlock but decreases performance.
By setting the interest to READ | WRITE, flow control data is
read from time to time ensuring contiguous high throughput.

128

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. JAVA.NIO INTERESTS

Interest Description
OP_READ channel is ready to read incoming data
OP_WRITE set if data is available to be sent
OP_CONNECT set to open connection
OP_ACCEPT a connect request arrived
NO-OP do nothing

TABLE III. ETHDXNET INTERESTS

Interest Description (refers to attached connection)
CONNECT set OP_CONNECT for outgoing channel
READ_FC set OP_READ for outgoing channel
READ set OP_READ for incoming channel
WRITE_FC set OP_WRITE for incoming channel
WRITE set OP_WRITE for outgoing channel
CLOSE shutdown both socket channels

XI. EFFICIENT MANAGEMENT OF OPERATION INTERESTS

Operation interests are an important concept in Java.nio
and are registered in the Selector to create and accept a new
connection, to write data or to enable receiving data. The
operation interests are complemented by the ConnectionObject
(as an attachment) and the socket channel stored together in
a SelectionKey. As soon as the socket channel is ready for
any registered operation, the Selector adds the corresponding
SelectionKey to a ready-set and wakes-up the SelectorThread
waiting in the select method. If the SelectorThread is
not waiting in the select method, the next select call will
return immediately. The SelectorThread can then process all
SelectionKeys.

A. Types of Operations Interests

The operation interests can be classified into two cate-
gories: explicit operation interests and implicit operation
interests. Implicit operations are registered as presets after
socket channel creation and after executing explicit operations.
For example, a READ interest is registered for a socket channel
if data is expected to arrive on this socket channel. The
operation is then selected implicitly by the Selector whenever
data is available to be received. Another example is the
ServerSocketChannel which implicitly accepts new incoming
connection requests if the ACCEPT interest has been registered
before. Explicit operations are single operations which need to
be triggered explicitly by the application. For example, when
the application wants to send a message, the application thread
registers a WRITE interest. When the socket channel is ready,
the data is sent and the socket channel is set to the preset (in
our case READ). It is not forbidden by Java.nio to keep explicit
operations registered. But, as a consequence, the operations are
always selected (every time select is called) which increases
CPU load and latency. Therefore, in EthDXNet, every explicit
operation is finished by registering an implicit operation.

The set of Java.nio operation interests is extended
by EthDXNet to support flow control and to enable
closing connections asynchronously. Table II shows all
interests specified by Java.nio and Table III lists all inter-

Figure 8. Interest Queue: the application threads add new interests to the
Interest Queue. If interest was 0 before, the ConnectionObject is added to an

ArrayList.

ests used in EthDXNet. The interests READ, WRITE and
CONNECT are directly mapped onto OP_READ, OP_WRITE
and OP_CONNECT. OP_ACCEPT is registered and se-
lected by the Selector and must not be registered explicitly.
READ_FC and WRITE_FC are used to register OP_READ
and OP_WRITE interests for the back-channel used by the
flow control. The interest CLOSE does not have a counterpart
because the method close can be called explicitly on the
socket channel.

B. Interest Queue

None of the interests in Table III are registered directly
to the Selector because only the SelectorThread is allowed
to add and modify SelectionKeys. This is enforced by the
Java.nio implementation which blocks all register calls when
the SelectorThread is waiting in the select method. This
obstructs the typical asynchronous application flow and can
even result in a deadlock if the Selector does not have implicit
operations to select. This problem can be avoided by always
waking-up the SelectorThread before registering the operation
interest and synchronizing the register and select calls. How-
ever, this workaround results in rather high overhead and a
complicated workflow. Instead, we address this problem with
an Interest Queue (see Figure 8) and register all interests
in one bulk operation executed by the SelectorThread before
calling select. This approach provides several benefits while
solving the above problem: first, the application threads
can return quickly after putting the operation interest into
the queue and even faster (without any locking) when the
interest was already registered (which is likely under high
load). Second, the operation interests can be combined
and put in a semantic order (e.g., CONNECT before WRITE)
before registering (a rather expensive method call). Finally,
the operation interest-set can be easily extended, e.g., by a
CLOSE operation interest to asynchronously shut down socket
channels.

Figure 8 shows the Interest Queue consisting of a byte array
storing the operation interests of all connections (left side in
Figure 8) and an ArrayList of ConnectionObjects containing
connections with new operation interests sorted by time of
occurrence (right side in Figure 8).

The byte array has one entry per node ID providing access

129

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

time in O(1). In DXNet, the node ID range is limited to
216 (allowing max. 65,536 nodes per application). Thus, the
operation interests of all connections can be stored in a 64-
KB byte array. An array entry is not zero if at least one
operation interest was added for given connection to the
associated node ID. Operation interests are combined with
the bitwise or-operator to avoid overwriting any interest. By
combining operation interests, the ordering of the interests for
a single connection is lost. But, this is not a problem because
a semantic ordering can be applied later when processing the
interests.

The ordering within the interests of one connection can be
reconstructed but not the ordering across different connections.
Therefore, whenever an interest is added to a non-zero entry
of the byte array, the corresponding ConnectionObject is ap-
pended to an ArrayList. The order of operation interests is then
ensured by processing the interest entries in the ArrayList in
ascending order. The ArrayList also allows the SelectorThread
to iterate only relevant entries and not all 216.

Processing operation interests: The processing is initiated
either by the Selector implicitly waking up the SelectorThread
if data is available to be read or an application thread explicitly
waking up the SelectorThread if data is available to be sent. As
waking-up the SelectorThread is a rather expensive operation
(a synchronized native method call), it is essential to call it
if necessary, only. Therefore, the SelectorThread is woken-up
after adding the first operation interest to the Interest Queue
across all connections (the ArrayList is empty after processing
the operation interests), only. If the SelectorThread is currently
blocked in the select call, it returns immediately and can
process the pending operation interests.

Figure 9 shows the basic processing flow of the Selec-
torThread. The first step in every iteration is to register all
operation interests collected in the ArrayList of the Interest
Queue. The SelectorThread gets the destination node ID from
the ConnectionObject and the interests from the byte array.
Operation interests are registered to the Selector in the follow-
ing order:

1) CONNECT: register SelectionKey OP_CONNECT with
given connection attached to an outgoing channel.

2) READ_FC: register SelectionKey OP_READ with given
connection attached to an outgoing channel.

3) READ: register SelectionKey OP_READ with given con-
nection attached to an incoming channel.

4) WRITE_FC: change SelectionKey of an incoming chan-
nel to OP_WRITE if it is not OP_READ | OP_WRITE.

5) WRITE: change SelectionKey of an outgoing channel to
OP_WRITE if it is not OP_READ | OP_WRITE.

6) CLOSE: keep interest in queue for delay or close con-
nection (see Section IX-3).

The order is based on following rules: (1) a connection must
be established before sending/receiving data, (2) setting the
preset READ is done after connection creation, only, (3) all
READ and WRITE accesses must be finished before shutting
down the connection and (4) the flow control operations have
a higher priority than normal READ and WRITE operations.
Furthermore, re-opening a connection cannot be done before
the connection is closed and closing a connection is only pos-
sible if the connection has been established before. Therefore

1 while (!closed) {
2 processInterests();
3

4 if (Selector.select() > 0) {
5 for (SelectionKey key :

Selector.selectedKeys()) {
6 // Dispatch key
7 if (key.isValid()) {
8 if (key.isAcceptable()) {
9 accept();

10 } else if (key.isConnectable()) {
11 connect();
12 } else if (key.isReadable()) {
13 read();
14 } else if (key.isWritable()) {
15 write();
16 }
17 }
18 }
19 }
20 }

Figure 9. Workflow of SelectorThread.

it is not possible to register CONNECT and CLOSE together.

Finally, the processing of registered operation interests
includes resetting the operation interest in the byte array and
removing the ConnectionObject from the ArrayList.

XII. OTHER TRANSPORT IMPLEMENTATIONS

DXNet has an open architecture supporting different net-
work transport technologies. Currently, we have transport im-
plementations for TCP/IP over Ethernet (described in Section
VIII), reliable verbs over Infiniband (using native verbs over
JNI), and Loopback (baseline for evaluation). We only sketch
some important aspects of the InfiniBand transport here, as it
will be published separately.

The InfiniBand transport accesses the IBDXNet library
(C++) using JNI. IBDXNet utilizes ibverbs to implement direct
communication using the InfiniBand HCA. IBDXNet uses
one dedicated send and one dedicated receive thread, both
processing outgoing/incoming data in native memory. Context
switching from C++ to Java was designed carefully and is
highly optimized to avoid latency.

The Loopback transport is used for the experiments in
this paper allowing to study the performance of DXNet without
any bottlenecks from a real network. Data is not sent over a
network device nor the operating system’s loopback device
(latency would be considerably high) but is directly copied
from the ORB to a pooled incoming buffer. Furthermore, the
Loopback transport simulates a server sending and receiving
messages at highest possible throughput allowing to evaluate
DXNet’s performance.

XIII. EVALUATION

We evaluate the proposed concepts using DXNet’s Loop-
back transport and three different networks: 1 GBit/s Ethernet,
5 GBit/s Ethernet (a shared 10 GBit/s Ethernet connection)
and 56 GBit/s InfiniBand. The Loopback is used to evaluate

130

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

500

1000

1500

2000

2500

3000

 1 4 16 64 256 1024 4096 16384
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

P
ro

ce
ss

in
g

 T
im

e
 p

e
r

M
e
ss

a
g

e
 [

n
s]

T
h
ro

u
g

h
p

u
t

[M
B

/s
]

Message Size

Processing Time
Throughput

Figure 10. 107 Messages, 1 App. Thread, 4 Message Handlers.

0

1000

2000

3000

4000

5000

6000

7000

 1 2 4 8 16 32 64 128

P
ro

ce
ss

in
g

 T
im

e
 p

e
r

M
e
ss

a
g

e
 [

n
s]

Number of Application Threads

1 Handler
2 Handlers
4 Handlers
8 Handlers

16 Handlers
32 Handlers
64 Handlers

128 Handlers

Figure 11. 107 Messages, 1024 Bytes Payload.

DXNet’s concepts without any limitations of an underly-
ing network. The Ethernet networks are used to evaluate
EthDXNet.

Loopback and 5 GBit/s Ethernet tests were run in Mi-
crosoft’s Azure cloud in Germany Central with up to 65 virtual
machines (64 running the benchmark and one for deployment)
from the type Standard_DS13_v2 which are memory opti-
mized servers with 8 cores (Intel Xeon E5-2673), 56 GB RAM
and shared 10 GBit/s Ethernet connectivity (two instances per
connect). We deployed a custom Ubuntu 14.04 image with a
4.4.0-59 kernel and Java 8. In order to manage the servers, we
created two identical scale-sets (as one scale-set is limited to
40 VMs). The tests with 1 GBit/s Ethernet and InfiniBand were
executed on our private cluster servers with 64 GB RAM, Intel
Xeon E5-1650 CPU and Ubuntu 16.04 with kernel 4.4.0-64.

We use a set of micro-benchmarks for the evaluation send-
ing messages or requests of variable size with a configurable
number of application threads. All throughput measurements
refer to the payload size which is considerably smaller than the
full message size, e.g., a 64-byte payload results in 115 bytes
to be sent on IP layer when using Ethernet. Additionally, all
runs with DXNet’s benchmarks are full-duplex showing the
aggregated performance for concurrently sending and receiving
messages/requests.

A. Loopback Transport

As mentioned before, we want to evaluate the efficiency of
DXNet’s concepts without any network limitations. Figure 10
shows message processing times and throughputs for different

1

10

100

1000

10000

100000

 1 2 4 8 16 32 64 128

R
e
q

u
e
st

-R
e
sp

o
n
se

 L
a
te

n
cy

 [
µ

s]

Number of Application Threads

Average
95th Percentile
99th Percentile

99.9th Percentile

Figure 12. 106 Requests, 2 Message Handlers, 1 Byte Payload.

message sizes when using the Loopback transport on a typical
cloud server (Standard_DS13_v2). Messages up to 2 KB can
be processed in around 500 ns. Larger messages require
increasing processing times, as expected. The throughput in-
creases linearly with the message size up to 8 KB messages
and is capped at around 14 GByte/s aggregated throughput for
sending and receiving of larger messages. The Linux tool mbw
determined a memory bandwidth of 7.19 GByte/s for a 16 GB
array and 16 KB block for the used servers which explains
the maximum throughput (saturation of the available memory
bandwidth).

In Figure 10, we studied messages with up to 16 KB
payload size as DXNet is primarily designed to perform well
with small messages. We also tested larger messages (larger
than the ORB, configured with 4 MB here) and measured
a message throughput of around 5.4 GByte/s with 8 MB
messages. The throughput is lower as application threads and
transport thread work sequentially for larger messages (see
Section V-A). However, if the application needs to handle large
messages often, throughput can easily be improved by using
a larger ORB.

DXNet is designed to efficiently support concurrent ap-
plication threads sending and receiving messages in parallel.
Figure 11 shows that the processing time for 1 KB messages
is stable from one to 64 and only slightly increases with
128 application threads. Additionally, Figure 11 shows the
performance with a varying number of message handlers
peaking with two to four. Obviously, 128 application threads
and 128 message handlers overstress the CPU (8 cores) signif-
icantly. The results for all other constellations are as expected
showing DXNet’s capability to efficiently handle hundreds of
concurrent threads.

We also evaluated request-response latency by measuring
the RTT, which includes sending a request, receiving the
request, sending the corresponding response and receiving the
response. Figure 12 shows the latency for small requests with
an increasing number of application threads. The average RTT
with one and two application threads is under 5 µs. With up
to eight threads the RTT increases slower than the number of
threads because requests can be aggregated for sending. With
more threads, the increase rate is higher.

Figure 13 shows the breakdown of request-response latency
for one and four application threads and 1024-byte requests.

131

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Breakdown of Request-Response Latency for 1024-byte Requests. One application thread (on top) and four (at the bottom). Grey bars indicate
inter-thread communication.

0

2000

4000

6000

8000

10000

 1 2 4 8 16 32 64 128
 0

 500

 1000

 1500

 2000

 2500

 3000

P
ro

ce
ss

in
g

 T
im

e
 p

e
r

M
e
ss

a
g

e
 [

n
s]

R
e
q

u
e
st

-R
e
sp

o
n
se

 L
a
te

n
cy

 [
µ

s]

Number of Application Threads

Normal: Processing Time
Normal: Latency

Optimized: Processing Time
Optimized: Latency

Figure 14. 107 Message or 106 Requests, 2 Message Handlers, 1 Byte
Payload.

This is a best-effort approximation as time measurement
is costly and influences the processing. As expected de-
/serialization accounts for the majority of the RTT and dese-
rialization is slower than serialization because of the message
object allocation and creation. With more application threads
or asynchronous messages, all depicted steps are executed in
parallel.

Optimized Outgoing Ring Buffer. The benefits of the
Catch-Up Buffer, discussed in Section IV, can be seen in
Figure 14. Without the optimization, the message processing
time increases significantly with more than four application
threads sending messages (with 128 threads nearly 20 times
higher). Furthermore, the RTT diverges considerably with
more than 32 application threads as well.

Overprovisioning Detection. Figure 15 shows the impor-
tance of the thread parking strategy (see Section VII). The
RTT is 25 times higher when using one application thread
and always parking network threads. All three strategies match
with 32 threads and diverge a little with more threads. The
never park strategy is at a disadvantage with many threads
(128) and the RTT is around 100 µs higher than with the
adaptive approach.

The evaluation with Loopback transport shows the
high throughput and low latency of DXNet. Furthermore,
DXNet provides high stability when used with many
threads sending and receiving messages in parallel.

1

10

100

1000

 1 2 4 8 16 32 64 128

R
e
q

u
e
st

-R
e
sp

o
n
se

 L
a
te

n
cy

 [
µ

s]

Number of Application Threads

Never Park
Always Park

Detection

Figure 15. 106 Requests, 2 Message Handlers, 1 Byte Payload.

B. Comparing Network Transports

Figure 16 shows the message processing time and through-
put for all three network transports (Ethernet and Loopback
on cluster and cloud instances) with varying payload size. As
expected, InfiniBand has the lowest processing overhead and
highest throughput of all physical devices.

The comparison between the 1 GBit/s Ethernet of the
private cluster and 5 GBit/s Ethernet in Azure cloud reveals
interesting insights. Obviously, message throughput is higher
in the cloud for large messages. But, message throughput is
higher and processing time is lower on the cluster for messages
smaller than 64 bytes which is most likely caused by the
virtualization overhead of cloud servers. Loopback is also
considerably faster on cluster instances (< 300 ns processing
time and > 16 GByte/s throughput).

Figure 17 shows the request-response latency and through-
put for requests sent by four application threads. Again, 1
GBit/s Ethernet on our cluster performs better for small pay-
loads (< 1024) than 5 GBit/s Ethernet in the cloud. For larger
requests, the bandwidth becomes more and more important
favoring the cloud network. Both Ethernet networks are far
off the latencies InfiniBand achieves. For small request (< 512
byte payload) the RTT is consistently under 10 µs and rises to
only 16 µs for 16 KB requests. Hence, the throughput is much
higher with InfiniBand as well.

The evaluation with three different physical transports
confirms the results gathered with Loopback. DXNet per-
forms strongly especially with InfiniBand (RTT < 10 µs,
throughput > 9 GByte/s full-duplex).

132

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

100

1000

10000

100000

 1 4 16 64 256 1024 4096 16384

P
ro

ce
ss

in
g
 T

im
e
 p

e
r

M
e
ss

a
g
e
 [

n
s]

Message Sizes

Loopback Cloud
Loopback Cluster

Ethernet Cloud (5 GBit/s)
Ethernet Cluster (1 GBit/s)

InfiniBand Cluster (56 GBit/s)

 1 4 16 64 256 1024 4096 16384
 1

 10

 100

 1000

 10000

T
h
ro

u
g
h
p
u
t

[M
B

/s
]

Message Sizes

Loopback Cloud
Loopback Cluster

Ethernet Cloud (5 GBit/s)
Ethernet Cluster (1 GBit/s)

InfiniBand Cluster (56 GBit/s)

Figure 16. 108 Messages, 1 App. Thread, 2 Message Handlers.

4

16

64

256

1024

4096

 1 4 16 64 256 1024 4096 16384

R
e
q
u
e
st

-R
e
sp

o
n
se

 L
a
te

n
cy

 [
µ

s]

Request Sizes

Loopback Cloud
Loopback Cluster

Ethernet Cloud (5 GBit/s)
Ethernet Cluster (1 GBit/s)

InfiniBand Cluster (56 GBit/s)

 1 4 16 64 256 1024 4096 16384

 10

 100

 1000

 10000

T
h
ro

u
g
h
p
u
t

[M
B

/s
]

Request Sizes

Loopback Cloud
Loopback Cluster

Ethernet Cloud (5 GBit/s)
Ethernet Cluster (1 GBit/s)

InfiniBand Cluster (56 GBit/s)

Figure 17. 107 Requests, 4 App. Threads, 2 Message Handlers.

TABLE IV. ADDITIONAL PARAMETERS

Parameter Value
ORB Size 4 MB
Flow Control Windows Size 2 MB
Flow Control Threshold 0.6
net.core.rmem_max 4 MB
net.core.wmem_max 4 MB

C. Scalability of (Eth)DXNet

Message Throughput: First, we measured the asyn-
chronous message throughput with an increasing number of
nodes in an all-to-all test with message payloads of 64 and
4096 bytes. For instance, when running the benchmark with
32 nodes, each node sends 25,000,000 64-byte messages to all
31 other nodes and therefore each node has to send and receive
775,000,000 messages in total. Additional network parameters
can be found in Table IV.

Figure 18 shows the average payload throughput for single
nodes and Figure 19 the aggregated throughput of all nodes.

For 64-byte messages, the payload throughput is between
200 and 260 MB/s for all node numbers, showing a minimal
decrease from 2 to 16 nodes. With 4096-byte messages the
throughput improves with up to 8 nodes peaking at 1370 MB/s
full-duplex bandwidth (5.5 GBit/s uni-directional). With 64
nodes the throughput is still above 5 GBit/s resulting in an
aggregated throughput of 83,376 MB/s. The minor decline in
both experiments can be explained by an uneven deployment

 2 4 8 16 32 64
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

T
h
ro

u
g

h
p

u
t

[M
B

/s
]

Number of Nodes

64 Bytes 4096 Bytes

Figure 18. Message Payload Throughput per Node. 1 Application Thread, 2
Message Handler Threads.

of our network benchmark causing the last nodes starting
and finishing a few seconds later. The end-to-end throughput
between two nodes seems to be bound at around 3.2 GBit/s in
the Microsoft Azure cloud as tests with iperf showed, too.

The benchmarks show that DXNet, as well as EthDXNet
scale very well for asynchronous messages under high
loads.

Request-Response Latency: The next benchmarks are
used to evaluate request-response latency by measuring the
RTT. Figure 20 shows the RTTs for an all-to-all scenario
with 2 to 64 nodes and 1, 16 and 100 application threads.
Furthermore, all-to-all tests with ping are included to show
network latency limitations.

133

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 2 4 8 16 32 64
0

10000

20000

30000

40000

50000

60000

70000

80000

T
h
ro

u
g

h
p

u
t

[M
B

/s
]

Number of Nodes

64 Bytes 4096 Bytes

Figure 19. Aggregated Message Payload Throughput. 1 Application Thread,
2 Message Handler Threads.

The latency of the Azure Ethernet network is relatively
high with a minimum of 352 µs measured with DXNet and
one application thread (Figure 20). A test with up to 4032
ping processes shows that the average latency of the network is
even higher (> 500 µs). In DXNet, own requests are combined
with responses (and other requests if more than one application
thread is used). This reduces the average latency for requests.
Additionally, the ping baseline shows an increased latency for
more than 32 nodes, by using one scale-set for the first 32
nodes and another one for the last 32 nodes. Different scale-
sets are most likely separated by additional switches which
increases the latency for communication between scale-sets.

EthDXNet is consistently under the ping baseline demon-
strating the low overhead and high scalability of EthDXNet
(and DXNet) when using one application thread. With 16
application threads, the latency is slightly higher and on the
same level as the baseline, but the throughput is more than
10 times higher as well (in comparison to DXNet with one
application thread). Furthermore, both lines have the same
bend from 32 to 64 nodes as the baseline.

With 100 application threads per node (up to 6,400 in total),
the latency increases noticeably, as expected, because the CPU
is highly overprovisioned. In this situation, the latency between
writing a message into the ORB and sending it increases
dramatically with more open socket channels. Furthermore,
requests can be aggregated more efficiently in the ORBs with
less open connections masking the overhead with a few nodes.

The latency experiments show that EthDXNet scales
up to 64 nodes without impairing latency. With a very high
number of application threads (relative to the available cores)
the latency increases, as expected, but is still good.

D. Yahoo! Cloud Serving Benchmark

The Yahoo! Cloud Serving Benchmark was designed to
quantitatively compare distributed serving storage systems
[33]. The benchmark offers a set of simple operations (reads,
writes, range scans) and a tabular key-value data model to eval-
uate online storage systems regarding their elasticity, availabil-
ity and replication. Furthermore, YCSB is easily extensible for
new storage systems and new workloads. For our evaluation,
we used the in-memory key-value store DXRAM [8] which

0

500

1000

1500

2000

 2 4 8 16 32 64

R
T
T
 [

µ
s]

Number of Nodes

1 Thread
16 Threads

100 Threads
Ping Baseline

Figure 20. Average Request-Response Latency. 1 to 100 Application
Threads, 2 Message Handler Threads.

0

200

400

600

800

1000

1200

 10 100 1000
 0

 200000

 400000

 600000

 800000

 1x106

O
p

e
ra

ti
o
n
 L

a
te

n
cy

 [
µ

s]

O
p

e
ra

ti
o
n
 T

h
ro

u
g

h
p

u
t

[o
p

s/
s]

Number of Client Threads

Latency
Throughput

Figure 21. 6 Message Handlers.

utilizes DXNet and created an individual workload: one 64-
byte object per key, 106 keys, uniform distribution, 90 % read
and 10 % write operations, 107 operations. The tests were run
in the Microsoft Azure cloud with one storage server and an
increasing number of client servers (maximum 16) which each
hosted up to 80 client threads.

Figure 21 shows the average operation latency and through-
put with 10 to 1280 client threads. The operation latency
starts at around 230 µs which is in line with previous latency
measurements. The latency grows slowly up to 480 client
threads but then exponentially indicating server congestion.
The throughput rises up to 640 client threads with more than
one million operations per second and remains stable with
more client threads.

The evaluation with YCSB shows DXNet’s high perfor-
mance for a client-server scenario (one server can serve
more than 1000 clients).

XIV. CONCLUSION AND FUTURE WORK

Big data applications, as well as large-scale interactive
applications, are often implemented in Java and typically exe-
cuted on many nodes in a cloud data center. Efficient network
communication is crucial for these application domains. RMI
while being comfortable to use is not fast enough. Plain sockets
are difficult to handle especially if efficiency and scalability
need to be addressed. MPI was designed for spawning pro-
cesses with finite runtime in a static environment. Thus, multi-

134

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

threading performance and support for adding/removing nodes
to an existing environment are limited.

In this paper, we proposed DXNet, a Java open-source
network library complementing the communication spectrum.
DXNet provides fast parallel serialization for Java objects,
automatic connection management, automatic message ag-
gregation and an event-driven message receiving approach
including concurrent deserialization. DXNet offers high-
throughput asynchronous messaging as well as synchronous
request-response communication with very low latency. DXNet
achieves high performance and low latency by using lock-free
data structures, zero-copy and zero-allocation. The proposed
ring buffer and queue structures are complemented by dif-
ferent thread parking strategies guaranteeing low latency by
avoiding CPU overload. Finally, its architecture is open for
supporting different transport protocols. It already supports
TCP with Java.nio and reliable verbs for InfiniBand. We
described our practical experiences in designing a transport
implementation for Ethernet networks, EthDXNet, integrated
into DXNet. EthDXNet provides a double-channel based au-
tomatic connection approach using back-channels for sending
flow control data and an efficient operation interest handling
which is important to achieve low-latency message handling
with Java.nio’s Selector.

Evaluations on a private cluster and in the Microsoft Azure
cloud show message processing times of sub 300 ns resulting
in throughputs of up to 16 GByte/s which saturate the memory
bandwidth of a typical cloud instance. For the request/response
pattern, DXNet is able to provide sub 10 µs RTT latency using
the InfiniBand transport (sub 4 µs over Loopback). Finally,
DXNet is also able to efficiently handle highly concurrent
processing of many small messages resulting in throughput
saturations for Ethernet with 256 bytes payload and Infini-
Band with 1-2 KB payload. The evaluation in the Microsoft
Azure cloud shows the scalability of EthDXNet (together with
DXNet) achieving an aggregated throughput of more than 83
GByte/s with 64 nodes connected with 5 GBit/s Ethernet (10
GBit/s Ethernet limited by SLAs). Request-response latency is
almost constant for an increasing number of nodes as long as
the CPU is not overloaded. Future work includes experiments
on larger scales with application traces.

The InfiniBand transport IBDXNet is work in progress and
the final results will be published separately (throughput: >10.4
GByte/s). Future work also includes more experiments at larger
scales including comparisons with other network middlewares,
as well as evaluations using a 100 GBit/s InfiniBand network.

This work has been partially funded by the German DFG.

REFERENCES

[1] K. Beineke, S. Nothaas, and M. Schoettner, “Scalable messaging for
java-based cloud applications,” ICNS 2018, The Fourteenth Interna-
tional Conference on Network and Services, vol. 14, pp. 32–41, May
2018.

[2] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” Proc. VLDB
Endow., vol. 8, pp. 1804–1815, Aug. 2015.

[3] S. Ekanayake, S. Kamburugamuve, and G. C. Fox, “Spidal java: High
performance data analytics with java and mpi on large multicore hpc
clusters,” in Proceedings of the 24th High Performance Computing
Symposium, 2016, pp. 3:1–3:8.

[4] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[5] S. Microsystems, “Java remote method invocation specification,”
https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmiTOC.html,
accessed: 2018.11.17.

[6] Oracle, “Package java.net,” https://docs.oracle.com/javase/8/docs/api/
java/net/package-summary.html, accessed: 2018.11.17.

[7] S. Mintchev, “Writing programs in javampi,” School of Computer
Science, University of Westminster, Tech. Rep. MAN-CSPE-02, Oct.
1997.

[8] K. Beineke, S. Nothaas, and M. Schoettner, “High throughput log-
based replication for many small in-memory objects,” in IEEE 22nd
International Conference on Parallel and Distributed Systems, 2016,
pp. 535–544.

[9] S. Nothaas, K. Beineke, and M. Schöttner, “Distributed multithreaded
breadth-first search on large graphs using dxgraph,” in Proceedings of
the First International Workshop on High Performance Graph Data
Management and Processing, ser. HPGDMP ’16, 2016, pp. 1–8.

[10] K. Beineke, S. Nothaas, and M. Schoettner, “Dxnet project on github,”
https://github.com/hhu-bsinfo/dxnet, accessed: 2018.11.17.

[11] W. Zhu, C.-L. Wang, and F. C. M. Lau, “Jessica2: a distributed
java virtual machine with transparent thread migration support,” in
Proceedings. IEEE International Conference on Cluster Computing,
2002, pp. 381–388.

[12] R. Noronha and D. K. Panda, “Designing high performance dsm
systems using infiniband features,” IEEE International Symposium on
Cluster Computing and the Grid, 2004. CCGrid 2004., pp. 467–474,
2004.

[13] S. P. Ahuja and R. Quintao, “Performance evaluation of java rmi:
A distributed object architecture for internet based applications,” in
Proceedings of the 8th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, ser.
MASCOTS ’00, 2000, pp. 565–569.

[14] M. Philippsen, B. Haumacher, and C. Nester, “More efficient serializa-
tion and rmi for java,” Concurrency: Practice and Experience, vol. 12,
pp. 495–518, 2000.

[15] J. Maassen, R. V. Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jac-
bos, and R. Hofman, “Efficient java rmi for parallel programming,”
ACM Trans. Program. Lang. Syst., vol. 23, pp. 747–775, Nov. 2001.

[16] C. Nester, M. Philippsen, and B. Haumacher, “A more efficient rmi
for java,” in Proc. of the ACM 1999 Conf. on Java Grande, 1999, pp.
152–159.

[17] M. P. I. Forum, Ed., MPI: A Message-passing Inter-
face Standard, Version 3.1 ; June 4, 2015. High-
Performance Computing Center, 2015, 2015. [Online]. Available:
https://books.google.de/books?id=Fbv7jwEACAAJ

[18] A. Shafi, B. Carpenter, and M. Baker, “Nested parallelism for multi-
core hpc systems using java,” in Journal of Parallel and Distributed
Computing, 2009, pp. 532–545.

[19] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and X. Li, “mpijava: A
java interface to mpi,” http://www.hpjava.org/mpiJava.html, accessed:
2018.11.17.

[20] G. "Dózsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur, “Enabling concurrent multithreaded mpi
communication on multicore petascale systems,” in "Recent Advances
in the Message Passing Interface", 2010, pp. 11–20.

[21] H. V. Dang, S. Seo, A. Amer, and P. Balaji, “Advanced thread
synchronization for multithreaded mpi implementations,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), May 2017, pp. 314–324.

[22] R. Latham, R. Ross, and R. Thakur, “Can mpi be used for persistent
parallel services?” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface. Springer Berlin Heidelberg, 2006, pp.
275–284.

[23] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using mpi in high-
performance computing services,” in Proceedings of the 20th European
MPI Users’ Group Meeting, ser. EuroMPI ’13, 2013, pp. 43–48.

[24] K. Beineke, S. Nothaas, and M. Schoettner, “Fast parallel recovery
of many small in-memory objects,” in 2017 IEEE 23rd International

135

International Journal on Advances in Internet Technology, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/internet_technology/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Conference on Parallel and Distributed Systems (ICPADS), Dec. 2017,
pp. 248–257.

[25] Oracle, “Java i/o, nio, and nio.2,”
https://docs.oracle.com/javase/8/docs/technotes/guides/io/index.html,
accessed: 2018.11.17.

[26] R. Hitchens, Java NIO. Sebastopol, CA, USA: O’Reilly Media, 2009.
[27] G. L. Taboada, J. Touriño, and R. Doallo, “Java fast sockets: Enabling

high-speed java communications on high performance clusters,” Com-
put. Commun., vol. 31, pp. 4049–4059, Nov. 2008.

[28] G. L. Taboada, J. Tourino, and R. Doallo, “High performance java
sockets for parallel computing on clusters,” in Parallel and Distributed
Processing Symposium, 2007, pp. 1–8.

[29] W. Pugh and J. Spacco, MPJava: High-Performance Message Passing
in Java Using Java.nio. Springer Berlin Heidelberg, 2004, vol. 16.

[30] L. Mastrangelo, L. Ponzanelli, A. Mocci, M. Lanza, M. Hauswirth, and
N. Nystrom, “Use at your own risk: The java unsafe api in the wild,”
SIGPLAN Not., vol. 50, pp. 695–710, Oct. 2015.

[31] R. Riggs, J. Waldo, A. Wollrath, and K. Bharat, “Pickling state in the
javatm system,” in Proc. of the 2nd Conf. on USENIX Conf. on Object-
Oriented Technologies, 1996, pp. 19–19.

[32] “Kryo - java serialization and cloning: fast, efficient, automatic.”
https://github.com/EsotericSoftware/kryo, accessed: 2018.11.17.

[33] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. of the 1st
ACM symposium on Cloud computing, 2010, pp. 143–154.

